Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-20T20:55:53.131Z Has data issue: false hasContentIssue false

4 - Semiochemistry of spiders

Published online by Cambridge University Press:  07 August 2009

Stefan Schulz
Affiliation:
Institute of Organic Chemistry, the Technical University of Braunschweig, Germany
Ring T. Cardé
Affiliation:
University of California, Riverside
Jocelyn G. Millar
Affiliation:
University of California, Riverside
Get access

Summary

Introduction

Spiders are an important order of carnivorous arachnids having a great impact on many ecosystems. Because most of their prey consists of insects, they can play an important role in controlling pest insects in agricultural crops. There are currently about 36 000 described species, out of an estimated overall number of 60 000–80 000 species (Platnick, 1999). Unlike the situation with insects (Francke and Schulz, 1999), pheromones and other semiochemicals of arachnids, and especially spiders, have received little attention from researchers. What information is available on the use of semiochemicals by spiders will be reviewed and discussed in this chapter.

Spider pheromones

Spiders are not well known for their ability to communicate with pheromones, partly because of their relatively restricted movement compared with flying insects. Such limited motility makes observations of such phenomena less straightforward. Furthermore, few spider species are serious pests, and far more research has been focussed on their elaborate use of silk, which has fascinated humans for millenia. However, the problem of finding mates is essentially the same for both insects and spiders. That is, a relatively small animal living in a spacious environment needs efficient mechanisms to find a mate for reproduction. Flying insects are better equipped to respond to olfactory cues for mate location, being free to move in three dimensions, whereas spiders are often restricted to walking on vegetation, which makes it more difficult to follow odor plumes through complex plant architecture.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldrich, J. R. and Barros, T. M. (1995). Chemical attraction of male crab spiders (Araneae, Thomisidae) and kleptoparasitic flies (Diptera, Milichiidae and Chloropidae). Journal of Arachnology 23: 212–214Google Scholar
Allan, R. A., Elgar, M. A. and Capon, R. J. (1996). Exploitation of an ant chemical alarm signal by the zodariid spider Habronestes bradleyi Walckenaer. Proceedings of the Royal Society of London, Series B 263: 69–73CrossRefGoogle Scholar
Allan, R. A., Capon, R. J., Brown, W. V. and Elgar, M. A. (2002). Mimicry of host cuticular hydrocarbons by salticid spider Cosmophasis bitaeniata that preys on larvae of tree ants Oecophylla smaragdina. Journal of Chemical Ecology 28: 835–848CrossRefGoogle ScholarPubMed
Anava, A. and Lubin, Y. (1993). Presence of gender cues in the web of a widow spider, Latrodectus revivensis, and a description of courtship behavior. Bulletin of the British Arachnological Society 9: 119–122Google Scholar
Anderson, J. T. and Morse, D. H. (2001). Pick-up lines: cues used by male crab spiders to find reproductive females. Behavioral Ecology 12: 360–366CrossRefGoogle Scholar
Ayyagari, L. R. and Tietjen, W. J. (1986). Preliminary isolation of male inhibitory pheromone of the spider Schizocosa ocreata (Araneae, Lycosidae). Journal of Chemical Ecology 13: 237–244CrossRefGoogle Scholar
Baarlen, P. V., Topping, C. J. and Sunderland, K. D. (1996). Host location by Gelis festinans, an eggsac parasitoid of the linyphiid spider Erigone atra. Entomologica Experimentalis et Applicata 81: 155–163CrossRefGoogle Scholar
Bagnères, A. G., Trabalon, M., Blomquist, G. J. and Schulz, S. (1997). Waxes of the social spider Anelosimus eximus: abundance of novel n-propyl esters of long-chain methyl-branched fatty acids. Archives of Insect Biochemistry and Physiology 36: 295–3143.0.CO;2-R>CrossRefGoogle Scholar
Barnes, M. C., Persons, M. H. and Rypstra, A. L. (2002). The effect of predator chemical cue age on antipredator behavior in the wolf spider Pardosa milvina (Araneae: Lycosidae). Journal of Insect Behavior 15: 269–281CrossRefGoogle Scholar
Barth, F. G. and Schmitt, A. (1991). Species recognition and species isolation in wandering spiders (Cupiennius spp.; Ctenidae). Behavioral Ecology and Sociobiology 29: 333–339CrossRefGoogle Scholar
Blagbrough, I. S., Brackley, P. T. H., Bruce, M.et al. (1992). Arthropod toxins as leads for novel insecticides: an assessment of polyamine amides as glutamate antagonists. Toxicon 30: 303–322CrossRefGoogle ScholarPubMed
Blanke, R. (1973). Nachweis von Pheromonen bei Netzspinnen. Naturwissenschaften 60: 481CrossRefGoogle Scholar
Blanke, R. (1975). Untersuchung zum Sexualverhalten von Cyrtophora cicatrosa (Araneae, Araneidae). Zeitschrift für Tierpsychologie 377: 62–74Google Scholar
Bristowe, W. S. and Locket, G. H. (1926). The courtship of British lycosid spiders, and its probable significance. Proceedings of the Zoological Society, London 1926: 317–347CrossRefGoogle Scholar
Clark, R. J. and Jackson, R. R. (1994). Self recognition in a jumping spider: Portia labiata females discriminate between their own draglines and those of conspecifics. Ethology, Ecology and Evolution 6: 371–375CrossRefGoogle Scholar
Clark, R. J. and Jackson, R. R. (1995a). Araneophagic jumping spiders discriminate between the draglines of familiar and unfamiliar conspecifics. Ethology, Ecology and Evolution 7: 185–190CrossRefGoogle Scholar
Clark, R. J. and Jackson, R. R. (1995b). Dragline-mediated sex recognition in two species of jumping spiders (Araneae, Salticidae), Portia labiata and P. fimbriata. Ethology, Ecology and Evolution 7: 73–77CrossRefGoogle Scholar
Clark, R. J., Jackson, R. R. and Waas, J. R. (1999). Draglines and assessment of fighting ability in cannibalistic jumping spiders. Journal of Insect Behavior 12: 753–766CrossRefGoogle Scholar
Clark, R. J., Jackson, R. R. and Cutler, B. (2000). Chemical cues from ants influence predatory behavior in Habrocestum pulex, an ant-eating jumping spider (Araneae, Salticidae). Journal of Arachnology 28: 309–318CrossRefGoogle Scholar
Coddington, J. A. and Levi, H. W. (1991). Systematics and evolution of spiders (Araneae). Annual Reviews of Ecology and Systematics 22: 565–592CrossRefGoogle Scholar
Coyle, F. A. and Shear, W. A. (1981). Observations on the natural history of Sphodros abboti and Sphodros rufipes (Araneae, Atypidae), with evidence for a contact sex pheromone. Journal of Arachnology 9: 317–326Google Scholar
Crane, J. (1949). Comparative biology of salticid spiders at Rancho Grande, Venezuela, Part IV. An analysis of display. Zoologica, New York 34: 159–215Google Scholar
Cushing, P. E. (1997). Myrmecomorphy and myrmecophily in spiders: a review. Florida Entomologist 80: 166–193CrossRefGoogle Scholar
Dettner, K. and Liepert, C. (1994). Chemical mimicry and camouflage. Annual Review of Entomology 39: 129–154CrossRefGoogle Scholar
Dijkstra, H. (1976). Searching behavior and tactochemical orientation in males of the wolf spider Pardosa amentata (Cl.) (Araneae, Lycosidae). Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series C, Biological and Medical Science 79: 235–244Google Scholar
Dondale, C. D. and Hegdekar, B. M. (1973). The contact sex pheromone of Pardosa lapidicina Emerton (Araneae: Lycosidae). Canadian Journal of Zoology 51: 400–401CrossRefGoogle Scholar
Dumais, J., Perron, J. M. and Dondale, C. D. (1973). Eléments du comportement sexuel chez Pardosa xerampelina (Keyserling) (Araneidae: Lycosidae). Canadian Journal of Zoology 51: 265–271CrossRefGoogle Scholar
Dumpert, K. (1978). Spider odor receptor: electrophysiological proof. Experientia 34: 754–755CrossRefGoogle Scholar
Eberhard, W. G. (1977). Agressive chemical mimicry by bolas spiders. Science 198: 1173–1175CrossRefGoogle Scholar
Eberhard, W. G. (1980). The natural history and behavior of the bolas spider Mastophora dizzydeani sp. n. (Araneidae). Psyche 87: 143–169CrossRefGoogle Scholar
Enders, F. (1975). Airborne pheromone probable in orb web spider Argiope aurantia (Araneidae). British Arachnological Society News 13: 5–6Google Scholar
Escoubas, P., Diochot, S. and Corzo, G. (2000). Structure and pharmacology of spider venom neurotoxins. Biochimie 82: 893–907CrossRefGoogle ScholarPubMed
Evans, T. A. and Main, B. Y. (1993). Attraction between social crab spiders: silk pheromones in Diaea socialis. Behavioral Ecology 4: 99–105CrossRefGoogle Scholar
Farley, C. and Shear, W. A. (1973). Observations on the courtship behaviour of Lycosa carolinensis. Bulletin of the British Arachnological Society 2: 153–158Google Scholar
Foelix, R. F. (1996). Biology of Spiders, 2nd edn, Oxford: Oxford University Press
Foelix, R. F. and Chu-Wang, I. W. (1973). The morphology of spider sensilla. II. Chemoreceptors. Tissue Cell 5: 451–460CrossRefGoogle ScholarPubMed
Francke, W. and Schulz, S. (1999). Pheromones. In Comprehensive Natural Products Chemistry, eds. D. Barton, K. Nakanishi, O. Meth-Cohn and K. Mori, vol. 8, pp. 197–261. Amsterdam: ElsevierCrossRef
Gemeno, C., Yeargan, K. V. and Haynes, K. F. (2000). Aggressive chemical mimicry by the bolas spider Mastophora hutchinsoni: identification and quantification of a major prey's sex pheromone components in the spider's volatile emissions. Journal of Chemical Ecology 26: 1235–1243CrossRefGoogle Scholar
Gertsch, W. J. (1947). Spiders that lasso their prey. Natural History 56: 152–158Google Scholar
Grishin, E. V. (1996). Neurotoxin from black widow spider venom. Structure and function. Advances in Experimental Medicine and Biology 391: 231–236CrossRefGoogle ScholarPubMed
Guggisberg, A. and Hesse, M. (1998). Natural polyamine derivatives: new aspects of their isolation, structure elucidation, and synthesis. In The Alkaloids, vol. 50, eds. R. H. F. Manske, R. G. A. Rodrigo, A. Brossi and G. A. Cordell, pp. 219–256. New York: Academic PressCrossRef
Gwinner-Hanke, H. (1970). Zum Verhalten zweier stridulierender Spinnen Steatoda bipunctata Linné und Teutana grossa Koch (Theridiidae, Araneae), unter besonderer Berücksichtigung ihres Fortpflanzungsverhaltens. Zeitschrift für Tierpsychologie 27: 649–678CrossRefGoogle Scholar
Hamilton, J. G. C., Brazil, R. P., Morgan, E. D. and Alexander, B. (1999a). Chemical analysis of oxygenated homosesquiterpenes: a putative sex pheromone from Lutzomyia lichyi (Diptera: Psychodidae). Bulletin of Entomological Research 89: 139–145CrossRefGoogle Scholar
Hamilton, J. G. C., Hooper, A. M., Ibbotson, H. C.et al. (1999b). 9-Methylgermacrene-B is confirmed as the sex pheromone of the sandfly Lutzomyia longipalpis from Lapinha, Brazil, and the absolute stereochemistry defined as S. Chemical Communications2335–2336CrossRefGoogle Scholar
Hamilton, J. G. C., Hooper, A. M., Mori, K., Pickett, J. A. and Sano, S. (1999c). 3-Methyl-α-himachalene is confirmed, and the relative stereochemistry defined, by synthesis as the sex pheromone of the sandfly Lutzomyia longipalpis from Jacobina, Brazil. Chemical Communications335–356Google Scholar
Haynes, K. F., Yeargan, K. V., Millar, J. G. and Chastan, B. B. (1996). Identification of sex pheromone of Tetanolita myenesalis (Lepidoptera: Noctuidae), a prey species of bolas spiders, Mastophora hutchinsoni. Journal of Chemical Ecology 22: 75–89CrossRefGoogle Scholar
Hegdekar, B. M. and Dondale, C. D. (1969). A contact sex pheromone and some response parameters in lycosid spiders. Canadian Journal of Zoology 47: 1–4CrossRefGoogle Scholar
Hickman, V. V. (1964). On Atrax infensus sp. n. (Araneida: Dipluridae), its habits and a method of trapping the males. Papers and Proceedings of the Royal Society of Tasmania 98: 107–112Google Scholar
Higgins, L. E., Townley, M. A., Tillinghast, E. K. and Rankin, M. A. (2001). Variation in the chemical composition of orb webs built by the spider Nephila clavipes (Araneae, Tetragnathidae). Journal of Arachnology 29: 82–94CrossRefGoogle Scholar
Horton, C. C. (1979). Apparent attraction of moths by the webs of araneid spiders. Journal of Arachnology 7: 88Google Scholar
Hutchinson, D. E. (1903). A bolas throwing spider. Scientific American89–172Google Scholar
Jackson, R. R. (1978). Male mating strategies of dictynid spiders with differing types of social organization. Symposia of the Zoological Society, London 42: 79–88Google Scholar
Jackson, R. R. (1982). Comparative study of Dictyna and Mallos (Araneae: Dictynidae): IV. Silk mediated interattraction. Insectes Sociaux 29: 15–24CrossRefGoogle Scholar
Jackson, R. R. (1986). Use of pheromones by males of Phidippus johnsoni (Araneae, Salticidae) to detect subadult females that are about to molt. Journal of Arachnology 14: 137–139Google Scholar
Jackson, R. R. (1987). Comparative study of releaser pheromones associated with the silk of jumping spiders (Araneae, Salticidae). New Zealand Journal of Zoology 14: 1–10CrossRefGoogle Scholar
Jackson, R. R. and Cooper, K. J. (1990). Variability in the responses of jumping spiders (Araneae: Salticidae) to sex pheromones. New Zealand Journal of Zoology 17: 39–42CrossRefGoogle Scholar
Jocqué, R. and Billen, J. (1987). The femoral organ of the Zodariinae (Araneae, Zodariidae). Revue de Zoologie Africaine 101: 165–170Google Scholar
Jocqué, R. and Dippenaar-Schoeman, A. S. (1992). Two new termite-eating Diores species (Araneae, Zoodariidae) and some observations on unique prey immobilization. Journal of Natural History 26: 1405–1412CrossRefGoogle Scholar
Kaston, B. J. (1936). The senses involved in the courtship of some vagabound spiders. Entomologica Americana 16: 97–169Google Scholar
Kolosvary, G. V. (1932). Neue Daten zur Lebensweise der Trochosa (Hogna) singoriensis (Laxm.). Zoologischer Anzeiger 98: 307–317Google Scholar
Kovoor, J. (1981). Une source probable de phéromones sexuelles: les glandes tégumentaires de la région génitale des femelles d'araignées. Atti della Soccietà Toscana di Scienze Natturali 88: 1–15Google Scholar
Krafft, B. (1970). Contribution à la biologie et à l'éthologie d'Agelena consociata Denis (araignée sociale du Gabon), II. Biologia Gabonica 4: 308–369Google Scholar
Krafft, B. (1971). Contribution à la biologie et à l'éthologie d'Agelena consociata Denis (araignée sociale du Gabon), III: Etude expérimentale de certains phénomènes sociaux (suite). Biologia Gabonica 7: 3–56Google Scholar
Krafft, B. (1974). La tolérance réciproque chez l'araignée sociale Agelena consociata Denis. Proceedings of the 6th International Arachnological Congress107–112Google Scholar
Krafft, B. (1978). The recording of vibratory signals performed by spiders during courtship. Symposia of the Zoological Society, London 42: 59–67Google Scholar
Kronestedt, T. (1986). A presumptive pheromone-emitting structure in wolf spiders (Araneae, Lycosidae). Psyche 93: 127–131CrossRefGoogle Scholar
Kullmann, E. J. (1972). Evolution of social behavior in spiders (Araneae: Eresidae and Theridiidae). American Zoologist 12: 419–426CrossRefGoogle Scholar
Leborgne, R. (1981). Soie et communication chez les araignées (le rapprochement des sexes). Atti della Soccietà Toscana di Scienze Natturali 88: 132–142Google Scholar
Lendl, A. (1887–88). Trochosa infernalis Motschl. párzásáról ès párzási szerveirol. Temr Füzetek 11: 30–39Google Scholar
Lizotte, R. and Rovner, J. S. (1989). Water-resistant sex pheromones in lycosid spiders from a tropical wet forest. Journal of Arachnology 17: 121–125Google Scholar
Magazanik, L. G. (1996). Spider neurotoxins as tools for the investigation of glutamate receptors. Journal of Toxicology, Toxin Reviews 15: 59–76CrossRefGoogle Scholar
McCormick, K. D. and Meinwald, J. (1993). Neurotoxic acylpolyamines from spider venoms. Journal of Chemical Ecology 19: 2411–2451CrossRefGoogle ScholarPubMed
Millar, J. G. (2000). Polyene hydrocarbons and epoxides: a second major class of lepidopteran sex attractant pheromones. Annual Review of Entomology 45: 575–604CrossRefGoogle ScholarPubMed
Miyashita, T. and Hayashi, H. (1996). Volatile chemical cue elicits mating behavior of cohabiting males of Nephila clavata (Araneae, Tetragnathidae). Journal of Arachnology 24: 9–15Google Scholar
Mueller, A. L., Roeloffs, R. and Jackson, H. (1995). Pharmacology of polyamine toxins from spiders and wasps. In The Alkaloids, vol. 46, eds. R. H. F. Manske, R. G. A. Rodrigo, A. Brossi and G. A. Cordell, pp. 63–94. New York: Academic Press
Olive, C. W. (1982). Sex pheromones in two orb weaving spiders, (Araneae, Araneidae): an experimental field study. Journal of Arachnology 10: 241–245Google Scholar
Papke, M. D., Schulz, S., Tichy, H., Gingl, E. and Ehn, R. (2000). Identification of a new sex pheromone from the silk dragline of the tropical wandering spider Cupiennius salei. Angewandte Chemie, International Edition 39: 4339–43413.0.CO;2-T>CrossRefGoogle ScholarPubMed
Papke, M. D., Riechert, S. E. and Schulz, S. (2001). An airborne female pheromone associated with male attraction and courtship in a desert spider. Animal Behaviour 61: 877–886CrossRefGoogle Scholar
Pasquet, A., Trabalon, M., Bagnères, A. G. and Leborgne, R. (1997). Does group closure exist in the social spider Anelosimus eximus? Behavioural and chemical approach. Insectes Sociaux 44: 159–169CrossRefGoogle Scholar
Persons, M. H. and Rypstra, A. L. L. (2000). Preference for chemical cues associated with recent prey in the wolf spider Hogna helluo (Araneae: Lycosidae). Ethology 106: 27–35CrossRefGoogle Scholar
Persons, M. H. and Rypstra, A. L. L. (2001). Wolf spiders show graded antipredator behavior in the presence of chemical cues from different sized predators. Journal of Chemical Ecology 27: 2493–2504CrossRefGoogle ScholarPubMed
Persons, M. H., Walker, S. E., Rypstra, A. L. and Marshall, D. S. (2001). Wolf spider predator avoidance tactics and survival in the presence of diet-associated predator cues (Araneae: Lycosidae). Animal Behaviour 61: 43–51CrossRefGoogle Scholar
Platnick, N. I. (1999). Dimensions of biodiversity: targeting megadiverse groups. In The Living Planet in Crisis. Biodiversity Science and Policy, eds. J. Cracraft and F. T. Grifo, pp. 33–52. New York: Columbia University Press
Platnick, N. I. (2001). The World Spider Catalog, Version 2.0. American Museum of Natural History, http://research.amnh.org/entomology/ spiders/catalog81-87/index.html (version of January 2001)
Pollard, S. D., Macnab, A. M. and Jackson, R. R. (1987). Communication with chemicals: pheromones and spiders. In Ecophysiology of Spiders, ed. W. Nentwig, pp. 133–141. Berlin: SpringerCrossRef
Pourié, G. and Trabalon, M. (2001). Plasticity of agonistic behaviour in relation to diet and contact signals in experimentally group-living of Tegenaria atrica. Chemoecology 11: 175–181CrossRefGoogle Scholar
Prenter, J., Elwood, R. W. and Montgomery, W. I. (1994). Assessments and decisions in Metellina segmentata (Araneae: Metidae): evidence of a pheromone involved in mate guarding. Behavioral Ecology and Sociobiology 35: 39–43CrossRefGoogle Scholar
Prouvost, O., Trabalon, M., Papke, M. and Schulz, S. (1999). Contact sex signals on web and cuticle of Tegenaria atrica (Araneae, Agenelidae). Archives of Insect Biochemistry and Physiology 40: 194–2023.0.CO;2-P>CrossRefGoogle Scholar
Richter, C. J. J., Stolting, H. C. J. and Vlijm, L. (1971). Silk production in adult females of the wolf spider Pardosa amentata. Journal of Zoology, London 165: 285–290CrossRefGoogle Scholar
Riechert, S. E. and Singer, F. D. (1995). Investigation of potential male mate choice in a monogamous spider. Animal Behaviour 49: 719–723CrossRefGoogle Scholar
Robert, T. and Krafft, B. (1981). Contribution à l'étude des mécanismes de la communication tacto-chimique intervenant dans le rapprochement des sexes chez Pardosa hortensis Thorell (Araneae, Lycosidae). Atti della Soccietà Toscana di Scienze Natturali 88: 143–153Google Scholar
Robinson, M. H. (1982). The ecology and biogeography of spiders in Papua New Guinea. Monographiae Biologicae 42: 557–581CrossRefGoogle Scholar
Roelofs, W. L. (1995). Chemistry of sex attraction. Proceedings of the National Academy of Sciences, USA 92: 44–49CrossRefGoogle ScholarPubMed
Roland, C. (1984). Chemical signals bound to the silk in spider communication (Arachnida, Araneae). Journal of Arachnology 11: 309–314Google Scholar
Roland, C. and Rovner, J. S. (1983). Chemical and vibratory communication in the aquatic pisaurid spider Dolomedes triton. Journal of Arachnology 11: 77–85Google Scholar
Ross, K. and Smith, R. L. (1979). Aspects of the courtship behavior of the black widow spider Latrodectus hesperus (Araneae: Theridiidae), with evidence for the existence of a contact sex pheromone. Journal of Arachnology 7: 69–77Google Scholar
Rovner, J. S. (1968). An analysis of display in the lycosid spider Lycosa rabida Walckenaer. Animal Behaviour 16: 358–369CrossRefGoogle ScholarPubMed
Rovner, J. S. and Barth, F. G. (1981). Vibratory communication through living plants by a tropical wandering spider. Science 214: 464–466CrossRefGoogle ScholarPubMed
Sarinana, F. O., Kittredge, J. S. and Lowrie, D. C. (1971). A preliminary investigation of the sex pheromone of Pardosa ramulosa. Notes on the Arachnology of the Southwest 2: 9–11Google Scholar
Schäfer, A., Benz, H., Fiedler, W., Guggisberg, A., Bienz, S. and Hesse, M. (1994). Polyamine toxins from spiders and wasps. In The Alkaloids, vol. 45, eds. G. Cordell and A. Brossi, pp. 1–125. New York: Academic Press
Schuck-Paim, C. (2000). Orb-webs as extended-phenotypes: web design and size assessment in contests between Nephilengys cruentata females (Araneae, Tetragnathidae). Behaviour 137: 1331–1347CrossRefGoogle Scholar
Schulz, S. (1997a). The chemistry of spider toxins and spider silk. Angewandte Chemie, International Edition in English 36: 314–326CrossRefGoogle Scholar
Schulz, S. (1997b). Mass spectrometric determination of methyl group positions in long chain methyl ethers and alcohols via nitriles. Chemical Communications969–970CrossRefGoogle Scholar
Schulz, S. (1999). Structural diversity of surface lipids from spiders. In Bioorganic Chemistry: Highlights and New Aspects, eds. U. Diederichsen, T. K. Lindhorst, B.Westermann and L. A. Wessjohann, pp. 1–7. Weinheim: Wiley-VHC.
Schulz, S. (2001). Composition of the silk lipids of the spider Nephila clavipes. Lipids 36: 637–647CrossRefGoogle ScholarPubMed
Schulz, S. and Toft, S. (1993a). Branched long chain alkyl methyl ethers: a new class of lipids from spider silk. Tetrahedron 49: 6805–6820CrossRefGoogle Scholar
Schulz, S. and Toft, S. (1993b). Identification of a sex pheromone from a spider. Science 260: 1635–1637CrossRefGoogle Scholar
Searcy, L. E., Rypstra, A. L. and Persons, M. H. (1999). Airborne chemical communication in the wolf spider Pardosa milvina. Journal of Chemical Ecology 25: 2527–2533CrossRefGoogle Scholar
Seibt, U. and Wickler, W. (1988). Interspecific tolerance in social Stegodyphus spiders (Eresidae, Araneae). Journal of Arachnology 16: 35–39Google Scholar
Shao, Z. and Vollrath, F. (1999). The effect of solvents on the contraction and mechanical properties of spider silk. Polymer 40: 1799–1806CrossRefGoogle Scholar
Stewart, D. M. (1988). Endocrinology of arachnids. In Endrocrinology of Selected Invertebrate Types, eds. H. Laufer and G. H. Downer, pp. 415–428. New York: Alan R. Liss
Stowe, M. K. (1986). Prey specialization in the Araneidae. In Spiders: Webs, Behavior, and Evolution, ed. W. A. Shear, pp. 101–131. Stanford, CT: Stanford University Press
Stowe, M. K. (1988). Chemical mimicry. In Chemical Mediation of Coevolution, ed. K. C. Spencer, pp. 513–580. San Diego, CA: Academic PressCrossRef
Stowe, M. K., Tumlinson, J. H. and Heath, R. R. (1987). Chemical mimicry: bolas spiders emit components of moth prey species sex pheromones. Science 236: 964–967CrossRefGoogle ScholarPubMed
Suter, R. B. and Hirscheimer, A. J. (1986). Multiple web-borne pheromones in a spider Frontinella pyramitela (Araneae: Linyphiidae). Animal Behaviour 34: 748–753CrossRefGoogle Scholar
Suter, R. B. and Renkes, G. (1982). Linyphiid spider courtship: releaser and attractant functions of a contact sex pheromone. Animal Behaviour 30: 714–718CrossRefGoogle Scholar
Suter, R. B., Shane, C. M. and Hirscheimer, A. J. (1987). Communication by cuticular pheromones in a linyphiid spider. Journal of Arachnology 15: 157–162Google Scholar
Suter, R. B., Shane, C. M. and Hirscheimer, A. J. (1989). Frontinella pyramitela detects Argyrodes trigonum via cuticular chemicals. Journal of Arachnology 17: 237–240Google Scholar
Taylor, P. W. (1998). Dragline-mediated mate-searching in Trite planiceps (Araneae, Salticidae). Journal of Arachnology 26: 330–334Google Scholar
Tichy, H. and Ehn, R. (1994). Hygro- and thermoreceptive tarsal organ in the spider Cupiennius salei. Journal of Comparative Physiology A 174: 345–350Google Scholar
Tichy, H., Gingl, E., Ehn, R., Papke, M. and Schulz, S. (2001). Female sex pheromone of a wandering spider: identification and sensory reception. Journal of Comparative Physiology A 187: 75–78CrossRefGoogle ScholarPubMed
Tietjen, W. J. (1977). Dragline-following by male lycosid spiders. Psyche 84: 165–178CrossRefGoogle Scholar
Tietjen, W. J. (1979a). Is the sex pheromone of Lycosa rabida (Araneae: Lycosidae) deposited on a substratum?Journal of Arachnology 6: 207–212Google Scholar
Tietjen, W. J. (1979b). Tests for olfactory communication in four species of wolf spiders (Araneae, Lycosidae). Journal of Arachnology 6: 197–206Google Scholar
Tietjen, W. J. and Rovner, J. S. (1980). Trail-following behaviour in two species of wolf spiders: sensory and etho-ecological concomitants. Animal Behaviour 28: 735–741CrossRefGoogle Scholar
Tietjen, W. J. and Rovner, J. S. (1982). Chemical communication in lycosids and other spiders. In Spider Communication. Mechanisms and Ecological Significance, eds. P. N. Witt and J. S. Rovner, pp. 249–279. Princeton, NJ: Princeton University Press
Tietjen, W. J., Ayyagari, L. R. and Uetz, G. W. (1987). Symbiosis between social spiders and yeast: the role in prey attraction. Psyche 94: 151–158CrossRefGoogle Scholar
Toft, S. (1987). Microhabitat identity of two species of sheet-web spiders: field experimental demonstration. Oecologica 72: 216–220CrossRefGoogle ScholarPubMed
Toft, S. (1989). Mate guarding in two Linyphia species (Araneae: Linyphiidae). Bulletin of the British Arachnological Society 8: 33–37Google Scholar
Trabalon, M., Bagnères, A. G., Hartmann, N. and Vallet, A. M. (1996). Changes in cuticular compounds composition during the gregarious period and after dispersal of the young in Tegenaria atrica (Araneae, Agelenidae). Insect Biochemistry and Molecular Biology 26: 77–84CrossRefGoogle Scholar
Trabalon, M., Bagnéres, A. G. and Roland, C. (1997). Contact sex signals in two sympatric spider species, Tegenaria domestica and Tegenaria pagana. Journal of Chemical Ecology 23: 747–758CrossRefGoogle Scholar
Usherwood, P. N. R. and Blagbrough, I. S. (1991). Spider toxins affecting glutamate receptors: polyamines in therapeutical neurochemistry. Pharmacological Therapeutics 52: 245–268CrossRefGoogle Scholar
Helsdingen, P. J. (1965). Sexual behaviour of Lepthyphantes leprosus (Ohlert) (Araneida, Linyphiidae), with notes on the function of the genital organs. Zoologische Mededelingen 41: 15–42Google Scholar
Vander Meer, R. K., Breed, M. D., Winston, M. L. and Espelie, K. E. (1998). Pheromone Communication in Social Insects. Boulder, CO: Westview Press
Vollrath, F., Fairbrother, W. J., Williams, R. J. P.et al. (1990). Compounds in the droplets of the orb spider's viscid spiral. Nature 345: 526–528CrossRefGoogle Scholar
Watson, P. J. (1986). Transmission of a female sex pheromone thwarted by males in the spider Linyphia litigosa (Linyphiidae). Science 233: 219–221CrossRefGoogle Scholar
Willey, M. B. and Jackson, R. R. (1993). Olfactory cues from conspecifics inhibit the web-invasion behavior of Portia, web invading araneophagic jumping spiders (Araneae: Salticidae). Canadian Journal of Zoology 71: 1415–1420CrossRefGoogle Scholar
Witt, P. N. (1975). The web as a means of communication. Bioscience Communications 1: 7–23Google Scholar
Witte, V., Hänel, H., Weissflog, A., Rosli, H. and Maschwitz, U. (1999). Social integration of the myrmecophilic spider Gamasomorpha maschwitzi (Araneae: Oonopidae) in colonies of the south east Asian army ant, Leptogenys distinguenda (Formicidae: Ponerinae). Sociobiology 34: 145–159Google Scholar
Yeargan, K. V. (1994). Biology of bolas spiders. Annual Review of Entomology 39: 81–99CrossRefGoogle Scholar
Yeargan, K. V. and Quate, L. W. (1996). Juvenile bolas spiders attract psychodid flies. Oecologia 106: 266–271CrossRefGoogle ScholarPubMed
Yoshida, H. and Suzuki, Y. (1981). Silk as a cue for mate location in the jumping spider, Carrhotus xanthogramma (Latreille) (Araneae: Salticidae). Applied Entomology and Zoology 16: 315–317CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Semiochemistry of spiders
    • By Stefan Schulz, Institute of Organic Chemistry, the Technical University of Braunschweig, Germany
  • Edited by Ring T. Cardé, University of California, Riverside, Jocelyn G. Millar, University of California, Riverside
  • Book: Advances in Insect Chemical Ecology
  • Online publication: 07 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511542664.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Semiochemistry of spiders
    • By Stefan Schulz, Institute of Organic Chemistry, the Technical University of Braunschweig, Germany
  • Edited by Ring T. Cardé, University of California, Riverside, Jocelyn G. Millar, University of California, Riverside
  • Book: Advances in Insect Chemical Ecology
  • Online publication: 07 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511542664.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Semiochemistry of spiders
    • By Stefan Schulz, Institute of Organic Chemistry, the Technical University of Braunschweig, Germany
  • Edited by Ring T. Cardé, University of California, Riverside, Jocelyn G. Millar, University of California, Riverside
  • Book: Advances in Insect Chemical Ecology
  • Online publication: 07 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511542664.005
Available formats
×