Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-24T18:20:07.619Z Has data issue: false hasContentIssue false

2 - Recruitment of predators and parasitoids by herbivore-injured plants

Published online by Cambridge University Press:  07 August 2009

Ted C. J. Turlings
Affiliation:
Institute of Zoology, University of Neuchatel, Switzerland
Felix Wäckers
Affiliation:
Netherlands Institute of Ecology, Heteren, the Netherlands
Ring T. Cardé
Affiliation:
University of California, Riverside
Jocelyn G. Millar
Affiliation:
University of California, Riverside
Get access

Summary

Introduction

In recent years, induced plant defenses have received widespread attention from biologists in a variety of disciplines. The mechanisms underlying these defenses and the interactions that mediate them appeal not only to plant physiologists, ecologists, and evolutionary biologists but also to those scientists that search for novel strategies in plant protection. Several recent books (Karban and Baldwin, 1997; Agrawal et al., 1999) and reviews (Baldwin, 1994; Karban et al., 1997; Agrawal and Rutter, 1998; Agrawal and Karban, 1999; Baldwin and Preston, 1999; Dicke et al., 2003) have been devoted entirely to the subject of induced plant defenses. Various forces, ranging from abiotic stresses to biotic factors such as pathogens, arthropods, or higher organisms, may trigger different plant defense responses. Yet, the biochemical pathways that are involved appear to show considerable similarities. This is also true for the so-called indirect defenses.

The term indirect defense refers to those adaptations that result in the recruitment and sustenance of organisms that protect the plants against herbivorous attackers. The early published examples of indirect defenses involved intimate plant–ant interactions, in which myrmecophilous plants were shown to have evolved a range of adaptations providing ants with shelter (domatia) and various food sources (Belt, 1874; Janzen, 1966). In return, these plants may obtain a range of benefits because ants can provide nutrition (Thomson, 1981) or more commonly, protection against herbivores, pathogens, and competing plants (e.g. Koptur, 1992; Oliveira, 1997).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adjei-Maafo, I. K. and Wilson, L. T. (1983). Factors affecting the relative abundance of arthropods on nectaried and nectariless cotton. Environmental Entomology 12: 349–352CrossRefGoogle Scholar
Agelopoulos, N. A. and Keller, M. A. (1994). Plant natural enemy association in the tritrophic system Cotesia rubecula–Pieris rapae–Brassicaceae (Cruciferae). III: Collection and identification of plant and frass volatile. Journal of Chemical Ecology 20: 1955–1967CrossRefGoogle Scholar
Agrawal, A. A. and Karban, R. (1999). Why induced defenses may be favored over constitutive strategies in plants. In The Ecology and Evolution of Inducible Defenses, eds. R. Tollrian and C. D. Harvell, pp. 45–61. Princeton: Princeton University Press
Agrawal, A. A. and Rutter, M. T. (1998). Dynamic anti-herbivore defense in ant-plants: the role of induced responses. Oikos 83: 227–236CrossRefGoogle Scholar
Agrawal, A. A., Tuzun, S. and Bent, E. (1999). Induced Plant Defenses Against Pathogens and Herbivores. St Paul, MO: APS Press
Ajlan, A. M. and Potter, D. A. (1991). Does immunization of cucumber against anthracnose by Colletotrichum lagenarium affect host suitability for arthropods. Entomologia Experimentalis et Applicata 58: 83–91CrossRefGoogle Scholar
Alborn, H. T., Turlings, T. C. J., Jones, T. H., Stenhagen, G., Loughrin, J. H. and Tumlinson, J. H. (1997). An elicitor of plant volatiles from beet armyworm oral secretion. Science 276: 945–949CrossRefGoogle Scholar
Alborn, H. T., Jones, T. H., Stenhagen, G. S. and Tumlinson, J. H. (2000). Identification and synthesis of volicitin and related components from beet armyworm oral secretions. Journal of Chemical Ecology 26: 203–220CrossRefGoogle Scholar
Apriyanto, D. and Potter, D. A. (1990). Pathogen-activated induced resistance of cucumber: response of arthropod herbivores to systemically protected leaves. Oecologia 85: 25–31CrossRefGoogle ScholarPubMed
Arimura, G., Ozawa, R., Shimoda, T., Nishioka, T., Boland, W. and Takabyashi, J. (2000a). Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406: 512–515Google Scholar
Arimura, G., Tashiro, K., Kuhara, S., Nishioka, T., Ozawa, R. and Takabayashi, J. (2000b). Gene responses in bean leaves induced by herbivory and by herbivore-induced volatiles. Biochemical and Biophysical Research Communications 277: 305–310CrossRefGoogle Scholar
Arthur, A. P. (1962). Influence of host tree on abundance of Itoplectis conquistor (Say) (Hymenoptera: Ichneumonidae), a polyphagous parasite of the European pine shoot moth, Ryacionia buoliana (Schiff) (Lepidoptera: Olethreutidae). Canadian Entomologist 94: 337–347CrossRefGoogle Scholar
Aukema, B. H., Dahlsten, D. L. and Raffa, K. F. (2000). Improved population monitoring of bark beetles and predators by incorporating disparate behavioral responses to semiochemicals. Environmental Entomology 29: 618–629CrossRefGoogle Scholar
Baker, D. A., Hall, J. L. and Thorpe, J. R. (1978). Study of extrafloral nectaries of Ricinus communis. New Phytologist 81: 129–137CrossRefGoogle Scholar
Bakker, F. M. and Klein, M. E. (1992). Transtrophic interactions in Cassava. Experimental and Applied Acarology 14: 293–311CrossRefGoogle Scholar
Baldwin, I. T. (1994). Chemical changes rapidly induced by folivory. In Insect–Plant Interactions, vol. V, ed. E. A. Bernays, pp. 1–23. Boca Raton, FL: CRC Press
Baldwin, I. T. and Preston, C. A. (1999). The eco-physiological complexity of plant responses to insect herbivores. Planta 208: 137–145CrossRefGoogle Scholar
Baldwin, I. T. and Schultz, J. C. (1983). Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants. Science 221: 277–279CrossRefGoogle ScholarPubMed
Barbosa, P. and Saunders, J. A. (1985). Plant allelochemicals: linkage between herbivores and their natural enemies. In Chemically Mediated Interactions Between Plants and Other Organisms, eds. G. A. Cooper-Driver and T. Swain, pp. 197–137. New York: Plenum PressCrossRef
Beattie, A. J. (1985). The Evolutionary Ecology of Ant–Plant Mutualisms. Cambridge: Cambridge University Press
Beckage, N. E. (1985). Endocrine interactions between endo-parasitic insects and their hosts. Annual Review of Entomology 30: 371–413CrossRefGoogle Scholar
Belt, T. (1874). The Naturalist in Nicaragua. London: J. Murray
Bender, C., Bailey, A. M., Jones, W. et al. (1996). Biosynthesis and regulation of the phytotoxin coronatine in Pseudomonas syringae. In Molecular Aspects of Pathogenicity and Host Resistance Requirement for Signal Transduction, eds. D. Mills, H. Kunoh, S. Mayama and N. Keen, pp. 233–244. St Paul, MO: APS Press
Bennett, B. and Breed, M. D. (1985). On the association between Pentaclethra macroloba (Mimosacea) and Paraponera clavata (Hymenoptera: Formicidae) colonies. Biotropica 17: 253–255CrossRefGoogle Scholar
Benrey, B., Denno, R. F. and Kaiser, L. (1997). The influence of plant species on attraction and host acceptance in Cotesia glomerata (Hymenoptera: Braconidae). Journal of Insect Behavior 10: 619–630CrossRefGoogle Scholar
Bentley, B. L. (1977). Extra-floral nectaries and protection by pugnacious bodyguards. Annual Review of Ecology and Systematics 8: 407–427CrossRefGoogle Scholar
Bernasconi, M. L., Turlings, T. C. J., Ambrosetti, L., Bassetti, P. and Dorn, S. (1998). Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomologia Experimentalis et Applicata 87: 133–142CrossRefGoogle Scholar
Bernasconi Ockroy, M. L., Turlings, T. J. C., Edwards, P. J.et al. (2001). Response of natural populations of predators and parasitoids to artificially induced volatile emissions in maize plants (Zea mays L.). Agricultural and Forest Entomology 3: 1–10CrossRefGoogle Scholar
Binder, B. F. and Robbins, J. C. (1996). Age- and density-related oviposition behavior of the European corn borer, Ostrinia nubilalis (Lepidoptera: Pyralidae). Journal of Insect Behavior 9: 755–769CrossRefGoogle Scholar
Boland, W. and Gäbler, A. (1989). Biosynthesis of homoterpenes in higher-plants. Helvetica Chimica Acta 72: 247–253CrossRefGoogle Scholar
Boland, W., Feng, Z., Donath, J. and Gäbler, A. (1992). Are acyclic C-11 and C-16 homoterpenes plant volatiles indicating herbivory? Naturwissenschaften 79: 368–371CrossRefGoogle Scholar
Boland, W., Hopke, J., Donath, J., Nuske, J. and Bublitz, F. (1995). Jasmonic acid and coronatin induce odor production in plants. Angewandte Chemie: International Edition in English 34: 1600–1602CrossRefGoogle Scholar
Boller, T. (1991). Ethylene in pathogenesis and disease resistance. In The Plant Hormone Ethylene, eds. A. K. Matoo and J. C. Suttle, pp. 293–314. Boca Raton, FL: CRC Press
Bolter, C. J., Dicke, M., Vanloon, J. J. A., Visser, J. H. and Posthumus, M. A. (1997). Attraction of Colorado potato beetle to herbivore-damaged plants during herbivory and after its termination. Journal of Chemical Ecology 23: 1003–1023CrossRefGoogle Scholar
Bones, A. M. and Rossiter, J. T. (1996). The myrosinase-glucosinolate system, its organisation and biochemistry. Physiologia Plantarum 97: 194–208CrossRefGoogle Scholar
Bottrell, D. G., Barbosa, P. and Gould, F. (1998). Manipulating natural enemies by plant variety selection and modification: a realistic strategy?Annual Review of Entomology 43: 347–367CrossRefGoogle ScholarPubMed
Bouwmeester, H. J., Verstappen, F. W. A., Posthumus, M. A. and Dicke, M. (1999). Spider mite-induced (3S)-(E)-nerolidol synthase activity in cucumber and lima bean. The first dedicated step in acyclic C11-homoterpene biosynthesis. Plant Physiology 121: 173–180CrossRefGoogle Scholar
Broadway, R. M., Duffey, S. S., Pearce, G. and Ryan, C. A. (1986). Plant proteinase-inhibitors: a defense against herbivorous insects. Entomologia Experimentalis et Applicata 41: 33–38CrossRefGoogle Scholar
Bruin, J., Dicke, M. and Sabelis, M. W. (1992). Plants are better protected against spider-mites after exposure to volatiles from infested conspecifics. Experientia 48: 525–529CrossRefGoogle Scholar
Bruin, J., Sabelis, M. W. and Dicke, M. (1995). Do plants tap Sos signals from their infested neighbors. Trends in Ecology and Evolution 10: 167–170CrossRefGoogle Scholar
Bugg, R. L., Ellis, R. T. and Carlson, R. W. (1989). Ichneumonidae (Hymenoptera) using extrafloral nectar of faba bean (Vicia faba L., Fabaceae) in Massachusetts. Biological Agriculture and Horticulture 6: 107–114CrossRefGoogle Scholar
Byers, J. A. (1989). Chemical ecology of bark beetles. Experientia 45: 271–283CrossRefGoogle Scholar
Cardoza, Y. J., Alborn, H. T. and Tumlinson, J. H. (2002). In vivo volatile emissions from peanut plants induced by simultaneous fungal infection and insect damage. Journal of Chemical Ecology 28: 161–174CrossRefGoogle ScholarPubMed
Carroll, C. R. and Janzen, D. H. (1973). Ecology of foraging by ants. Annual Review of Ecology and Systematics 4: 231–257CrossRefGoogle Scholar
Chen, H., Lou, Y. and Cheng, J. (2002). Behavioral responses of the larval parasitoid Cotesia chilonis to the volatiles from its host and host plant. Acta Entomologica Sinica 45: 617–622Google Scholar
Coleman, R. A., Barker, A. M. and Fenner, M. (1999). Parasitism of the herbivore Pieris brassicae L. (Lep., Pieridae) by Cotesia glomerata L. (Hym., Braconidae) does not benefit the host plant by reduction of herbivory. Journal of Applied Entomology (Zeitschrift für Angewandte Entomologie) 123: 171–177Google Scholar
Cortesero, A. M., Stapel, J. O. and Lewis, W. J. (2000). Understanding and manipulating plant attributes to enhance biological control. Biological Control 17: 35–49CrossRefGoogle Scholar
Cuautle, M. and Rico-Gray, V. (2003). The effect of wasps and ants on the reproductive success of the extrafloral nectaried plant Turnera ulmifolia (Turneraceae). Functional Ecology 17: 417–423CrossRefGoogle Scholar
Moraes, C. M., Lewis, W. J., Pare, P. W., Alborn, H. T. and Tumlinson, J. H. (1998). Herbivore-infested plants selectively attract parasitoids. Nature 393: 570–573CrossRefGoogle Scholar
Moraes, C. M., Mescher, M. C. and Tumlinson, J. H. (2001). Caterpillar-induced nocturnal plant volatiles repel nonspecific females. Nature 410: 577–580CrossRefGoogle Scholar
Degenhardt, J. and Gershenzon, J. (2000). Demonstration and characterization of (E)-nerolidol synthase from maize: a herbivore-inducible terpene synthase participating in (3E)-4,8-dimethyl-1,3,7-nonatriene biosynthesis. Planta 210: 815–822CrossRefGoogle Scholar
Del-Claro, K. and Oliveira, P. S. (1993). Ant–Homoptera interaction: do alternative sugar sources distract tending ants?Oikos 68: 202–206CrossRefGoogle Scholar
Dicke, M. (1986). Volatile spider-mite pheromone and host-plant kairomone, involved in spaced-out gregariousness in the spider-mite Tetranychus urticae. Physiological Entomology 11: 251–262CrossRefGoogle Scholar
Dicke, M. (1994). Local and systemic production of volatile herbivore-induced terpenoids: their role in plant-carnivore mutualism. Journal of Plant Physiology 143: 465–472CrossRefGoogle Scholar
Dicke, M. (1999). Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods?Entomologia Experimentalis et Applicata 91: 131–142CrossRefGoogle Scholar
Dicke, M. and Dijkman, H. (1992). Induced defense in detached uninfested plant-leaves: effects on behavior of herbivores and their predators. Oecologia 91: 554–560CrossRefGoogle Scholar
Dicke, M. and Groeneveld, A. (1986). Hierarchical structure in kairomone preference of the predatory mite Amblyseius potentillae: dietary component indispensable for diapause induction affects prey location behavior. Ecological Entomology 11: 131–138CrossRefGoogle Scholar
Dicke, M. and Sabelis, M. W. (1988). How plants obtain predatory mites as bodyguards. Netherlands Journal of Zoology 38: 148–165CrossRefGoogle Scholar
Dicke, M., Sabelis, M. W., Takabayashi, J., Bruin, J. and Posthumus, M. A. (1990a). Plant strategies of manipulating predator-prey interactions through allelochemicals: prospects for application in pest-control. Journal of Chemical Ecology 16: 3091–3118CrossRefGoogle Scholar
Dicke, M., Vanbeek, T. A., Posthumus, M. A., Bendom, N., Vanbokhoven, H. and Degroot, A. E. (1990b). Isolation and identification of volatile kairomone that affects acarine predator-prey interactions: involvement of host plant in its production. Journal of Chemical Ecology 16: 381–396CrossRefGoogle Scholar
Dicke, M., Vanbaarlen, P., Wessels, R. and Dijkman, H. (1993). Herbivory induces systemic production of plant volatiles that attract predators of the herbivore – extraction of endogenous elicitor. Journal of Chemical Ecology 19: 581–599CrossRefGoogle ScholarPubMed
Dicke, M., Gols, R., Ludeking, D. and Posthumus, M. A. (1999). Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in lima bean plants. Journal of Chemical Ecology 25: 1907–1922CrossRefGoogle Scholar
Dicke, M., Schutte, C. and Dijkman, H. (2000). Change in behavioral response to herbivore-induced plant volatiles in a predatory mite population. Journal of Chemical Ecology 26: 1497–1514CrossRefGoogle Scholar
Dicke, M., Poecke, R. M. P. and Boer, J. G. (2003). Inducible indirect defence of plants: from mechanism to ecological functions. Basic and Applied Ecology 4: 27–42CrossRefGoogle Scholar
Doherty, H. M., Selvendran, R. R. and Bowles, D. J. (1988). The wound response of tomato plants can be inhibited by aspirin and related hydroxybenzoic acids. Physiological and Molecular Plant Pathology 33: 377–384CrossRefGoogle Scholar
Dolch, R. and Tscharntke, T. (2000). Defoliation of alders (Alnus glutinosa) affects herbivory by leaf beetles on undamaged neighbours. Oecologia 125: 504–511CrossRefGoogle ScholarPubMed
Domek, J. M. and Johnson, D. T. (1988). Demonstration of semiochemically induced aggregation in the green june beetle, Cotinis nitida (L) (Coleoptera, Scarabaeidae). Environmental Entomology 17: 147–149CrossRefGoogle Scholar
Donath, J. and Boland, W. (1994). Biosynthesis of acyclic homoterpenes in higher-plants parallels steroid-hormone metabolism. Journal of Plant Physiology 143: 473–478CrossRefGoogle Scholar
Drukker, B., Scutareanu, P. and Sabelis, M. W. (1995). Do anthocorid predators respond to synomones from Psylla-infested pear trees under field conditions. Entomologia Experimentalis et Applicata 77: 193–203CrossRefGoogle Scholar
Du, Y. J., Poppy, G. M. and Powell, W. (1996). Relative importance of semiochemicals from first and second trophic levels in host foraging behavior of Aphidius ervi. Journal of Chemical Ecology 22: 1591–1605CrossRefGoogle Scholar
Du, Y. J., Poppy, G. M., Powell, W., Pickett, J. A., Wadhams, L. J. and Woodcock, C. M. (1998). Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. Journal of Chemical Ecology 24: 1355–1368CrossRefGoogle Scholar
Eben, A., Benrey, B., Sivinski, J. and Aluja, M. (2000). Host species and host plant effects on preference and performance of Diachasmimorpha longicaudata (Hymenoptera: Braconidae). Environmental Entomology 29: 87–94CrossRefGoogle Scholar
Ecker, J. R. and Davis, R. W. (1987). Plant defense genes are regulated by ethylene. Proceedings of the National Academy of Sciences, USA 84: 5202–5206CrossRefGoogle ScholarPubMed
Elzen, G. W., Williams, H. J. and Vinson, S. B. (1984). Isolation and identification of cotton synomones mediating searching behavior by parasitoid Campoletis sonorensis. Journal of Chemical Ecology 10: 1251–1264CrossRefGoogle Scholar
Elzen, G. W., Williams, H. J., Bell, A. A., Stipanovic, R. D. and Vinson, S. B. (1985). Quantification of volatile terpenes of glanded and glandless Gossypium hirsutum L. cultivars and lines by gas-chromatography. Journal of Agricultural and Food Chemistry 33: 1079–1082CrossRefGoogle Scholar
Engel, V., Fischer, M. K., Wackers, F. L. and Volkl, W. (2001). Interactions between extrafloral nectaries, aphids and ants: are there competition effects between plant and homopteran sugar sources?Oecologia 129: 577–584CrossRefGoogle ScholarPubMed
Engelberth, J., Koch, T., Kuhnemann, F. and Boland, W. (2000). Channel-forming peptaibols are potent elicitors of plant secondary metabolism and tendril coiling. Angewandte Chemie: International Edition 39: 1860–18623.0.CO;2-F>CrossRefGoogle ScholarPubMed
Engelberth, J., Koch, T., Schuler, G., Bachmann, N., Rechtenbach, J. and Boland, W. (2001). Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiology 125: 369–377CrossRefGoogle ScholarPubMed
Enyedi, A. J., Yalpani, N., Silverman, P. and Raskin, I. (1992). Localization, conjugation, and function of salicylic-acid in tobacco during the hypersensitive reaction to tobacco mosaic-virus. Proceedings of the National Academy of Sciences, USA 89: 2480–2484CrossRefGoogle ScholarPubMed
Faegri, K. and van der Pijl, L. (1971). The Principles of Pollination Ecology. Oxford: Pergamon Press
Faeth, S. H. (1994). Induced plant responses: effects on parasitoids and other natural enemies of phytophagous insects. In Parasitoid Community Ecology, eds. B. A. Hawkins and W. Sheehan, pp. 245–260. Oxford: Oxford University Press
Farmer, E. E. (2001). Surface-to-air signals. Nature 411: 854–856CrossRefGoogle ScholarPubMed
Farmer, E. E. and Ryan, C. A. (1990). Interplant communication: airborne methyl jasmonate induces synthesis of proteinase-inhibitors in plant-leaves. Proceedings of the National Academy of Sciences, USA 87: 7713–7716CrossRefGoogle ScholarPubMed
Farmer, E. E., Johnson, R. R. and Ryan, C. A. (1992). Regulation of expression of proteinase-inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiology 98: 995–1002CrossRefGoogle ScholarPubMed
Farmer, E. E., Weber, H. and Vollenweider, S. (1998). Fatty acid signaling in Arabidopsis. Planta 206: 167–174CrossRefGoogle ScholarPubMed
Felton, G. W. and Eichenseer, H. (2000). Herbivore saliva and its effects on plant defense against herbivores and pathogens. In Induced Plant Defenses Against Pathogens and Herbivores: Biochemistry, Ecology, and Agriculture, eds. A. A. Agrawal, S. Tuzan and E. Bent, pp. 19–36. St Paul, MO: APS Press
Finidori-Logli, V., Bagneres, A. G. and Clement, J. L. (1996). Role of plant volatiles in the search for a host by parasitoid Diglyphus isaea (Hymenoptera: Eulophidae). Journal of Chemical Ecology 22: 541–558CrossRefGoogle Scholar
Fisher, B. L., Sternberg, L. D. L. and Price, D. (1990). Variation in the use of orchid extrafloral nectar by ants. Oecologia 83: 263–266CrossRefGoogle ScholarPubMed
Flint, H. M., Salter, S. S. and Walters, S. (1979). Caryophyllene: an attractant for the green lacewing. Environmental Entomology 8: 1123–1125CrossRefGoogle Scholar
Fowler, S. V. and Lawton, J. H. (1985). Rapidly induced defenses and talking trees: the devil's advocate position. American Naturalist 126: 181–195CrossRefGoogle Scholar
Frey, M., Chomet, P., Glawischnig, E.et al. (1997). Analysis of a chemical plant defense mechanism in grasses. Science 277: 696–699CrossRefGoogle ScholarPubMed
Frey, M., Stettner, C., Pare, P. W., Schmelz, E. A., Tumlinson, J. H. and Gierl, A. (2000). An herbivore elicitor activates the gene for indole emission in maize. Proceedings of the National Academy of Sciences, USA 97: 14801–14806CrossRefGoogle ScholarPubMed
Frey-Wyssling, A. (1955). The phloem supply to the nectaries. Acta Botanica Neerlandica 4: 358–369CrossRefGoogle Scholar
Fritzsche Hoballah, M. E. F. and Turlings, T. C. J. (2001). Experimental evidence that plants under caterpillar attack may benefit from attracting parasitoids. Evolutionary Ecology Research 3: 553–565Google Scholar
Fritzsche Hoballah, M. E. F., Tamo, C. and Turlings, T. C. J. (2002). Differential attractiveness of induced odors emitted by eight maize varieties for the parasitoid Cotesia marginiventris: is quality or quantity important?Journal of Chemical Ecology 28: 951–968CrossRefGoogle Scholar
Fujiwara, C., Takabayashi, J. and Yano, S. (2000). Effects of host-food plant species on parasitization rates of Mythimna separata (Lepidoptera: Noctuidae) by a parasitoid, Cotesia kariyai (Hymenoptera: Braconidae). Applied Entomology and Zoology 35: 131–136CrossRefGoogle Scholar
Geervliet, J. B. F., Vet, L. E. M. and Dicke, M. (1994). Volatiles from damaged plants as major cues in long-range host-searching by the specialist parasitoid Cotesia rubecula. Entomologia Experimentalis et Applicata 73: 289–297CrossRefGoogle Scholar
Geervliet, J. B. F., Vet, L. E. M. and Dicke, M. (1996). Innate responses of the parasitoids Cotesia glomerata and C. rubecula (Hymenoptera: Braconidae) to volatiles from different plant-herbivore complexes. Journal of Insect Behavior 9: 525–538CrossRefGoogle Scholar
Gómez, J. M. and Zamora, R. (1994). Top-down effects in a tritrophic system: parasitoids enhance plant fitness. Ecology 75: 1023–1030CrossRefGoogle Scholar
Gorlach, J., Volrath, S., Knaufbeiter, G.et al. (1996). Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8: 629–643CrossRefGoogle ScholarPubMed
Gouinguené, S. (2000). Specificity and variability in induced volatile signalling in maize plants, University of Neuchâtel, Switzerland
Gouinguené, S. and Turlings, T. C. J. (2002). The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiology 129: 1296–1307CrossRefGoogle ScholarPubMed
Gouinguené, S., Degen, T. and Turlings, T. C. J. (2001). Variability in herbivore-induced odour emissions among maize cultivars and their wild ancestors (teosinte). Chemoecology 11: 9–16CrossRefGoogle Scholar
Gouinguené, S., Alborn, H. and Turlings, T. C. J. (2003). Induction of volatile emissions in maize by different larval instars of Spodoptera littoralis. Journal of Chemical Ecology 29: 145–162CrossRefGoogle ScholarPubMed
Hagen, K. S. (1986). Ecosystem analysis: plant cultivar (HPR), entomophagous species and food supplements. In Interactions of Plant Resistance and Parasitoids and Predators of Insects, eds. D. J. Boethel and R. D. Eikenbary, pp. 153–197. New York: John Wiley & Sons
Halitschke, R., Schittko, U., Pohnert, G., Boland, W. and Baldwin, I. T. (2001). Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. III. Fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Physiology 125: 711–717CrossRefGoogle ScholarPubMed
Harari, A. R., Benyakir, D. and Rosen, D. (1994). Mechanism of aggregation behavior in Maladera matrida Argaman (Coleoptera, Scarabaeidae). Journal of Chemical Ecology 20: 361–371CrossRefGoogle Scholar
Hare, J. D. (2002). Plant genetic variation in tritrophic interactions. In Multitrophic Level Interactions, eds. T. Tscharntke and B. A. Hawkins, pp. 8–43. Cambridge: Cambridge University PressCrossRef
Harrewijn, P., Minks, A. K. and Mollema, C. (1995). Evolution of plant volatile production in insect-plant relationships. Chemoecology 5/6: 55–73CrossRefGoogle Scholar
Harrington, E. A. and Barbosa, P. (1978). Host habitat influences on oviposition by Parasetigena silvestris (R-D) (Diptera–Tachinidae), a larval parasite of gypsy moth (Lepidoptera–Lymantriidae). Environmental Entomology 7: 466–468CrossRefGoogle Scholar
Haskins, C. P. and Haskins, E. F. (1950). Notes on the biology and social behavior of the archaic ponerine ants of the genera Myrmeca and Promyrmeca. Annals of the Entomological Society of America 43: 461–491CrossRefGoogle Scholar
Hatcher, P. E. (1995). Three-way interactions between plant-pathogenic fungi, herbivorous insects and their host plants. Biological Reviews of the Cambridge Philosophical Society 70: 639–694CrossRefGoogle Scholar
Hatcher, P. E. and Paul, N. D. (2000). Beetle grazing reduces natural infection of Rumex obtusifolius by fungal pathogens. New Phytologist 146: 325–333CrossRefGoogle Scholar
Hatcher, P. E., Paul, N. D., Ayres, P. G. and Whittaker, J. B. (1994a). The effect of an insect herbivore and a rust fungus individually, and combined in sequence, on the growth of 2 Rumex species. New Phytologist 128: 71–78CrossRefGoogle Scholar
Hatcher, P. E., Paul, N. D., Ayres, P. G. and Whittaker, J. B. (1994b). Interactions between Rumex spp., herbivores and a rust fungus: Gastrophysa viridula grazing reduces subsequent infection by Uromyces rumicis. Functional Ecology 8: 265–272CrossRefGoogle Scholar
Hatcher, P. E., Ayres, P. G. and Paul, N. D. (1995). The effect of natural and simulated insect herbivory, and leaf age, on the process of infection of Rumex crispus L. and R. obtusifolius L. by Uromyces rumicis (Schum) Wint. New Phytologist 130: 239–249CrossRefGoogle Scholar
Haukioja, E., Suomela, J. and Neuvonen, S. (1985). Long-term inducible resistance in birch foliage: triggering cues and efficacy on a defoliator. Oecologia 65: 363–369CrossRefGoogle ScholarPubMed
Heil, M., Fiala, B., Baumann, B. and Linsenmair, K. E. (2000). Temporal, spatial and biotic variations in extrafloral nectar secretion by Macaranga tanarius. Functional Ecology 14: 749–757Google Scholar
Heil, M., Koch, T., Hilpert, A., Fiala, B., Boland, W. and Linsenmair, K. E. (2001). Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid. Proceedings of the National Academy of Sciences, USA 98: 1083–1088CrossRefGoogle ScholarPubMed
Hilbeck, A., Baumgartner, M., Fried, P. M. and Bigler, F. (1998). Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Environmental Entomology 27: 480–487CrossRefGoogle Scholar
Hölldobler, B. and Wilson, E. O. (1990). The Ants. Cambridge, MA: Harvard University Press
Hopke, J., Donath, J., Blechert, S. and Boland, W. (1994). Herbivore-induced volatiles: the emission of acyclic homoterpenes from leaves of Phaseolus lunatus and Zea mays can be triggered by a beta-glucosidase and jasmonic acid. Febs Letters 352: 146–150CrossRefGoogle ScholarPubMed
Horvitz, C. C. and Schemske, D. W. (1986). Seed dispersal of a neotropical myrmecochore: variation in removal rates and dispersal distance. Biotropica 18: 319–323CrossRefGoogle Scholar
Ichihara, A., Shiraishi, K., Sato, H.et al. (1977). Structure of coronatine. Journal of the American Chemical Society 99: 636–637CrossRefGoogle Scholar
Inouye, D. W. and Taylor, O. R. (1979). Temperate region plant-ant seed predator system: consequences of extra floral nectar secretion by Helianthella quinquenervis. Ecology 60: 1–7CrossRefGoogle Scholar
Janssen, A., Pallini, A., Venzon, M. and Sabelis, M. W. (1998). Behaviour and indirect interactions in food webs of plant-inhabiting arthropods. Experimental and Applied Acarology 22: 497–521CrossRefGoogle Scholar
Janzen, D. H. (1966). Coevolution of mutualism between ants and acacias in Central America. Evolution 20: 249–275CrossRefGoogle ScholarPubMed
Jervis, M. A. and Kidd, N. A. C. (1996). Phytophagy. In Insect Natural Enemies: Practical Approaches in Their Study and Avaluation, eds. M. A. Jervis and N. A. C. Kidd, pp. 375–394. London: Chapman & HallCrossRef
Jervis, M. A., Kidd, N. A. C., Fitton, M. G., Huddleston, T. and Dawah, H. A. (1993). Flower-visiting by hymenopteran parasitoids. Journal of Natural History 27: 67–105CrossRefGoogle Scholar
Jolivet, P. (1998). Myrmecophily and Ant–Plants. Boca Raton, FL: CRC Press
Josens, R. B., Farina, W. M. and Roces, F. (1998). Nectar feeding by the ant Camponotus mus: intake rate and crop filling as a function of sucrose concentration. Journal of Insect Physiology 44: 579–585CrossRefGoogle Scholar
Kahl, J., Siemens, D. H., Aerts, R. J.et al. (2000). Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore. Planta 210: 336–342CrossRefGoogle Scholar
Kalberer, N. M., Turlings, T. C. J. and Rahier, M. (2001). Attraction of a leaf beetle (Oreina cacaliae) to damaged host plants. Journal of Chemical Ecology 27: 647–661CrossRefGoogle Scholar
Karban, R. and Baldwin, I. T. (1997). Induced Responses to Herbivory. Chicago, IL: University Press of Chicago
Karban, R. and Kuc, J. (1999). Induced resistance against pathogens and herbivore: an overview. In Induced Plant Defenses Against Pathogens and Herbivores, eds. A. A. Agrawal, S. Tuzun and E. Bent, pp. 1–15. St Paul, MO: APS Press
Karban, R., Agrawal, A. A. and Mangel, M. (1997). The benefits of induced defenses against herbivores. Ecology 78: 1351–1355CrossRefGoogle Scholar
Karban, R., Baldwin, I. T., Baxter, K. J., Laue, G. and Felton, G. W. (2000). Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125: 66–71CrossRefGoogle ScholarPubMed
Kessler, A. and Baldwin, I. T. (2001). Defensive function of herbivore-induced plant volatile emissions in nature. Science 291: 2141–2144CrossRefGoogle ScholarPubMed
Kessmann, H., Staub, T., Hofmann, C.et al. (1994). Induction of systemic acquired disease resistance in plants by chemicals. Annual Review of Phytopathology 32: 439–459CrossRefGoogle ScholarPubMed
Knoester, M., Loon, L. C., Heuvel, J., Hennig, J., Bol, J. F. and Linthorst, H. J. M. (1998). Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proceedings of the National Academy of Sciences, USA 95: 1933–1937CrossRefGoogle ScholarPubMed
Koch, T., Krumm, T., Jung, V., Engelberth, J. and Boland, W. (1999). Differential induction of plant volatile biosynthesis in the lima bean by early and late intermediates of the octadecanoid-signaling pathway. Plant Physiology 121: 153–162CrossRefGoogle ScholarPubMed
Koptur, S. (1979). Facultative mutualism between weedy vetches bearing extrafloral nectaries and weedy ants in California. American Journal of Botany 66: 1016–1020CrossRefGoogle Scholar
Koptur, S. (1989). Is extrafloral nectar production an inducible defence? In Evolutionary Ecology of Plants, eds. J. Bock and Y. Linhart, pp. 323–339. Boulder, CO: Westview Press
Koptur, S. (1992). Extrafloral nectary-mediated interactions between insects and plants. In Insect–Plant Interactions, vol. IV, ed. E. A. Bernays, pp. 81–129. Boca Raton, FL: CRC Press
Koptur, S. (1994). Floral and extrafloral nectars of Costa Rican Inga trees: a comparison of their constituents and composition. Biotropica 26: 276–284CrossRefGoogle Scholar
Koptur, S. and Lawton, J. H. (1988). Interactions among vetches bearing extrafloral nectaries, their biotic protective agents, and herbivores. Ecology 69: 278–283CrossRefGoogle Scholar
Koptur, S., Rico-Gray, V. and Palacios-Rios, M. (1998). Ant protection of the nectaried fern Polypodium plebeium in central Mexico. American Journal of Botany 85: 736–739CrossRefGoogle ScholarPubMed
Krips, O. E., Willems, P. E. L., Gols, R., Posthumus, M. A., Gort, G. and Dicke, M. (2001). Comparison of cultivars of ornamental crop Gerbera jamesonii on production of spider mite-induced volatiles, and their attractiveness to the predator Phytoseiulus persimilis. Journal of Chemical Ecology 27: 1355–1372CrossRefGoogle ScholarPubMed
Krivan, V. and Sirot, E. (1997). Searching for food or hosts. The influence of parasitoids behavior on host-parasitoid dynamics. Theoretical Population Biology 51: 201–209CrossRefGoogle ScholarPubMed
Landolt, P. J. (1993). Effects of host plant leaf damage on cabbage-looper moth attraction and oviposition. Entomologia Experimentalis et Applicata 67: 79–85CrossRefGoogle Scholar
Landolt, P. J., Tumlinson, J. H. and Alborn, D. H. (1999). Attraction of Colorado potato beetle (Coleoptera: Chrysomelidae) to damaged and chemically induced potato plants. Environmental Entomology 28: 973–978CrossRefGoogle Scholar
Lanza, J. (1988). Ant preferences for Passiflora nectar mimics that contain amino-acids. Biotropica 20: 341–344CrossRefGoogle Scholar
Leahy, T. C. and Andow, D. A. (1994). Egg weight, fecundity, and longevity are increased by adult feeding in Ostrinia nubilalis (Lepidoptera, Pyralidae). Annals of the Entomological Society of America 87: 342–349CrossRefGoogle Scholar
Leatemia, J. A., Laing, J. E. and Corrigan, J. E. (1995). Effects of adult nutrition on longevity, fecundity, and offspring sex-ratio of Trichogramma minutum Riley (Hymenoptera, Trichogrammatidae). Canadian Entomologist 127: 245–254CrossRefGoogle Scholar
Letourneau, D. K. (1990). Code of ant-plant mutualism broken by parasite. Science 248: 215–217CrossRefGoogle ScholarPubMed
Lewis, W. J., Stapel, J. O., Cortesero, A. M. and Takasu, K. (1998). Understanding how parasitoids balance food and host needs: importance to biological control. Biological Control 11: 175–183CrossRefGoogle Scholar
Lingren, P. D. and Lukefahr, M. J. (1977). Effects of nectariless cotton on caged populations of Campoletis sonorensis (Hymenoptera–Ichneumonidae). Environmental Entomology 6: 586–588CrossRefGoogle Scholar
Loch, A. D. and Walter, G. H. (1999). Multiple host use by egg parasitoid Trissolcus basalis (Wollaston) in a soyabean agricultural system: biological control and environmental implications. Agricultural and Forest Entomology 1: 271–280CrossRefGoogle Scholar
Loke, W. H., Ashley, T. R. and Sailer, R. I. (1983). Influence of fall armyworm, Spodoptera frugiperda (Lepidoptera, Noctuidae) larvae and corn plant-damage on host finding in Apanteles marginiventris (Hymenoptera, Braconidae). Environmental Entomology 12: 911–915CrossRefGoogle Scholar
Lou, Y. and Cheng, J. (1996). Behavioral responses of Anagrus nilaparvatae Pang et Wang to the volatiles of rice varieties. Entomological Journal of East China 5: 60–64Google Scholar
Loughrin, J. H., Manukian, A., Heath, R. R., Turlings, T. C. J. and Tumlinson, J. H. (1994). Diurnal cycle of emission of induced volatile terpenoids herbivore-injured cotton plants. Proceedings of the National Academy of Sciences, USA 91: 11836–11840CrossRefGoogle Scholar
Loughrin, J. H., Manukian, A., Heath, R. R. and Tumlinson, J. H. (1995a). Volatiles emitted by different cotton varieties damaged by feeding beet armyworm larvae. Journal of Chemical Ecology 21: 1217–1227CrossRefGoogle Scholar
Loughrin, J. H., Potter, D. A. and Hamiltonkemp, T. R. (1995b). Volative compounds induced by herbivory act as aggregation kairomones for the japanese-beetle (Popillia japonica Newman). Journal of Chemical Ecology 21: 1457–1467CrossRefGoogle Scholar
Maeda, T., Takabayashi, J., Yano, S. and Takafuji, A. (1999). Response of the predatory mite, Amblyseius womersleyi (Acari: Phytoseiidae), toward herbivore-induced plant volatiles: variation in response between two local populations. Applied Entomology and Zoology 34: 449–454CrossRefGoogle Scholar
Margolies, D. C., Sabelis, M. W. and Boyer, J. E. (1997). Response of a phytoseiid predator to herbivore-induced plant volatiles: selection on attraction and effect on prey exploitation. Journal of Insect Behavior 10: 695–709CrossRefGoogle Scholar
Markin, G. P. (1970). Food distribution within laboratory colonies of argentine ant, Iridomyrmex humilis (Mayr). Insectes Sociaux 17: 127–158CrossRefGoogle Scholar
Mattiacci, L., Dicke, M. and Posthumus, M. A. (1994). Induction of parasitoid attracting synomone in brussels-sprouts plants by feeding of Pieris brassicae larvae: role of mechanical damage and herbivore elicitor. Journal of Chemical Ecology 20: 2229–2247CrossRefGoogle Scholar
Mattiacci, L., Dicke, M. and Posthumus, M. A. (1995). Beta-glucosidase: an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proceedings of the National Academy of Sciences, USA 92: 2036–2040CrossRefGoogle ScholarPubMed
Mattoo, A. K. and Suttle, J. C. (1991). The Plant Hormone Ethylene. Boca Raton, FL: CRC Press
McCall, P. J., Turlings, T. C. J., Lewis, W. J. and Tumlinson, J. H. (1993). Role of plant volatiles in host location by the specialist parasitoid Microplitis croceipes Cresson (Braconidae, Hymenoptera). Journal of Insect Behavior 6: 625–639CrossRefGoogle Scholar
McCall, P. J., Turlings, T. C. J., Loughrin, J., Proveaux, A. T. and Tumlinson, J. H. (1994). Herbivore-induced volatile emissions from cotton (Gossypium hirsutum L) seedlings. Journal of Chemical Ecology 20: 3039–3050CrossRefGoogle ScholarPubMed
McEwen, P. K. and Liber, H. (1995). The effect of adult nutrition on the fecundity and longevity of the alive moth Prays oleae (Bern). Journal of Applied Entomology (Zeitschrift für Angewandte Entomologie) 119: 291–294Google Scholar
Meiners, T. and Hilker, M. (1997). Host location in Oomyzus gallerucae (Hymenoptera: Eulophidae), an egg parasitoid of the elm leaf beetle Xanthogaleruca luteola (Coleoptera: Chrysomelidae). Oecologia 112: 87–93CrossRefGoogle Scholar
Meiners, T. and Hilker, M. (2000). Induction of plant synomones by oviposition of a phytophagous insect. Journal of Chemical Ecology 26: 221–232CrossRefGoogle Scholar
Meiners, T., Westerhaus, C. and Hilker, M. (2000). Specificity of chemical cues used by a specialist egg parasitoid during host location. Entomologia Experimentalis et Applicata 95: 151–159CrossRefGoogle Scholar
Milewski, A. V. and Bond, W. J. (1982). Convergence of myrmercochory in mediterranean Australia and South Africa. In Ant–Plant Interactions in Australia, ed. R. C. Buckley, pp. 89–98. The Hague: JunkCrossRef
Mohyuddin, A. I., Inayatullah, C. and King, E. G. (1981). Host selection and strain occurence in Apalantes flavipes (Cameron) (Hymenoptera: Braconidae) and its bearing on biological control of graminaceous stem-borers (Lepidoptera: Pyralidae). Bulletin of Entomological Research 71: 575–581CrossRefGoogle Scholar
Monteith, L. G. (1955). Host preferences of Drino bohemica Messn. (Diptera: Tachinidae) with particular reference to olfactory responses. Canadian Entomologist 87: 509–530CrossRefGoogle Scholar
Moran, P. (1998). Plant-mediated interactions between insects and a fungal plant pathogen and the role of plant chemical responses to infection. Oecologia 115: 523–530CrossRefGoogle Scholar
Nordlund, D. A. and Sauls, C. E. (1981). Kairomones and their use for management of entomophagous insects. 11. Effect of host plants on kairomonal activity of frass from Heliothis zea (Lepidoptera, Noctuidae) larvae for the parasitoid Microplitis croceipes (Hymenoptera, Braconidae). Journal of Chemical Ecology 7: 1057–1061CrossRefGoogle Scholar
Nordlund, D. A., Lewis, L. C. and Altieri, M. A. (1988). Influences of plant-produced allelochemicals on the host/prey selection behavior of entomophagous insects. In Novel Aspects of Insect–Plant Interactions, eds. P. Barbosa and D. Letourneau, pp. 65–90. New York: John Wiley & Sons
O'Dowd, D. J. (1979). Foliar nectar production and ant activity on a neotropical tree, Ochroma pyramidale. Oecologia 43: 233–248CrossRefGoogle ScholarPubMed
O'Dowd, D. J. and Catchpole, E. A. (1983). Ants and extrafloral nectaries: no evidence for plant-protection in Helichrysum spp. ant interactions. Oecologia 59: 191–200CrossRefGoogle ScholarPubMed
Oliveira, P. S. (1997). The ecological function of extrafloral nectaries: herbivore deterrence by visiting ants and reproductive output in Caryocar brasiliense (Caryocaraceae). Functional Ecology 11: 323–330CrossRefGoogle Scholar
Orr, D. B. and Landis, D. L. (1997). Oviposition of European corn borer (Lepidoptera: Pyralidae) and impact of natural enemy populations in transgenic versus isogenic corn. Journal of Economic Entomology 90: 905–909CrossRefGoogle Scholar
Ozawa, R., Arimura, G., Takabayashi, J., Shimoda, T. and Nishioka, T. (2000). Involvement of jasmonate- and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants. Plant and Cell Physiology 41: 391–398CrossRefGoogle ScholarPubMed
Padgette, S. R., Re, D. B., Barry, G. F. et al. (1994). New weed control opportunities: development of soybeans with a Roundup ReadyTM gene. In Herbicide-resistant Crops: Agricultural, Economics, Environmental, Regulatory, and Technologycal Aspects, ed. S. O. Duke. Boca Raton, FL: CRC Press
Pallini, A., Janssen, A. and Sabelis, M. W. (1997). Odour-mediated responses of phytophagous mites to conspecific and heterospecific competitors. Oecologia 110: 179–185CrossRefGoogle ScholarPubMed
Paré, P. W. and Tumlinson, J. H. (1997). De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiology 114: 1161–1167CrossRefGoogle ScholarPubMed
Paré, P. W. and Tumlinson, J. H. (1999). Plant volatiles as a defense against insect herbivores. Plant Physiology 121: 325–331CrossRefGoogle ScholarPubMed
Paré, P. W., Alborn, H. T. and Tumlinson, J. H. (1998). Concerted biosynthesis of an insect elicitor of plant volatiles. Proceedings of the National Academy of Sciences, USA 95: 13971–13975CrossRefGoogle ScholarPubMed
Pascal, L. and Belin-Depoux, M. (1991). La correlation entre les rythmes biologiques de l'association plante-fourmis: les cas des nectaries extra-floraux de Malpighiaceae americaines. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, Paris series III, 312: 49–54Google Scholar
Passera, L., Lachaud, J. P. and Gomel, L. (1994). Individual food source fidelity in the neotropical ponerine ant Ectatomma ruidum Roger (Hymenoptera–Formicidae). Ethology Ecology and Evolution 6: 13–21CrossRefGoogle Scholar
Pemberton, P. W. (1998). The occurrence and abundance of plants with extrafloral nectaries, the basis for antiherbivore defensive mutualisms, along a latitudinal gradient in east Asia. Journal of Biogeography 25: 661–668CrossRefGoogle Scholar
Pemberton, R. W. and Lee, J. H. (1996). The influence of extrafloral nectaries on parasitism of an insect herbivore. American Journal of Botany 83: 1187–1194CrossRefGoogle Scholar
Peng, C. W. and Weiss, M. J. (1992). Evidence of an aggregation pheromone in the flea beetle, Phyllotreta cruciferae (Goeze) (Coleoptera, Chrysomelidae). Journal of Chemical Ecology 18: 875–884CrossRefGoogle Scholar
Pettersson, E. M. (2001). Volatiles from potential hosts of Rhopalicus tutela a bark beetle parasitoid. Journal of Chemical Ecology 27: 2219–2231CrossRefGoogle Scholar
Pettersson, E. M., Birgersson, G. and Witzgall, P. (2001). Synthetic attractants for the bark beetle parasitoid Coeloides bostrichorum Giraud (Hymenoptera: Braconidae). Naturwissenschaften 88: 88–91CrossRefGoogle Scholar
Picard, F. and Rabaud, E. (1914). Sur le parasitisme externe des Braconidae. Bulletin de la Société Entomologique de France 83: 266–269Google Scholar
Piel, J., Atzorn, R., Gabler, R., Kuhnemann, F. and Boland, W. (1997). Cellulysin from the plant parasitic fungus Trichoderma viride elicits volatile biosynthesis in higher plants via the octadecanoid signalling cascade. Febs Letters 416: 143–148CrossRefGoogle ScholarPubMed
Pilcher, C. D., Obrycki, J. J., Rice, M. E. and Lewis, L. C. (1997). Preimaginal development, survival, and field abundance of insect predators on transgenic Bacillus thuringiensis corn. Environmental Entomology 26: 446–454CrossRefGoogle Scholar
Pohnert, G., Jung, V., Haukioja, E., Lempa, K. and Boland, W. (1999). New fatty acid amides from regurgitant of lepidopteran (Noctuidae, Geometridae) caterpillars. Tetrahedron 55: 11275–11280CrossRefGoogle Scholar
Porter, S. D. (1989). Effects of diet on the growth of laboratory fire ant colonies (Hymenoptera, Formicidae). Journal of the Kansas Entomological Society 62: 288–291Google Scholar
Potting, R. P. J., Vet, L. E. M. and Dicke, M. (1995). Host microhabitat location by stem-borer parasitoid Cotesia flavipes: the role of herbivore volatiles and locally and systemically induced plant volatiles. Journal of Chemical Ecology 21: 525–539CrossRefGoogle Scholar
Powell, W., Pennacchio, F., Poppy, G. M. and Tremblay, E. (1998). Strategies involved in the location of hosts by the parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae: Aphidiinae). Biological Control 11: 104–112CrossRefGoogle Scholar
Price, P. W., Bouton, C. E., Gross, P., Mcpheron, B. A., Thompson, J. N. and Weis, A. E. (1980). Interactions among 3 trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annual Review of Ecology and Systematics 11: 41–65CrossRefGoogle Scholar
Pyke, G. H. (1991). What does it cost a plant to produce floral nectar?Nature 350: 58–59CrossRefGoogle Scholar
Ramachandran, R. and Norris, D. M. (1991). Volatiles mediating plant-herbivore natural enemy interactions: electroantennogram responses of soybean looper, Pseudoplusia includens, and a parasitoid, Microplitis demolitor, to green leaf volatiles. Journal of Chemical Ecology 17: 1665–1690CrossRefGoogle Scholar
Rapusas, H. R., Bottrell, D. G. and Coll, M. (1996). Intraspecific variation in chemical attraction of rice to insect predators. Biological Control 6: 394–400CrossRefGoogle Scholar
Retana, J., Bosch, J., Alsina, A. and Cerdá, X. (1987). Foraging ecology of the nectarivorous ant Camponotus foreli (Hymenoptera, Formicidae) in a savanna-like grassland. Misselània Zoològica 11: 187–193Google Scholar
Reymond, P. and Farmer, E. E. (1998). Jasmonate and salicylate as global signals for defense gene expression. Current Opinion in Plant Biology 1: 404–411CrossRefGoogle ScholarPubMed
Reymond, P., Weber, H., Damond, M. and Farmer, E. E. (2000). Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12: 707–719CrossRefGoogle ScholarPubMed
Rhoades, D. F. (1979). Evolution of plant chemical defense against herbivores. In Herbivores: Their Interaction with Secondary Plant Metabolites, eds. G. A. Rosenthal and D. H. Janzen, pp. 4–54. New York: Academic Press
Rhoades, D. F. (1983). Responses of alder and willow to attack by tent caterpillars and webworms: evidence for pheromonal sensitivity of willows. In Plant Resistance to Insects, ed. P. A. Hedin, pp. 55–68. Washington, DC: American Chemical SocietyCrossRef
Rhoades, D. F. (1985). Pheromonal communication between plants. In Chemically Mediated Interactions Between Plants and Other Organisms. Recent Advances in Phytochemistry, eds. G. A. Cooper-Driver, T. Swain and E. C. Conn, pp. 195–218. New York: Plenum PressCrossRef
Rickson, F. R. (1977). Progressive loss of ant-related traits of Cecropia peltata on selected caribbean islands. American Journal of Botany 64: 585–592CrossRefGoogle Scholar
Rickson, F. R. (1980). Developmental anatomy and ultrastructure of the ant-food bodies (beccariian bodies) of Macaranga triloba and M. Hypoleuca (Euphorbiaceae). American Journal of Botany 67: 285–292CrossRefGoogle Scholar
Rico-Gray, V. and Thien, L. B. (1989). Effect of different ant species on reproductive fitness of Schomburgkia tibicinis (Orchidaceae). Oecologia 81: 487–489CrossRefGoogle Scholar
Rico-Gray, V., Garcia-Franco, J. G., Palacios-Rios, M., Diaz-Castelazo, C., Parra-Tabla, V. and Navarro, J. A. (1998). Geographical and seasonal variation in the richness of ant-plant interactions in Mexico. Biotropica 30: 190–200CrossRefGoogle Scholar
Risch, S. J. and Rickson, F. R. (1981). Mutualism in which ants must be present before plants produce food bodies. Nature 291: 149–150CrossRefGoogle Scholar
Robinson, D., Price, R. G. and Dance, N. (1967). Separation and properties of beta-galactosidase, beta-glucosidase, beta-glucuronidase and N-acetyl-beta-glucosaminidase from rat kidney. Biochemical Journal 102: 525CrossRefGoogle ScholarPubMed
Rodriguez-Saona, C., Crafts-Brander, S. J., Paré, P. W. and Henneberry, T. J. (2001). Exogenous methyl jasmonate induces volatile emissions in cotton plants. Journal of Chemical Ecology 27: 679–695CrossRefGoogle ScholarPubMed
Rogers, C. E. (1985). Extrafloral nectar: entomological implications. Bulletin of the Entomological Society of America 31: 15–20CrossRefGoogle Scholar
Romeis, J. and Wäckers, F. L. (2000). Feeding responses by female Pieris brassicae butterflies to carbohydrates and amino acids. Physiological Entomology 25: 247–253CrossRefGoogle Scholar
Romeis, J. and Wäckers, F. L. (2002). Nutritional suitability of individual carbohydrates and amino acids for adult Pieris brassicae. Physiological Entomology 27: 148–156CrossRefGoogle Scholar
Röse, U. S. R., Manukian, A., Heath, R. R. and Tumlinson, J. H. (1996). Volatile semiochemicals released from undamaged cotton leaves: a systemic response of living plants to caterpillar damage. Plant Physiology 111: 487–495CrossRefGoogle ScholarPubMed
Rostàs, M., Simon, M. and Hilker, M. (2003). Ecological cross-effects of induced plant responses towards herbivores and phytopathogenic fungi. Basic and Applied Ecology 4: 43–62CrossRefGoogle Scholar
Roth, J. P., King, E. G. and Thompson, A. C. (1978). Host location by the tachinid Lixophaga diatreae. Environmental Entomology 7: 794–798CrossRefGoogle Scholar
Ruhren, S. and Handel, S. N. (1999). Jumping spiders (Salticidae) enhance the seed production of a plant with extrafloral nectaries. Oecologia 119: 227–230CrossRefGoogle ScholarPubMed
Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. (1996). Systemic acquired resistance. Plant Cell 8: 1809–1819CrossRefGoogle ScholarPubMed
Sabelis, M. W. and baan, H. E. (1983). Location of distant spider-mite colonies by phytoseiid predators: demonstration of specific kairomones emitted by Tetranychus urticae and Panonychus ulmi. Entomologia Experimentalis et Applicata 33: 303–314CrossRefGoogle Scholar
Sabelis, M. W., van Baalen, M., Bakker, F. M. et al. (1999). The evolution of direct and indirect plant defence against herbivorous arthropods. In Herbivores: Between Plants and Predators, eds. H. Olf, V. K. Brown and R. H. Drent, pp. 109–166. Oxford: Blackwell
Salt, G. (1958). Parasite behaviour and the control of insect pests. Endeavour 17: 145–148CrossRefGoogle Scholar
Sano, K., Amemura, A. and Harada, T. (1975). Purification and properties of a beta-1,6-glucosidase from Flavobacterium. Biochimica et Biophysica Acta 377: 410–420CrossRefGoogle ScholarPubMed
Sauls, C. E., Nordlund, D. A. and Lewis, W. J. (1979). Kairomones and their use for the management of entomophagous insects. VIII. Effects of diet on the kairomonal activity of frass from Heliothis zea (Boddie) larvae for Microplitis croceipes (Cresson). Journal of Chemical Ecology 5: 363–369CrossRefGoogle Scholar
Schmelz, E. A., Alborn, H. T. and Tumlinson, J. H. (2001). The influence of intact-plant and excised-leaf bioassay designs on volicitin- and jasmonic acid-induced sesquiterpene volatile release in Zea mays. Planta 214: 171–179CrossRefGoogle ScholarPubMed
Schneider, P. (1972). Versuche zur frage der individuellen futterverteilung bei der kleinen roten waldameisen (Formica polyctena). Insectes Sociaux 19: 279–299CrossRefGoogle Scholar
Schüler, T. H., Poppy, G. M., Kerry, B. R. and Denholm, I. (1999a). Potential side effects of insect-resistant transgenic plants on arthropod natural enemies. Trends in Biotechnology 17: 210–216CrossRefGoogle Scholar
Schüler, T. H., Potting, R. P. J., Denholm, I. and Poppy, G. M. (1999b). Parasitoid behaviour and Bt plants. Nature 400: 825–826CrossRefGoogle Scholar
Schüler, G., Gorls, H. and Boland, W. (2001). 6-Substituted indanoyl isoleucine conjugates mimic the biological activity of coronatine. European Journal of Organic Chemistry1663–16683.0.CO;2-I>CrossRefGoogle Scholar
Schuster, M. F. and Calderon, M. (1986). Interactions of host plant resistant genotypes and beneficial insects in cotton ecosystems. In Interactions of Plant Resistance and Parasitoids and Predators of Insects, eds. D. J. Boethel and R. D. Eikenbary, pp. 84–97. New York: John Wiley & Sons
Schutz, S., Weissenbecker, B. and Hummel, H. E. (1995). Impact of elevated atmospheric ozone on host plant finding of the Colorado beetle (Leptinotarsa decemlineata Say). Mededelingen van de Faculteit Landbouw Universiteit Gent 60: 819–824Google Scholar
Scutareanu, P., Drukker, B., Bruin, J., Posthumus, M. A. and Sabelis, M. W. (1997). Volatiles from Psylla-infested pear trees and their possible involvement in attraction of anthocorid predators. Journal of Chemical Ecology 23: 2241–2260CrossRefGoogle Scholar
Shah, D. M., Horsch, R. B., Klee, H. J. et al. (1986). Engineering herbicide tolerance in transgenic plants. Science 233: 478–481CrossRefGoogle ScholarPubMed
Shen, B., Zheng, Z. P. and Dooner, H. K. (2000). A maize sesquiterpene cyclase gene induced by insect herbivory and volicitin. Characterization of wild-type and mutant alleles. Proceedings of the National Academy of Sciences, USA 97: 14807–14812CrossRefGoogle ScholarPubMed
Shimoda, T., Takabayashi, J., Ashihara, W. and Takafuji, A. (1997). Response of predatory insect Scolothrips takahashii toward herbivore-induced plant volatiles under laboratory and field conditions. Journal of Chemical Ecology 23: 2033–2048CrossRefGoogle Scholar
Shiojiri, K., Takabayashi, J., Yano, S. and Takafuji, A. (2001). Infochemically mediated tritrophic interaction webs on cabbage plants. Population Ecology 43: 23–29CrossRefGoogle Scholar
Shiojiri, K., Takabayashi, J., Yano, S. and Takafuji, A. (2002). Oviposition preferences of herbivores are affected by tritrophic interaction webs. Ecology Letters 5: 186–192CrossRefGoogle Scholar
Smith, L. L., Lanza, J. and Smith, G. C. (1990). Amino-acid-concentrations in extrafloral nectar of Impatiens sultani increase after simulated herbivory. Ecology 71: 107–115CrossRefGoogle Scholar
Spiteller, D., Dettner, K. and Boland, W. (2000). Gut bacteria may be involved in interactions between plants, herbivores and their predators: Microbial biosynthesis of N-acylglutamine surfactants as elicitors of plant volatiles. Biological Chemistry 381: 755–762CrossRefGoogle ScholarPubMed
Stapel, J. O., Cortesero, A. M., Demoraes, C. M., Tumlinson, J. H. and Lewis, W. J. (1997). Extrafloral nectar, honeydew, and sucrose effects on searching behavior and efficiency of Microplitis croceipes (Hymenoptera: Braconidae) in cotton. Environmental Entomology 26: 617–623CrossRefGoogle Scholar
Steinberg, S., Dicke, M., Vet, L. E. M. and Wanningen, R. (1992). Response of the braconid parasitoid Cotesia (= Apanteles) glomerata to volatile infochemicals: effects of bioassay set-up, parasitoid age and experience and barometric flux. Entomologia Experimentalis et Applicata 63: 163–175CrossRefGoogle Scholar
Steinberg, S., Dicke, M. and Vet, L. E. M. (1993). Relative importance of infochemicals from 1st and 2nd trophic level in long-range host location by the larval parasitoid Cotesia glomerata. Journal of Chemical Ecology 19: 47–59CrossRefGoogle Scholar
Stephenson, A. G. (1982). The role of the extrafloral nectaries of Catalpa speciosa in limiting herbivory and increasing fruit production. Ecology 63: 663–669CrossRefGoogle Scholar
Stintzi, A., Weber, H., Reymond, P., Browse, J. and Farmer, E. E. (2001). Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proceedings of the National Academy of Sciences, USA 98: 12837–12842CrossRefGoogle ScholarPubMed
Stout, M. J. and Bostock, R. M. (1999). Specificity of induced responses to arthropods and pathogens. In Induced Defenses Against Pathogens and Herbivores, eds. A. A. Agrawal, S. Tuzun and E. Bent, pp. 183–211. St Paul, MO: APS Press
Sudd, J. H. and Franks, N. R. (1987). The Behavioural Ecology of Ants. New York: Chapman & Hall
Sullivan, B. T., Pettersson, E. M., Seltmann, K. C. and Berisford, C. W. (2000). Attraction of the bark beetle parasitoid Roptrocerus xylophagorum (Hymenoptera: Pteromalidae) to host-associated olfactory cues. Environmental Entomology 29: 1138–1151CrossRefGoogle Scholar
Swift, S. and Lanza, J. (1993). How do Passiflora vines produce more extrafloral nectar after simulated herbivory?Bulletin of the Ecological Society of America 74: 451Google Scholar
Takabayashi, J., Dicke, M. and Posthumus, M. A. (1991a). Induction of indirect defense against spider-mites in uninfested lima-bean leaves. Phytochemistry 30: 1459–1462CrossRefGoogle Scholar
Takabayashi, J., Dicke, M. and Posthumus, M. A. (1991b). Variation in composition of predator-attracting allelochemicals emitted by herbivore-infested plants: relative influence of plant and herbivore. Chemoecology 2: 1–6CrossRefGoogle Scholar
Takabayashi, J., Dicke, M. and Posthumus, M. A. (1994). Volatile herbivore-induced terpenoids in plant mite interactions: variation caused by biotic and abiotic factors. Journal of Chemical Ecology 20: 1329–1354CrossRefGoogle ScholarPubMed
Takabayashi, J., Takahashi, S., Dicke, M. and Posthumus, M. A. (1995). Developmental stage of herbivore Pseudaletia separata affects production of herbivore-induced synomone by corn plants. Journal of Chemical Ecology 21: 273–287CrossRefGoogle Scholar
Takasu, K. and Lewis, W. J. (1995). Importance of adult food sources to host searching of the larval parasitoid Microplitis croceipes. Biological Control 5: 25–30CrossRefGoogle Scholar
Tanowitz, B. D. and Koehler, D. L. (1986). Carbohydrate analysis of floral and extra-floral nectars in selected taxa of Sansevieria (Agavaceae). Annals of Botany 58: 541–545CrossRefGoogle Scholar
Taylor, J. S. (1932). Report on cotton insect and disease infestation. II. Notes on the American boll worm (Heliothis obselata F.) on cotton and its parasite (Microbracon brevicornis Wesm.). Scientific Bulletin of Research in Agriculture and Forestry of the Union of South Africa, vol. 113Google Scholar
Tennant, L. E. and Porter, S. D. (1991). Comparison of diets of 2 fire ant species (Hymenoptera, Formicidae): solid and liquid components. Journal of Entomological Science 26: 450–465CrossRefGoogle Scholar
Thaler, J. S. (1999). Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399: 686–688CrossRefGoogle Scholar
Thaler, J. S., Stout, M. J., Karban, R. and Duffey, S. S. (1996). Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. Journal of Chemical Ecology 22: 1767–1781CrossRefGoogle Scholar
Thaler, J. S., Fidantsef, A. L., Duffey, S. S. and Bostock, R. M. (1999). Trade-offs in plant defense against pathogens and herbivores: a field demonstration of chemical elicitors of induced resistance. Journal of Chemical Ecology 25: 1597–1609CrossRefGoogle Scholar
Thomson, N. J. (1981). Reversed animal-plant interactions: the evolution of insectivorous and ant-fed plants. Biological Journal of the Linnean Society 16: 147–155CrossRefGoogle Scholar
Tilman, D. (1978). Cherries, ants and tent caterpillars: timing of nectar production in relation to susceptibility of caterpillars to ant predation. Ecology 59: 686–692CrossRefGoogle Scholar
Tobin, J. E. (1994). Ants as primary consumers: diet and abundance in the Formicidae. In Nourishment and Evolution in Insect Societies, vol. 9, eds. J. H. Hunt and C. A. Nalepa, pp. 279–307. Boulder, CO: Westview Press
Treacy, M. F., Benedict, J. H., Segers, J. C., Morrison, R. K. and Lopez, J. D. (1986). Role of cotton trichome density in bollworm (Lepidoptera, Noctuidae) egg parasitism. Environmental Entomology 15: 365–368CrossRefGoogle Scholar
Tscharntke, T., Thiessen, S., Dolch, R. and Boland, W. (2001). Herbivory, induced resistance, and interplant signal transfer in Alnus glutinosa. Biochemical Systematics and Ecology 29: 1025–1047CrossRefGoogle Scholar
Tumlinson, J. H., Turlings, T. C. J. and Lewis, W. J. (1992). The semiochemical complexes that mediate insect parasitoid foraging. Agricultural Zoological Review 5: 221–252Google Scholar
Turlings, T. C. J. and Benrey, B. (1998). Effects of plant metabolites on the behavior and development of parasitic wasps. Ecoscience 5: 321–333CrossRefGoogle Scholar
Turlings, T. C. J., Tumlinson, J. H. and Lewis, W. J. (1990). Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250: 1251–1253CrossRefGoogle ScholarPubMed
Turlings, T. C. J., Tumlinson, J. H., Eller, F. J. and Lewis, W. J. (1991a). Larval-damaged plants: source of volatile synomones that guide the parasitoid Cotesia marginiventris to the microhabitat of its hosts. Entomologia Experimentalis et Applicata 58: 75–82CrossRefGoogle Scholar
Turlings, T. C. J., Tumlinson, J. H., Heath, R. R., Proveaux, A. T. and Doolittle, R. E. (1991b). Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts. Journal of Chemical Ecology 17: 2235–2251CrossRefGoogle Scholar
Turlings, T. C. J., Mccall, P. J., Alborn, H. T. and Tumlinson, J. H. (1993a). An elicitor in caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic wasps. Journal of Chemical Ecology 19: 411–425CrossRefGoogle Scholar
Turlings, T. C. J., Waeckers, F., Vet, L. E. M., Lewis, W. J. and Tumlinson, J. H. (1993b). Learning of host-finding cues by hymenopterous parasitoids. In Insect Learning: Ecological and Evolutionary Perspectives, eds. D. R. Papaj and A. Lewis, pp. 51–78. New York: Chapman & Hall
Turlings, T. C. J., Loughrin, J. H., Mccall, P. J., Rose, U. S. R., Lewis, W. J. and Tumlinson, J. H. (1995). How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proceedings of the National Academy of Sciences, USA 92: 4169–4174CrossRefGoogle ScholarPubMed
Turlings, T. C. J., Lengwiler, U. B., Bernasconi, M. L. and Wechsler, D. (1998). Timing of induced volatile emissions in maize seedlings. Planta 207: 146–152CrossRefGoogle Scholar
Turlings, T. C. J., Alborn, H. T., Loughrin, J. H. and Tumlinson, J. H. (2000). Volicitin, an elicitor of maize volatiles in oral secretion of Spodoptera exigua: isolation and bioactivity. Journal of Chemical Ecology 26: 189–202CrossRefGoogle Scholar
Turlings, T. C. J., Gouinguené, S., Degen, T. and Fritzsche Hoballah, M. E. (2002). The chemical ecology of plant-caterpillar parasitoid interactions. In Multitrophic Level Interactions, eds. T. Tscharntke and B. Hawkins, pp. 148–173. Cambridge: Cambridge University PressCrossRef
Udayagiri, S. and Jones, R. L. (1992a). Flight behavior of Macrocentrus grandii Goidanich (Hymenoptera, Braconidae), a specialist parasitoid of European corn borer (Lepidoptera, Pyralidae): factors influencing response to corn volatiles. Environmental Entomology 21: 1448–1456CrossRefGoogle Scholar
Udayagiri, S. and Jones, R. L. (1992b). Role of plant odor in parasitism of European corn borer by braconid specialist parasitoid Macrocentrus grandii Goidanich: isolation and characterization of plant synomones eliciting parasitoid flight response. Journal of Chemical Ecology 18: 1841–1855CrossRefGoogle Scholar
Meijden, E. and Klinkhamer, P. G. L. (2000). Conflicting interests of plants and the natural enemies of herbivores. Oikos 89: 202–208CrossRefGoogle Scholar
Loon, J. J. A., Vos, E. W. and Dicke, M. (2000a). Orientation behaviour of the predatory hemipteran Perillus bioculatus to plant and prey odours. Entomologia Experimentalis et Applicata 96: 51–58CrossRefGoogle Scholar
Loon, J. J. A., Boer, J. G. and Dicke, M. (2000b). Parasitoid plant mutualism: parasitoid attack of herbivore increases plant reproduction. Entomologia Experimentalis et Applicata 97: 219–227CrossRefGoogle Scholar
Tol, R. W. H. M., Sommen, A. T. C., Boff, M. I. C., Bezooijen, J., Sabelis, M. W. and Smits, P. H. (2001). Plants protect their roots by alerting the enemies of grubs. Ecology Letters 4: 292–294Google Scholar
Venzon, M., Janssen, A. and Sabelis, M. W. (1999). Attraction of a generalist predator towards herbivore-infested plants. Entomologia Experimentalis et Applicata 93: 305–314CrossRefGoogle Scholar
Vet, L. E. M. and Dicke, M. (1992). Ecology of infochemical use by natural enemies in a tritrophic context. Annual Review of Entomology 37: 141–172CrossRefGoogle Scholar
Vet, L. E. M., Wäckers, F. L. and Dicke, M. (1991). How to hunt for hiding hosts: the reliability-detectability problem in foraging parasitoids. Netherlands Journal of Zoology 41: 202–213CrossRefGoogle Scholar
Vet, L. E. M., Lewis, W. J. and Carde, R. T. (1995). Parasitoid foraging and learning. In Chemical Ecology of Insects 2, eds. R. T. Carde and W. J. Bell, pp. 65–101. New York: Chapman & HallCrossRef
Vinson, S. B. (1968). Distribution of an oil carbohydrate and protein food source to members of imported fire ant colony. Journal of Economic Entomology 61: 712–714CrossRefGoogle Scholar
Vinson, S. B. (1981). Habitat location. In Semiochemicals: Their Role in Pest Control, eds. D. A. Nordlund, W. J. Lewis and R. L. Jones, pp. 51–77. New York: John Wiley & Sons
Vinson, S. B., Elzen, G. W. and Williams, H. J. (1987). The influence of volatile plant allelochemicals on the third trophic level (parasitoids) and their herbivorous hosts. In Insect–Plants, eds. V. Labeyerie, G. Fabres and D. Lachaise, pp. 109–114. Dordrecht: Junk
Wäckers, F. L. (1994). The effect of food-deprivation on the innate visual and olfactory preferences in the parasitoid Cotesia rubecula. Journal of Insect Physiology 40: 641–649CrossRefGoogle Scholar
Wäckers, F. L. (2001). A comparison of nectar- and honeydew sugars with respect to their utilization by the hymenopteran parasitoid Cotesia glomerata. Journal of Insect Physiology 47: 1077–1084CrossRefGoogle ScholarPubMed
Wäckers, F. L. (2003). The effect of food supplements on parasitoid-host dynamics. Proceedings of the International Symposium on Biological Control of Arthropods 1: 226–231Google Scholar
Wäckers, F. L. and Wunderlin, R. (1999). Induction of cotton extrafloral nectar production in response to herbivory does not require a herbivore-specific elicitor. Entomologia Experimentalis et Applicata 91: 149–154CrossRefGoogle Scholar
Wäckers, F. L., Zuber, D., Wunderlin, R. and Keller, F. (2001). The effect of herbivory on temporal and spatial dynamics of foliar nectar production in cotton and castor. Annals of Botany 87: 365–370CrossRefGoogle Scholar
Wadhams, L. J., Birkett, M. A., Powell, W. and Woodcock, C. M. (1999). Aphids, predators, and parasitoids. In Insect–Plant Interactions and Induced Plant Defences, eds. D. J. Chadwick and J. A. Goode, pp. 60–67. London: John Wiley & Sons
Wagner, D. (1997). The influence of ant nests on Acacia seed production, herbivory and soil nutrients. Journal of Ecology 85: 83–93CrossRefGoogle Scholar
Walling, L. L. (2000). The myriad plant responses to herbivores. Journal of Plant Growth Regulation 19: 195–216Google ScholarPubMed
Wegener, R., Schulz, S., Meiners, T., Hadwich, K. and Hilker, M. (2001). Analysis of volatiles induced by oviposition of elm leaf beetle Xanthogaleruca luteola on Ulmus minor. Journal of Chemical Ecology 27: 499–515CrossRefGoogle ScholarPubMed
Weiler, E. W., Kutchan, T. M., Gorba, T., Brodschelm, W., Niesel, U. and Bublitz, F. (1994). The Pseudomonas phytotoxin coronatine mimics octadecanoid signaling molecules of higher-plants. Febs Letters 345: 9–13CrossRefGoogle ScholarPubMed
Weissbecker, B., Loon, J. J. A., Posthumus, M. A., Bouwmeester, H. J. and Dicke, M. (2000). Identification of volatile potato sesquiterpenoids and their olfactory detection by the two-spotted stinkbug Perillus bioculatus. Journal of Chemical Ecology 26: 1433–1445CrossRefGoogle Scholar
Wertz, P. and Downing, D. (1989). Beta-glucosidase activity in porcine epidermis. Biochimica et Biophysica Acta 978: 115CrossRefGoogle Scholar
Whitman, D. W. (1988). Allelochemical interactions among plants, herbivores, and their predators. In Novel Aspects of Insect–Plant Interactions, eds. P. Barbosa and D. Letourneau, pp. 207–248. New York: John Wiley & Sons
Whitman, D. W. (1994). Plant bodyguards: mutualistic interactions between plants and the third trophic level. In Functional Dynamics of Phytophagous Insects, ed. T. N. Ananthakrishan, pp. 207–248. New Dehli: Oxford and IBH Publishing
Winz, R. A. and Baldwin, I. T. (2001). Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. IV. Insect-induced ethylene reduces jasmonate-induced nicotine accumulation by regulating putrescine N-methyltransferase transcripts. Plant Physiology 125: 2189–2202CrossRefGoogle ScholarPubMed
Xu, N. and Chen, Z. (1999). Isolation and identification of tea plant volatiles attractive to tea geometrid parasitoids. Acta Entomologica Sinica 42: 126–131Google Scholar
Yu, S. (1989). Beta-glucosidase in four phytophagous Lepidoptera. Insect Biochemistry 19: 103CrossRefGoogle Scholar
Zangerl, A. R. and Bazzaz, F. A. (1992). Theory and pattern in plant defense allocation. In Plant Resistance to Herbivores and Pathogens, eds. R. Fritz and E. L. Simms, pp. 363–392. Chicago, UL: University of Chicago Press
Zangerl, A. R. and Rutledge, C. E. (1996). The probability of attack and patterns of constitutive and induced defense: a test of optimal defense theory. American Naturalist 147: 599–608CrossRefGoogle Scholar
Zimmermann, M. (1932). Ueber die extra-floralen Nectarien der Angiospermen. Botanisches Zentralblatt 49: 99–196Google Scholar
Zwölfer, H. and Kraus, M. (1957). Biocoenotic studies on the parasites of two fir and two oak tortricids. Entomophaga 2: 173–196CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×