Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-12T00:35:32.280Z Has data issue: false hasContentIssue false

15 - In Vitro Methods for Plant–Microbe Interaction and Biocontrol Studies in European Ash (Fraxinus excelsior L.)

from Part IV - Endophytes for Novel Biomolecules and In Vitro Methods

Published online by Cambridge University Press:  01 April 2019

Trevor R. Hodkinson
Affiliation:
Trinity College Dublin
Fiona M. Doohan
Affiliation:
University College Dublin
Matthew J. Saunders
Affiliation:
Trinity College Dublin
Brian R. Murphy
Affiliation:
Trinity College Dublin
Get access

Summary

In vitro tissue culture systems are required for plant–microbe interaction studies on European ash, Fraxinus excelsior. Methods are needed for plant micropropagation and for physiological experimentation including pathogen/resistance testing and biocontrol studies. For example, systems are required for experiments on ash dieback disease, caused by the ascomycete fungus Hymenoscyphus fraxineus, that is killing ash plantations and natural populations across its native range. Methods are also needed to optimise the number of endophytes cultured from ash tissue and to taxonomically identify them. We present endophyte isolation protocols and media for ash, provide an optimised DNA barcoding procedure for endophyte identification and describe in vitro tissue culture methods suitable for ash–microbe interaction studies in both roots and shoots. Methods for both embryo culture and seed culture (with precutting) and for the bulking up of genotypes via single node culture are outlined. We also discuss the potential of tissue culture for establishing microbe/endophyte-free cultures.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakys, R. (2013). Dieback of Fraxinus in Baltic sea region. Swedish University of Agricultural Sciences, Uppsala, pp. 148.Google Scholar
Baral, H.-O., Queloz, V. and Hosoya, T. (2014). Hymenoscyphus fraxineus, the correct scientific name for the fungus causing ash dieback in Europe. IMA Fungus, 5, 7980.CrossRefGoogle ScholarPubMed
Barklund, P. (2005). Ash dieback sweeping over south and central Sweden. SkogsEko, 3,1113. (In Swedish.)Google Scholar
Beekwilder, J., Murphy, B. R., Mathuna, E. M.,Barry, A. and Hodkinson, T. R. (2019). Isolation, diversity and potential use of endophytes in the biomass and bioenergy crop Miscanthus. In Endophytes for a Growing World, ed. Hodkinson, T. R., Doohan, F. M., Saunders, M. J. and Murphy, B. R.. Cambridge: Cambridge University Press, Chapter 9.Google Scholar
Begerow, D., Nilsson, H., Unterseher, M. and Maier, W. (2010). Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Applied Microbiology and Biotechnology, 87, 99108.CrossRefGoogle ScholarPubMed
Brome, A. and Mitchell, R. J. (2017). Ecological Impacts of Ash Dieback and Mitigation Methods. Research Note. London: Forestry Commission UK, pp. 1–16.Google Scholar
Chanway, C. P. (1996). Endophytes: they’re not just fungi! Canadian Journal Botany, 74, 321322.CrossRefGoogle Scholar
Douglas, G. C., Pliura, A., Dufour, J. et al. (2013). Common ash (Fraxinus excelsior L.). In Forest Tree Breeding in Europe: Current State of the Art and Perspectives, Vol. 2, ed. Pâques, L. E. Springer, Managing Forest Ecosystems, 25, 403462.CrossRefGoogle Scholar
Forestry Commission UK (2015). Chalara dieback: managing ash trees and woodlands. www.forestry.gov.uk/forestry/infd-92pjkxGoogle Scholar
Gross, A., Holdenrieder, O., Pautasso, M., Queloz, V. and Sieber, T. N. (2014). Hymenoscyphus pseudoalbidus, the causal agent of European ash dieback. Molecular Plant Pathology, 15, 521.CrossRefGoogle ScholarPubMed
Hawksworth, D. L. (2001). The magnitude of fungal diversity: the 1.5 million species estimated revisited. Mycological Research, 105, 14221432.CrossRefGoogle Scholar
Hallmann, J., Quadt-Hallmann, A., Mahaffee, W. F. and Kloepper, J. W. (1997). Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43, 895914.CrossRefGoogle Scholar
Hardoim, P. R., Overbeek, L. S., Berg, G. et al. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79, 293320.CrossRefGoogle ScholarPubMed
Hodkinson, T. R. (2018). Evolution and taxonomy of the grasses (Poaceae): a model family for the study of species-rich groups. Annual Plant Reviews Online, doi: 10.1002/9781119312994.apr0622.CrossRefGoogle Scholar
Hodkinson, T. R., Waldren, S., Parnell, J. A. N. et al. (2007). DNA banking for plant breeding, biotechnology and biodiversity evaluation. Journal of Plant Research, 120, 1729.CrossRefGoogle ScholarPubMed
Janse, J. D. (1981). The bacterial disease of ash (Fraxinus excelsior), caused by Pseudomonas syringae subsp. savastanoi pv. fraxini. European Journal of Forest Pathololgy, 11, 306315.CrossRefGoogle Scholar
Kosawang, C., Amby, B. D., Bussaban, B. et al. (2018). Fungal communities associated with species of Fraxinus tolerant to ash dieback, and their potential for biological control. Fungal Biology, 122, 110120.CrossRefGoogle Scholar
Kowalski, T. (2006). Chalara fraxinea sp. nov. associated with dieback of ash (Fraxinus excelsior) in Poland. Forest Pathology, 36, 264270.CrossRefGoogle Scholar
Kowalski, T. and Holdenrieder, O. (2009a). Pathogenicity of Chalara fraxinea. Forest Pathology, 39, 17.CrossRefGoogle Scholar
Kowalski, T. and Holdenrieder, O. (2009b). The teleomorph of Chalara fraxinea, the causal agent of ash dieback. Forest Pathology, 39, 304308.CrossRefGoogle Scholar
Kowalski, T. and Łukomska, A. (2005). Studies on Fraxinus excelsior L. dieback in Włoszczowa Forest Unit stands. Acta Agrobotanica, 59, 429440.Google Scholar
Kowalski, T., Bilański, P. and Kraj, W. (2017). Pathogenicity of fungi associated with ash dieback towards Fraxinus excelsior. Plant Pathology, 66, 12281238.CrossRefGoogle Scholar
Kräutler, K. and Kirisits, T. (2012). The ash dieback pathogen Hymenoscyphus pseudoalbidus is associated with leaf symptoms on ash species (Fraxinus spp.). Journal of Agricultural Extension and Rural Development, 4, 261265.Google Scholar
Link, H. F. (1809). Observationes in ordines plantarum naturales, disserta- tio prima, complectens anandrarum ordines Epiphytas, Mucedines, Gas- tromycos et Fungos. Berlin, Germany: Der Gesellschaft Naturforschender Freunde zu Berlin.Google Scholar
Marshall, D., Tunali, B. and Nelson, L. R. (1999). Occurrence of fungal endophytes in species of wild Triticum. Crop Science, 39, 15071512.CrossRefGoogle Scholar
Moore, D., Robson, G. D. and Trinci, A. P. J. (2011). 21st Century Guidebook to Fungi. Cambridge: Cambridge University Press.Google Scholar
Murphy, B. R., Batke, S. P., Doohan, F. M. and Hodkinson, T. R. (2015). Media manipulations and the culture of beneficial fungal root endophytes. International Journal of Biology, 7, 94102.CrossRefGoogle Scholar
Nilsson, R. H., Kristiansson, E., Ryberg, M., Hallenberg, N. and Larsson, K.-H. (2008). Intraspecific ITS variability in the Kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evolutionary Bioinformatics, 4, 193200.CrossRefGoogle ScholarPubMed
O’Hanlon, K. A., Knorr, K., Jørgensen, L. N., Nicolaisen, M. and Boelt, B. (2012). Exploring the potential of symbiotic fungal endophytes in cereal disease suppression. Biological Control, 63, 6978.CrossRefGoogle Scholar
Petrini, O. (1991). Fungal endophytes of tree leaves. In Microbial Ecology of Leaves. ed. Andrews, J. H. and Hirano, S. S. New York, NY: Springer Verlag, pp. 179197.CrossRefGoogle Scholar
Przybył, K. (2002). Fungi associated with necrotic apical parts of Fraxinus excelsior shoots. Forest Pathology, 32, 387394.CrossRefGoogle Scholar
Sansford, C. E. (2013). Pest risk analysis for Hymenoscyphus pseudoalbidus (anamorph Chalara fraxinea) for the UK and the Republic of Ireland. Forestry Commission, 1128.Google Scholar
Schlegel, M., Dubach, V., Buol, L. and Sieber, T. N. (2016). Effects of endophytic fungi on the ash dieback pathogen. FEMS Microbiology Ecology, 92, 118.CrossRefGoogle ScholarPubMed
Tamura, K., Peterson, D., Peterson, N. et al. (2011). MEGA5: Molecular evolutionary genetic analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 27312739.CrossRefGoogle ScholarPubMed
Thomasset, M., Fernández-Manjarrés, J. F., Douglas, G. C., Frascaria-Lacoste, N. and Hodkinson, T. R. (2011). Hybridisation, introgression and climate change: a case study for the tree genus Fraxinus (Oleaceae). In Climate Change, Ecology and Systematics, ed. T. R. Hodkinson, M. B. Jones, S. Waldren and J. A. N. Parnell. Cambridge: Cambridge University Press, pp. 320–344.CrossRefGoogle Scholar
Thomasset, M., Hodkinson, T. R., Restoux, G. et al. (2014). Thank you for not flowering: conservation genetics and gene flow analysis of native and non-native populations of Fraxinus (Oleaceae) in Ireland. Heredity, 112, 596606.CrossRefGoogle Scholar
Thomsen, I. M. (2005). Frost damage of ash. Videnblade Skovbrug, 8, 21. (In Danish).Google Scholar
Timmermann, V., Borja, I., Hietala, A. M., Kirisits, T. and Solheim, H. (2011). Ash dieback: pathogen spread and diurnal patterns of ascospore dispersal, with special emphasis on Norway. OEPP/EOPP Bulletin, 41, 1420.CrossRefGoogle Scholar
White, T. J., Bruns, T. D., Lee, S. and Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications, ed. Innis, M. A, Gelfand, D. H, Sninsky, J. J and White, T. J. New York: Academic Press, pp. 315322.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×