We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Violent respiratory events play critical roles in the transmission of respiratory diseases, such as coughing and sneezing, between infectious and susceptible individuals. In this work, large-scale multiphase flow large-eddy simulations have been performed to simulate the coughing jet from a human's mouth carrying pathogenic or virus-laden droplets by using a weakly compressible smoothed particle hydrodynamics method. We explicitly model the cough jet ejected from a human mouth in the form of a mixture of two-phase fluids based on the cough velocity profile of the exhalation flow obtained from experimental data and the statistics of the droplets’ sizes. The coupling and interaction between the two expiratory phases and ambient surrounding air are examined based on the interaction between the gas particles and droplet particles. First, the results reveal that the turbulence of the cough jet determines the dispersion of the virus-laden droplets, i.e. whether they fly up evolving into aerosols or fall down to the ground. Second, the droplet particles have significant effects on the evolution of the cough jet turbulence; for example, they increase the complexity and butterfly effect introduced by the turbulence disturbance. Our results show that the prediction of the spreading distance of droplet particles often goes beyond the social distancing rules recommended by the World Health Organization, which reminds us of the risks of exposure if we do not take any protecting protocol.
This study evaluated the association between inflammatory diets as measured by the dietary inflammatory index (DII), and inflammation biomarkers, and the development of preeclampsia among the Chinese population. We followed the reporting guidelines of the STROBE statement for observational studies. A total of 466 preeclampsia cases aged over 18 years were recruited between March 2016 and June 2019, and 466 healthy controls were 1:1 ratio matched by age (± 3 years), week of gestation (± 1 week), and gestational diabetes mellitus. The energy-adjusted DII (E-DII) was computed based on dietary intake assessed using a 79-item semiquantitative food frequency questionnaire (FFQ). Inflammatory biomarkers were analyzed by ELISA kits. The mean E-DII scores were -0.65 ± 1.58 for cases and -1.19 ± 1.47 for controls (P value <0.001). E-DII scores positively correlated with IFN-γ (rs = 0.194, P value = 0.001) and IL-4 (rs = 0.135, P value = 0.021). After multivariable adjustment, E-DII scores were positively related to preeclampsia risk (P trend <0.001). The highest tertile of E-DII was 2.18 times the lowest tertiles (95% CI = 1.52, 3.13). The odds of preeclampsia increased by 30% (95% CI= 18%, 43%, P value <0.001) for each E-DII score increase. The preeclampsia risk was positively associated with IL-2 (OR = 1.07, 95% CI = 1.03, 1.11), IL-4 (OR = 1.26, 95% CI = 1.03, 1.54) and TGF-β (OR = 1.17, 95% CI = 1.06, 1.29). Therefore, proinflammatory diets, corresponding to higher IL-2, IL-4 and TGF-β levels, were associated with increased preeclampsia risk.
The aim of this work was to develop a table-top exercise (TTX) program for mass-casualty incident (MCI) response based on a real incident to evaluate the program.
Methods:
The TTX program was developed based on the 8 TTX design steps. Convenience sampling was adopted to recruit recently graduated physicians in China. After the TTX training, the participants completed a self-designed questionnaire, as well as the Simulation Design Scale (SDS) and Educational Practices in Simulation Scale (EPSS).
Results:
In total, 148 valid questionnaires were collected. The difficulty score of the TTX program was 3.69 ± 0.8. The participants evaluated the program highly, with a score of 4.72 ± 0.54 out of 5. Both the SDS and the EPSS had average scores higher than 4.5. Guided reflection/feedback (M = 4.68, SD = 0.41) and fidelity (M =4.66, SD = 0.57) were the 2 highest-rated SDS subscales. For the EPSS, diverse ways of learning and collaboration were the 2 highest-rated subscales. Multivariate stepwise regression analysis showed that the participants’ evaluations of the TTX training course were related to the EPSS score, the difficulty rating, the evaluation of the instructional props, and the degree of participant involvement (F = 24.385, P < 0.001).
Conclusions:
A TTX program for MCIs was developed based on the 2014 Shanghai New Year Crush. The TTX kit is practical and sophisticated, and it provides an effective strategy for MCI training.
Low molecular weight glutenin subunits (LWM-GSs) play a crucial role in determining wheat flour processing quality. In this work, 35 novel LMW-GS genes (32 active and three pseudogenes) from three Aegilops umbellulata (2n = 2x = 14, UU) accessions were amplified by allelic-specific PCR. We found that all LMW-GS genes had the same primary structure shared by other known LMW-GSs. Thirty-two active genes encode 31 typical LMW-m-type subunits. The MZ424050 possessed nine cysteine residues with an extra cysteine residue located in the last amino acid residue of the conserved C-terminal III, which could benefit the formation of larger glutenin polymers, and therefore may have positive effects on dough properties. We have found extensive variations which were mainly resulted from single-nucleotide polymorphisms (SNPs) and insertions and deletions (InDels) among the LMW-GS genes in Ae. umbellulata. Our results demonstrated that Ae. umbellulata is an important source of LMW-GS variants and the potential value of the novel LMW-GS alleles for wheat quality improvement.
For a multi-vectored propeller aerostat with actuator faults, this study presents a fault-tolerant tracking control strategy, which includes fault modeling, observer, force estimation and tracking controller. Fault modeling considers the four types of faults of vectored propellers, namely, thrust offset, thrust efficiency loss, vectored angle offset and vectored angle stuck. Actuator faults can be determined from the fault observer, which identifies the thrust offset from the acceleration difference of the faulty aerostat with the ideal model. For tracking positions, a traditional PID controller is constructed with virtual control, compensated with the estimated fault force. The control allocation scheme is proposed to redistribute the available actuators in case faults occur. Simulation results of position tracking prove the effectiveness of the proposed strategy.
The mumps resurgence has frequently been reported around the world in recent years, especially in many counties mumps vaccines have been widely used. This study aimed to describe the spatial epidemiological characteristics of mumps in Jiangsu, and provide a scientific basis for the implementation and adjustment of strategies to prevent and control mumps. The epidemiological characteristics were described with ratio or proportion. Spatial autocorrelation, Tango's flexible spatial scan statistics, and Kulldorff's elliptic spatiotemporal scan statistics were applied to identify the spatial autocorrelation, detect hot and cold spots of mumps incidence, and aggregation areas. A total of 172 775 cases were reported from 2004 to 2020 in Jiangsu. The general trend of mumps incidence is declining with a bimodal seasonal distribution identified mainly in summer and winter, respectively. Children aged 5–10 years old are the main risk group. A migration trend of hot spots from southeast to northwest over time was found. Similar high-risk aggregations were detected in the northwestern parts through spatial-temporal analysis with the most likely cluster time frame around 2019. Local medical and health administrations should formulate and implement targeted health care policies and allocate health resources more appropriately corresponding to the epidemiological characteristics of mumps.
The role of neurological proteins in the development of bipolar disorder (BD) and schizophrenia (SCZ) remains elusive now. The current study aims to explore the potential genetic correlations of plasma neurological proteins with BD and SCZ.
Methods:
By using the latest genome-wide association study (GWAS) summary data of BD and SCZ (including 41,917 BD cases, 11,260 SCZ cases, and 396,091 controls) derived from the Psychiatric GWAS Consortium website (PGC) and a recently released GWAS of neurological proteins (including 750 individuals), we performed a linkage disequilibrium score regression (LDSC) analysis to detect the potential genetic correlations between the two common psychiatric disorders and each of the 92 neurological proteins. Two-sample Mendelian randomisation (MR) analysis was then applied to assess the bidirectional causal relationship between the neurological proteins identified by LDSC, BD and SCZ.
Results:
LDSC analysis identified one neurological protein, NEP, which shows suggestive genetic correlation signals for both BD (coefficient = −0.165, p value = 0.035) and SCZ (coefficient = −0.235, p value = 0.020). However, those association did not remain significant after strict Bonferroni correction. Two sample MR analysis found that there was an association between genetically predicted level of NEP protein, BD (odd ratio [OR] = 0.87, p value = 1.61 × 10−6) and SCZ (OR = 0.90, p value = 4.04 × 10−6). However, in the opposite direction, there is no genetically predicted association between BD, SCZ, and NEP protein level.
Conclusion:
This study provided novel clues for understanding the genetic effects of neurological proteins on BD and SCZ.
Large-eddy simulations of turbulent flow in partially filled pipes are conducted to investigate the effect of secondary currents on the friction factor, first- and second-order statistics and large-scale turbulent motion. The method is validated first and simulated profiles of the mean streamwise velocity, normal stresses and turbulent kinetic energy (TKE) are shown to be in good agreement with experimental data. The secondary flow is stronger in half- and three-quarters full pipes compared with quarter full or fully filled pipe flows, respectively. The origin of the secondary flow is examined by both the TKE budget and the steamwise vorticity equation, providing evidence that secondary currents originate from the corner between the free surface and the pipe walls, which is where turbulence production is larger than the sum of the remaining terms of the TKE budget. An extra source of streamwise vorticity production is found at the free surface near the centreline bisector, due to the two-component asymmetric turbulence there. The occurrence of dispersive stresses (due to secondary currents) reduces the contribution of the turbulent shear stress to the friction factor, which results in a reduction of the total friction factor of flows in half and three-quarters full pipes in comparison to a fully filled pipe flow. Furthermore, the presence of significant secondary currents inhibits very-large-scale motion (VLSM), which in turn reduces the strength and scales of near-wall streaks. Subsequently, near-wall coherent structures generated by streak instability and transient growth are significantly suppressed. The absence of VLSM and less coherent near-wall turbulence structures is supposedly responsible for the drag reduction in partially filled pipe flows relative to a fully filled pipe flow at an equivalent Reynolds number.
Tumors have posed a serious threat to human life and health. Researchers can determine whether or not cells are cancerous, whether the cancer cells are invasive or metastatic, and what the effects of drugs are on cancer cells by the physical properties such as hardness, adhesion, and Young's modulus. The atomic force microscope (AFM) has emerged as a key important tool for biomechanics research on tumor cells due to its ability to image and collect force spectroscopy information of biological samples with nano-level spatial resolution and under near-physiological conditions. This article reviews the existing results of the study of cancer cells with AFM. The main foci are the operating principle of AFM and research advances in mechanical property measurement, ultra-microtopography, and molecular recognition of tumor cells, which allows us to outline what we do know it in a systematic way and to summarize and to discuss future directions.
Prolonged parturition duration has been widely demonstrated to be a risk factor for incidence of stillbirth. This study evaluated the supply of dietary fibre on the parturition duration, gut microbiota and metabolome using sows as a model. A total of 40 Yorkshire sows were randomly given diet containing normal level of dietary fibre (NDF, 17·5 % dietary fibre) or high level of dietary fibre (HDF, 33·5 % dietary fibre). Faecal microbiota profiled with 16S rRNA amplicon sequencing, SCFA and metabolome in the faeces and plasma around parturition were compared between the dietary groups. Correlation analysis was conducted to further explore the potential associations between specific bacterial taxa and metabolites. Results showed that HDF diet significantly improved the parturition process as presented by the shorter parturition duration. HDF diet increased the abundance of the phyla Bacteroidetes and Synergistetes and multiple genera. Except for butyrate, SCFA levels in the faeces and plasma of sows at parturition were elevated in HDF group. The abundances of fifteen and twelve metabolites in the faeces and plasma, respectively, markedly differ between HDF and NDF sows. These metabolites are involved in energy metabolism and bacterial metabolism. Correlation analysis also showed associations between specific bacteria taxa and metabolites. Collectively, our study indicates that the improvement of parturition duration by high fibre intake in late gestation is associated with gut microbiota, production of SCFA and other metabolites, potentially serving for energy metabolism.
Previous analyses of grey and white matter volumes have reported that schizophrenia is associated with structural changes. Deep learning is a data-driven approach that can capture highly compact hierarchical non-linear relationships among high-dimensional features, and therefore can facilitate the development of clinical tools for making a more accurate and earlier diagnosis of schizophrenia.
Aims
To identify consistent grey matter abnormalities in patients with schizophrenia, 662 people with schizophrenia and 613 healthy controls were recruited from eight centres across China, and the data from these independent sites were used to validate deep-learning classifiers.
Method
We used a prospective image-based meta-analysis of whole-brain voxel-based morphometry. We also automatically differentiated patients with schizophrenia from healthy controls using combined grey matter, white matter and cerebrospinal fluid volumetric features, incorporated a deep neural network approach on an individual basis, and tested the generalisability of the classification models using independent validation sites.
Results
We found that statistically reliable schizophrenia-related grey matter abnormalities primarily occurred in regions that included the superior temporal gyrus extending to the temporal pole, insular cortex, orbital and middle frontal cortices, middle cingulum and thalamus. Evaluated using leave-one-site-out cross-validation, the performance of the classification of schizophrenia achieved by our findings from eight independent research sites were: accuracy, 77.19–85.74%; sensitivity, 75.31–89.29% and area under the receiver operating characteristic curve, 0.797–0.909.
Conclusions
These results suggest that, by using deep-learning techniques, multidimensional neuroanatomical changes in schizophrenia are capable of robustly discriminating patients with schizophrenia from healthy controls, findings which could facilitate clinical diagnosis and treatment in schizophrenia.
Weapon target allocation (WTA) is an effective method to solve the battlefield fire optimisation problem, which plays an important role in intelligent automated decision-making. We researched the multitarget allocation problem to maximise the attack effectiveness when multiple interceptors cooperatively attack multiple ground targets. Firstly, an effective and reasonable fitness function is established, based on the situation between the interceptors and targets, by comprehensively considering the relative range, relative angle, speed, capture probability and radiation source matching performance and thoroughly evaluating them based on the advantage of the attack effectiveness. Secondly, the optimisation performance of the particle swarm optimisation (PSO) algorithm is adaptively improved. We propose an adaptive simulated annealing-particle swarm optimisation (SA-PSO) algorithm by introducing the simulated annealing algorithm into the adaptive PSO algorithm. The proposed algorithm can enhance the convergence speed and overcome the disadvantage of the PSO algorithm easily falling into a local extreme point. Finally, a simulation example is performed in a scenario where ten interceptors cooperate to attack eight ground targets; comparative experiments are conducted between the adaptive SA-PSO algorithm and PSO algorithm. The simulation results indicate that the proposed adaptive SA-PSO algorithm demonstrates great performance in convergence speed and global optimisation capabilities, and a maximised attack effectiveness can be guaranteed.
Gut microbiome and dietary patterns have been suggested to be associated with depression/anxiety. However, limited effort has been made to explore the effects of possible interactions between diet and microbiome on the risks of depression and anxiety.
Methods
Using the latest genome-wide association studies findings in gut microbiome and dietary habits, polygenic risk scores (PRSs) analysis of gut microbiome and dietary habits was conducted in the UK Biobank cohort. Logistic/linear regression models were applied for evaluating the associations for gut microbiome-PRS, dietary habits-PRS, and their interactions with depression/anxiety status and Patient Health Questionnaire (PHQ-9)/Generalized Anxiety Disorder-7 (GAD-7) score by R software.
Results
We observed 51 common diet–gut microbiome interactions shared by both PHQ score and depression status, such as overall beef intake × genus Sporobacter [hurdle binary (HB)] (PPHQ = 7.88 × 10−4, Pdepression status = 5.86 × 10−4); carbohydrate × genus Lactococcus (HB) (PPHQ = 0.0295, Pdepression status = 0.0150). We detected 41 common diet–gut microbiome interactions shared by GAD score and anxiety status, such as sugar × genus Parasutterella (rank normal transformed) (PGAD = 5.15 × 10−3, Panxiety status = 0.0347); tablespoons of raw vegetables per day × family Coriobacteriaceae (HB) (PGAD = 6.02 × 10−4, Panxiety status = 0.0345). Some common significant interactions shared by depression and anxiety were identified, such as overall beef intake × genus Sporobacter (HB).
Conclusions
Our study results expanded our understanding of how to comprehensively consider the relationships for dietary habits–gut microbiome interactions with depression and anxiety.
The cooperative guidance problem of multiple inferior missiles intercepting a hypersonic target with the specific impact angle constraint in the two-dimensional plane is addressed in this paper, taking into consideration variations in a missile’s speed. The guidance law is designed with two subsystems: the direction of line-of-sight (LOS) and the direction of normal to LOS. In the direction of LOS, by applying the algebraic graph theory and the consensus theory, the guidance command is designed to make the system convergent in a finite time to satisfy the goal of cooperative interception. In the direction of normal to LOS, the impact angle is constrained to transform into the LOS angle at the time of interception. In view of the difficulty of measuring unknown target acceleration information in real scenarios, the guidance command is designed by utilising a super-twisting algorithm based on a nonsingular fast-terminal sliding mode (NFTSM) surface. Numerical simulation results manifest that the proposed guidance law performs efficiently and the guidance commands are free of chattering. In addition, the overall performance of this guidance law is assessed with Monte Carlo runs in the presence of measurement errors. The simulation results demonstrate that the robustness can be guaranteed, and that overall efficiency and accuracy in intercepting the hypersonic target are achieved.
The efficiency of establishing pig pluripotent embryonic stem cell clones from blastocysts is still low. The transcription factor Nanog plays an important role in maintaining the pluripotency of mouse and human embryonic stem cells. Adequate activation of Nanog has been reported to increase the efficiency of establishing mouse embryonic stem cells from 3.5 day embryos. In mouse, Nanog starts to be strongly expressed as early as the morula stage, whereas in porcine NANOG starts to be strongly expressed by the late blastocyst stage. Therefore, here we investigated both the effect of expressing NANOG on porcine embryos early from the morula stage and the efficiency of porcine pluripotent embryonic stem cell clone formation. Compared with intact porcine embryos, NANOG overexpression induced a lower blastocyst rate, and did not show any advantages for embryo development and pluripotent embryonic stem cell line formation. These results indicated that, although NANOG is important pluripotent factor, NANOG overexpression is unnecessary for the initial formation of porcine pluripotent embryonic stem cell clones in vitro.
The aim of this study was to evaluate the association between prenatal and neonatal period exposures and the risk of childhood and adolescent nasopharyngeal carcinoma (NPC). From January 2009 to January 2016, a total of 46 patients with childhood and adolescent NPC (i.e., less than 18 years of age) who were treated at Sun Yat-sen University Cancer Center were screened as cases, and a total of 45 cancer-free patients who were treated at Sun Yat-sen University Zhongshan Ophthalmic Center were selected as controls. The association between maternal exposures during pregnancy and obstetric variables and the risk of childhood and adolescent NPC was evaluated using logistic regression analysis. Univariate analysis revealed that compared to children and adolescents without a family history of cancer, those with a family history of cancer had a significantly higher risk of childhood and adolescent NPC [odds ratios (OR) = 3.15, 95% confidence interval (CI) = 1.02–9.75, P = 0.046], and the maternal use of folic acid and/or multivitamins during pregnancy was associated with a reduced risk of childhood and adolescent NPC in the offspring (OR = 0.07, 95% CI = 0.02–0.25, P < 0.001). After multivariate analysis, only the maternal use of folic acid and/or multivitamins during pregnancy remained statistically significant. These findings suggest that maternal consumption of folic acid and/or multivitamins during pregnancy is associated with a decreased risk of childhood and adolescent NPC in the offspring.
Diarrhea caused by pathogens such as enterotoxigenic E. coli (ETEC) is a serious threat to the health of young animals and human infants. Here, we investigated the protective effect of fructooligosaccharides (FOS) on the intestinal epithelium with ETEC-challenge in a weaned piglet model. Twenty-four weaned piglets were randomly divided into three groups: (1) non-ETEC-challenged control (CON), (2) ETEC-challenged control (ECON), and (3) ETEC challenge + 2.5 g/kg FOS (EFOS). On day 19, the CON pigs were orally infused with sterile culture, while the ECON and EFOS pigs were orally infused with active ETEC (2.5 × 109 colony-forming units). On day 21, pigs were slaughtered to collect venous blood and small intestine. Result showed that the pre-treatment of FOS improved the antioxidant capacity and the integrity of intestinal barrier in the ETEC-challenged pigs without affecting their growth performance. Specifically, comparing with ECON pigs, the level of GSH-Px (glutathione peroxidase) and CAT (catalase) in the plasma and intestinal mucosa of EFOS pigs was increased (P<0.05), and the intestinal barrier marked by ZO-1 and plasmatic DAO was also improved in EFOS pigs. A lower level (P<0.05) of inflammatory cytokines in the intestinal mucosa of EFOS pigs might be involved in the inhibition of TLR4/MYD88/NF-κB pathway. The apoptosis of jejunal cells in EFOS pigs was also lower than that in ECON pigs (P<0.05). Our findings provide convincing evidence of possible prebiotic and protective effect of FOS on the maintenance of intestinal epithelial function under the attack of pathogens.
This study aimed to determine the risk factors for chronic diseases and to identify the potential influencing mechanisms from the perspectives of lifestyle and dietary factors. The findings could provide updated and innovative evidence for the prevention and control of chronic diseases.
Design:
A cross-sectional study.
Setting:
Shanghai, China.
Participants:
1005 adults from Yangpu district of Shanghai participated in the study, and responded to questions on dietary habits, lifestyle and health status.
Results:
Residents suffering from chronic diseases accounted for about 34·99 % of the respondents. Logistic regression analysis showed that age, diet quality, amount of exercise and tea drinking were related to chronic diseases. Age > 60 and overeating (Diet Balance Index total score > 0) had negative additive interaction on the occurrence of chronic disease, while overexercise (Physical Activity Index > 17·1) and tea drinking had negative multiplicative interaction and negative additive interaction on the occurrence of chronic disease. Diet quality, physical activity and tea drinking were incomplete mediators of the relationship between types of medical insurance residents participating in and chronic diseases.
Conclusions:
The residents in Yangpu District of Shanghai have a high prevalence of chronic diseases. Strengthening access of residents to health education and interventions to prevent chronic diseases and cultivating healthy eating and exercise habits of residents are crucial. The nutritional environment of the elderly population should be considered, and the reimbursement level of different types of medical insurance should be designed reasonably to improve the accessibility of medical and health services and reduce the risk of chronic diseases.
The Middle Miocene Climatic Optimum is known for abrupt events during the global cooling trend of the past 20 Ma. Its identification in the Tibetan Plateau can help explain the cause of the critical Middle Miocene climate transition in Central Asia. In this study, fine-grained mixed sediments widely distributed in the Miocene Qaidam Lake in the northern Tibetan Plateau were used as a sensitive indicator for palaeoclimate. Their geochemical characteristics were investigated, together with an analysis of 2600 m long successive gamma-ray logging data from the whole JS2 drillcore, to understand the mid-Miocene climate transition in the Tibetan Plateau. By comparing the gamma-ray curve of the mixed sediments with global temperature, the Middle Miocene Climatic Optimum event can be easily identified. Further, the detailed petrological features and geochemical data of lacustrine fine-grained mixed sediments from a 400 m drillcore show oxidizing, high-sedimentation rate and brackish-saline water conditions in a semi-arid climate during the Middle Miocene period, demonstrating a dryer climate in the Qaidam Basin than in the monsoon-sensitive regions in Central Asia. These fine-grained mixed sediments have recorded climate drying before 15.3 Ma that represents a climatic transition within the Middle Miocene Climatic Optimum; increasing carbonate-rich mixed sediments, decreasing algal limestone layers and decreasing lacustrine organic matter are indicators of this transition. Regional tectonic events include the retreat of the Paratethys from Central Asia at ∼15 Ma and the synchronous tectonic reorganization of the Altyn-Tagh fault system and the northeastern Tibetan Plateau. We find that global climate change is the primary factor affecting the overall characteristics and changes of the Neogene climate in the Qaidam Basin, including the occurrence of the Middle Miocene Climatic Optimum and the cooling and drying tendency, while the regional events are a secondary factor.
A magnetically controlled spiral capsule robot is designed. When the robot is running in a pipe filled with mucus, computational fluid dynamics is used to analyze the fluid field (velocity, streamlines, and vorticity) in the pipe, and particle image velocimetry is used to measure the above fluid field surrounding the robot. The measured fluid field is basically similar to the numerical result. The relationship between the operating parameters of the robot and the performance of the robot is further calculated and analyzed. The results show that the resistance to the robot in the forward direction, average turbulent intensity of the fluid surrounding the robot, and maximum fluid pressure to the pipe wall are proportional to the robotic translational speed. The resisting moment of the robot in the forward direction, average turbulent intensity of the fluid surrounding the robot, and maximum fluid pressure to the pipe wall are proportional to the robotic rotational speed.