We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To explore whether embryo culture with melatonin (MT) can improve the embryonic development and clinical outcome of patients with repeated cycles after in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) failure, immature oocytes from controlled ovarian superovulation cycles were collected for in vitro maturation (IVM) and ICSI. The obtained embryos were cultured in 0, 10–11, 10–9, 10–7 and 10–5 M MT medium respectively, and 10–9 M was screened out as the optimal concentration. Subsequently, 140 patients who underwent failed IVF/ICSI cycles received 140 cycles of embryo culture in vitro with a medium containing 10–9 M MT, these 140 MT culture cycles were designated as the experimental group (10–9 M group), and the control group was the previous failed cycles of patients (0 M group). The results showed that the fertilization, cleavage, high-quality embryo, blastocyst, and high-quality blastocyst rates of the 10–9 M group were significantly higher than those of the 0 M group (P < 0.01; P < 0.01; P < 0.0001; P < 0.0001; P < 0.0001). To date, in total, 50 vitrified-warmed cycle transfers have been performed in the 10–9 M group and the implantation rate, biochemical pregnancy rate and clinical pregnancy rate were significantly higher than those in the 0 M group (all P < 0.0001). Two healthy infants were delivered successfully and the other 18 women who achieved clinical pregnancy also had good examination indexes. Therefore the application of 10–9 M MT to embryo cultures in vitro improved embryonic development in patients with repeated cycles after failed IVF/ICSI cycles and had good clinical outcomes.
This paper investigates global dynamics of an infection age-space structured cholera model. The model describes the vibrio cholerae transmission in human population, where infection-age structure of vibrio cholerae and infectious individuals are incorporated to measure the infectivity during the different stage of disease transmission. The model is described by reaction–diffusion models involving the spatial dispersal of vibrios and the mobility of human populations in the same domain Ω ⊂ ℝn. We first give the well-posedness of the model by converting the model to a reaction–diffusion model and two Volterra integral equations and obtain two constant equilibria. Our result suggest that the basic reproduction number determines the dichotomy of disease persistence and extinction, which is achieved by studying the local stability of equilibria, disease persistence and global attractivity of equilibria.
This study uses location-specific data to investigate the role of spatially mediated peer effects in farmers’ adoption of conservation agriculture practices. The literature has shown that farmers trust other farmers and one way to increase conservation practice adoption is through identifying feasible conservation practices in neighboring fields. Estimating this effect can help improve our understanding of what influences the adoption and could play a role in improving federal and local conservation program design. The study finds that although spatial peer effects are important in the adoption of conservation tillage and diverse crop rotation, the scale of peer effects are not substantial.
The gut microbiota is directly influenced by dietary components, and it plays critical roles in chronic diseases. Excessive consumption of trans-fatty acids (TFA) is associated with obesity induced by alterations in gut microbiota, but the links between obesity and gut microbiota remain unclear. Therefore, studies examining the impact of TFA on intestinal microflora are essential. In our study, we performed 16S ribosomal RNA gene sequencing on faecal samples from Sprague–Dawley rats fed a basal diet (control (CON) group), high-fat (HF) diet (diet-induced obesity (DIO) group) or TFA diets (1 % TFA group and 8 % TFA group) for 8 weeks to investigate the effects of TFA/HF diets on obesity and gut microbiota composition. We found that the TFA/HF diets significantly induced obesity and changes in blood and brain physiological parameters of the rats. The relative abundance of the phyla Firmicutes and Bacteroidetes was inversely altered in the three test groups compared with the CON group. Proteobacteria increased slightly in the DIO, 1 % TFA and 8 % TFA groups. The genus Bacteroides increased in the DIO and 1 % TFA groups, but Muribaculaceae decreased in all experimental groups compared with the CON group. Moreover, significant differences were observed among clusters of orthologous group functional categories of the four dietary groups. Our observations suggested that the TFA/HF diets induced obesity and dysfunction of gut microbiota. Gut dysbiosis might mediate the obesity effects of TFA/HF diets.
Using the first-principles calculation combined with the structure searching method, the ternary intermetallic compound (IMC) (Ni0.66, Zn0.33)3Sn4 with $R\bar 3m$ space group is predicted. The energetic, dynamic, thermal, and mechanical stabilities of the (Ni0.66, Zn0.33)3Sn4 IMC are confirmed. The mechanical, thermodynamic, and electronic characteristics at different pressures from 0 to 20 Gpa for the (Ni0.66, Zn0.33)3Sn4 IMC are also investigated. The results show that the (Ni0.66, Zn0.33)3Sn4 IMC possesses a ductile trait within 20 Gpa and that pressurization can increase its elastic modulus, hardness, anisotropy, Debye temperature, and minimum thermal conductivity. At a given pressure, the thermal expansion coefficient α increases significantly below 200 K, and then its increase rate approaches a linear mode as the temperature increases. Compared with the case of 0 GPa, the shapes of the total density of states and partial density of states for the (Ni0.66, Zn0.33)3Sn4 IMC change slightly at pressure 20 Gpa, implying that its structure is still stable under pressure 20 GPa.
To explore whether different polyvinylpyrrolidone (PVP) concentrations affect the results of intracytoplasmic sperm injection (ICSI), a prospective study was conducted for 194 couples undergoing 210 ICSI therapy cycles. These cycles were divided into three groups (10, 7 and 5% groups) using the corresponding concentration of PVP for sperm immobilization. The main outcome measures were analyzed. Results indicated that, with a decrease in PVP concentrations, all of the main outcome measures increased. In particular, the high-quality cleavage embryo rate in the 7% group was significantly lower than in the 5% group (P < 0.01), and the cleavage, high-quality cleavage embryo, and high-quality blastocyst rates in the 5% group were significantly higher than those in the 10% group (all P < 0.001). For high-/intermediate-quality semen, all of the main outcome measures were significantly increased with 5% PVP. For the poor-quality semen, only the high-quality cleavage embryo and high-quality blastocyst rates were significantly higher in the 5% group. Therefore, lowering PVP concentrations greatly promoted the development of embryos in ICSI cycles, with an optimal concentration of 5% for ICSI.
Wildfires are sensitive to climate change, but their response to changes in temperature and precipitation on long timescales is still disputed. In this study, we present a ~9.4 ka black carbon mass sedimentation rate (BCMSR) record from Lake Ximenglongtan (XMLT), southwestern China, to elucidate the Holocene fire regime and its linkages to climatic conditions. The results indicate that the regional fire activity was low during the early Holocene (before 7.6 cal ka BP), increased notably at 7.6 cal ka BP, and continued to increase gradually during the mid- to late Holocene until 2.2 ka. The episodes of higher fire occurrence reflected by higher BCMSR over the last 2.2 ka might be more likely related to the intensified human activities. The cool and humid climate during the early Holocene limited the spread of fire, while warming and drying at ~7.6 cal ka BP triggered higher fire occurrence. Instead of temperature, changes in precipitation dominated fire regime variation during the mid- to late Holocene. On millennial timescales, we suggest that Holocene fire variability has been predominantly controlled by the combined effects of Northern Hemisphere (NH) summer and winter insolation that influenced monsoonal precipitation and fire season temperature, respectively. Indian Ocean Dipole (IOD) events may also have affected fire incidence through influencing monsoon intensity.
A 328.58 m drill core (XK12) was recovered from lacustrine–alluvial sediments in the Xingkai Basin, northeast China, with the aim of obtaining a high-resolution pollen record of East Asian winter monsoon (EAWM) evolution since 3.6 Ma. An index based on the pollen record of thermophilous trees and terrestrial herbs is used as an indicator of winter temperature conditions controlled by the EAWM, at the glacial–interglacial scale. Primary age control was established based on lithostratigraphy and magnetostratigraphy, and then the pollen index was correlated to the LR04 global benthic δ18O record and finally tuned to Earth orbital obliquity to produce a high-resolution astronomical time scale. The pollen record indicates that the EAWM underwent two stepwise enhancements at 2.8 and 1.6 Ma. These events are consistent with paleoclimatic records of mean quartz grain size from the Chinese Loess Plateau, and they are also in accord with the initiation and intensification of Northern Hemisphere glaciation. Our findings suggest that the variability of the EAWM since 3.6 Ma was primarily controlled by changes in global ice volume and climatic cooling.
Objectives: Reduction in the amount of information (storage capacity) retained in working memory (WM) has been associated with sleep loss. The present study examined whether reduced WM capacity is also related to poor everyday sleep quality and, more importantly, whether the effects of sleep quality could be dissociated from the effects of depressed mood and age on WM. Methods: In two studies, WM was assessed using a short-term recall task, producing behavioral measures for both the amount of retained WM information (capacity) and how precise the retained WM representations were (precision). Self-report measures of sleep quality and depressed mood were obtained using questionnaires. Results: In a sample of college students, Study 1 found that poor sleep quality and depressed mood could independently predict reduced WM capacity, but not WM precision. Study 2 generalized these sleep- and mood-related WM capacity effects to a community sample (aged 21–77 years) and further showed that age was associated with reduced WM precision. Conclusions: Together, these findings demonstrate dissociable effects of three health-related factors (sleep, mood, and age) on WM representations and highlighte the importance of assessing different aspects of WM representations (e.g., capacity and precision) in future neuropsychological research.
Galloping is a type of fluid-elastic instability phenomenon characterized by large-amplitude low-frequency oscillations of the structure. The aim of the present study is to reveal the underlying mechanisms of galloping of a square cylinder at low Reynolds numbers ($Re$) via linear stability analysis (LSA) and direct numerical simulations. The LSA model is constructed by coupling a reduced-order fluid model with the structure motion equation. The relevant unstable modes are first yielded by LSA, and then the development and evolution of these modes are investigated using direct numerical simulations. It is found that, for certain combinations of $Re$ and mass ratio ($m^{\ast }$), the structure mode (SM) becomes unstable beyond a critical reduced velocity $U_{c}^{\ast }$ due to the fluid–structure coupling effect. The galloping oscillation frequency matches exactly the eigenfrequency of the SM, suggesting that the instability of the SM is the primary cause of galloping phenomenon. Nevertheless, the $U_{c}^{\ast }$ predicted by LSA is significantly lower than the galloping onset $U_{g}^{\ast }$ obtained from numerical simulations. Further analysis indicates that the discrepancy is caused by the nonlinear competition between the leading fluid mode (FM) and the SM. In the pre-galloping region $U_{c}^{\ast }<U^{\ast }<U_{g}^{\ast }$, the FM quickly reaches the nonlinear saturation state and then inhibits the development of the SM, thus postponing the occurrence of galloping. When $U^{\ast }>U_{g}^{\ast }$, mode competition is weakened because of the large difference in mode frequencies, and thereby no mode lock-in can happen. Consequently, galloping occurs, with the responses determined by the joint action of SM and FM. The unstable SM leads to the low-frequency large-amplitude vibration of the cylinder, while the unstable FM results in the high-frequency vortex shedding in the wake. The dynamic mode decomposition (DMD) technique is successfully applied to extract the coherent flow structures corresponding to SM and FM, which we refer to as the galloping mode and the von Kármán mode, respectively. In addition, we show that, due to the mode competition mechanism, the galloping-type oscillation completely disappears below a critical mass ratio. From these results, we conclude that transverse galloping of a square cylinder at low $Re$ is essentially a kind of single-degree-of-freedom (SDOF) flutter, superimposed by a forced vibration induced by the natural vortex shedding. Mode competition between SM and FM in the nonlinear stage can put off the onset of galloping, and can completely suppress the galloping phenomenon at relatively low $Re$ and low $m^{\ast }$ conditions.
This paper proposes a novel distance derivative weighted ENO (DDWENO) limiter based on fixed reconstruction stencil and applies it to the second- and highorder finite volume method on unstructured grids. We choose the standard deviation coefficients of the flow variables as the smooth indicators by using the k-exact reconstruction method, and obtain the limited derivatives of the flow variables by weighting all derivatives of each cell according to smoothness. Furthermore, an additional weighting coefficient related to distance is introduced to emphasize the contribution of the central cell in smooth regions. The developed limiter, combining the advantages of the slope limiters and WENO-type limiters, can achieve the similar effect of WENO schemes in the fixed stencil with high computational efficiency. The numerical cases demonstrate that the DDWENO limiter can preserve the numerical accuracy in smooth regions, and capture the shock waves clearly and steeply as well.
A 336-cm-long sediment core spanning the last 130 ka was recovered from Lake Xingkai on the northeastern margin of the East Asian summer monsoon domain to reveal the linkage between lacustrine depositional processes and environmental changes. Bayesian end member modeling analysis was conducted to partition and interpret the grain-size distributions of Lake Xingkai sediments. Our results suggest that the sedimentary system is characterized by three end members (EMs). EM1 and EM2, with a modal value of 13 and 10 μm, respectively, indicate the variation of local hydraulic conditions. EM3, with a modal value of 5 μm, reflects the background atmospheric dust loading. High atmospheric dust concentration generally occurred during Marine Isotope Stage (MIS) 5d, MIS 4, and early MIS 3, when the climate in the Asian dust source region was cold and dry. In contrast, low dust concentration prevailed during MIS 2, likely due to the southward shift of the westerlies driven by maximum ice volume in the high latitudes.
Transonic buffet is a phenomenon of aerodynamic instability with shock wave motions which occurs at certain combinations of Mach number and mean angle of attack, and which limits the aircraft flight envelope. The objective of this study is to develop a modelling method for unstable flow with oscillating shock waves and moving boundaries, and to perform model-based feedback control of the two-dimensional buffet flow by means of trailing-edge flap oscillations. System identification based on the ARX algorithm is first used to derive a linear model of the input–output dynamics between the flap rotation (the control input) and the lift and pitching moment coefficients (system outputs). The model features a pair of unstable complex-conjugate poles at the characteristic buffet frequency. An appropriate reduced-order model (ROM) with a lower dimension is further obtained by a balanced truncation method that keeps the pair of unstable poles in the unstable subspace but truncates the dynamics in the stable subspace. Based on this balanced ROM, two kinds of feedback control are designed by pole assignment and linear quadratic methods respectively. These independent designs, however, result in similar suboptimal static output feedback control laws. When introduced in numerical simulations, they are both able to completely suppress the buffet instability. Furthermore, the resulting controllers are even able to stabilize buffet flows with nonlinear disturbances and in off-design flow conditions, thus implying their robustness. The analysis of the feedback control laws indicates that parameters (frequency and phase) corresponding to the ‘anti-resonance’ of the linear input–output model are vital for optimal control. The best performance is obtained when the control operates close to the ‘anti-resonance’, which is supported by the optimal frequency and the phase of the open-loop control as well as by the optimal phase of the closed-loop control.
Frequency lock-in can occur on a spring suspended airfoil in transonic buffeting flow, in which the coupling frequency does not follow the buffet frequency but locks onto the natural frequency of the elastic airfoil. Most researchers have attributed this abnormal phenomenon to resonance. However, this interpretation failed to reveal the root cause. In this paper, the physical mechanism of frequency lock-in is studied by a linear dynamic model, combined with the coupled computational fluid dynamics/computational structural dynamics (CFD/CSD) simulation. We build a reduced-order model of the flow using the identification method and unsteady Reynolds-averaged Navier–Stokes computations in a post-buffet state. A linear aeroelastic model is then obtained by coupling this model with a degree-of-freedom equation for the pitching motion. Results from the complex eigenvalue analysis indicate that the coupling between the structural mode and the fluid mode leads to the instability of the structural mode. The instability range coincides with the lock-in region obtained by the coupled CFD/CSD simulation. Therefore, the physical mechanism underlying frequency lock-in is caused by the linear coupled-mode flutter – the coupling between one structural mode and one fluid mode. This is different from the classical single-degree-of-freedom flutter (e.g. transonic buzz), which occurs in stable flows; the present flutter is in the unstable buffet flow. The response of the airfoil system undergoes a conversion from forced vibration to self-sustained flutter. The coupling frequency certainly should lock onto the natural frequency of the elastic airfoil.
The effects of live yeast (LY) and mannan-oligosaccharide (MOS) supplementation on intestinal disruption induced by Escherichia coli in broilers were investigated. The experimental design was a 3×2 factorial arrangement with three dietary treatments (control, 0·5 g/kg LY (Saccharomyces cerevisiae, 1·0×1010 colony-forming units/g), 0·5 g/kg MOS) and two immune treatments (with or without E. coli challenge from 7 to 11 d of age). Samples were collected at 14 d of age. The results showed that E. coli challenge impaired (P<0·05) growth performance during the grower period (1–21 d) and the overall period (1–35 d) of broilers, increased (P<0·05) serum endotoxin and diamine oxidase levels coupled with ileal myeloperoxidase and lysozyme activities, whereas reduced (P<0·05) maltase activity, and compromised the morphological structure of the ileum. Besides, it increased (P<0·05) the mRNA expressions of several inflammatory genes and reduced occludin expression in the ileum. Dietary treatment with both LY and MOS reduced (P<0·05) serum diamine oxidase and ileal myeloperoxidase levels, but elevated villus height (P<0·10) and the ratio of villus height:crypt depth (P<0·05) of the ileum. It also alleviated (P<0·05) E. coli-induced increases (P<0·05) in ileal Toll-like receptor 4, NF-κB and IL-1β expressions. Moreover, LY supplementation reduced (P<0·05) feed conversion ratio of birds during the grower period and enhanced (P<0·05) the community diversity (Shannon and Simpson indices) of ileal microbiota, whereas MOS addition counteracted (P<0·05) the decreased ileal IL-10 and occludin expressions in challenged birds. In conclusion, both LY and MOS supplementation could attenuate E. coli-induced intestinal disruption by alleviating intestinal inflammation and barrier dysfunction in broilers. Moreover, LY addition could improve intestinal microbial community structure and feed efficiency of broilers.
H3PW12O40/polymethylmethacrylate (PMMA)/polycaprolactam (PA6) nanofibrous membrane with a sandwich structure was prepared by electrospinning. Characterization with Fourier transformation infrared spectroscopy (FT-IR), energy-dispersive x-ray spectroscopy (EDX), and x-ray photoelectron spectroscopy (XPS) indicated that H3PW12O40 has been successfully loaded into the upper and bottom layers of the sandwich membrane and its Keggin structure was not destroyed. The photocatalytic efficiency of the sandwich membranes were much higher (≥87.2%) than that of H3PW12O40 only (15.6%) and H3PW12O40/PMMA composite nanofibrous membrane (11.6%) in the degradation of methyl orange (MO) under ultraviolet irradiation. It may be caused by two factors: one was the photoreduction mechanism induced by the electron donating from PA6 to H3PW12O40, the other was the double contact area between H3PW12O40 and MO due to the sandwich structure of the laminated membrane. What is noteworthy is that the sandwich membranes were stable in water, so that they could be easily separated from the aqueous MO solution and reused without appreciable losses in photocatalytic activity after three photocatalytic cycles. In view of this, H3PW12O40/PMMA/PA6 sandwich nanofibrous membrane is promising as a photocatalyst to remove organic pollutants from practical wastewater.
In this commentary, we address the El Greco fallacy by reviewing some recent pupillary evidence supporting top-down modulation of perception. Furthermore, we give justification for including perceptual effects of attention in tests of cognitive penetrability. Together, these exhibits suggest that cognition can affect perception (i.e., they support cognitive penetrability).
ZrO2:Eu3+ hollow spheres were successfully fabricated with the resin microspheres as the template. The sample characterizations were carried out by means of x-ray diffraction (XRD), scanning electron microscope (SEM), and photoluminescence spectra. XRD results revealed that Eu3+-doped samples were pure t-ZrO2 phase after being calcined at 873 K. SEM results exhibited that this Eu3+ doped ZrO2 was hollow spheres; the diameter and thickness of which were about 450 and 50 nm, respectively. Upon excitation at 394 nm, the orange-red emission bands at the wave length longer than 570 nm were from 5D0 → 7FJ (J = 1, 2) transitions. The asymmetry ratio of (5D0 → 7F2)/(5D0 → 7F1) intensity is about 1.61, 1.26, 1.42, 1.42, 1.40, and 1.38 for the Eu3+ concentration 0.4, 0.7, 1.0, 1.5, 2.0, and 2.5 mol%, respectively. These values suggest that the asymmetry ratio of Eu3+ ions is independent of the doping concentration. The optimal doping concentration of Eu3+ ions in ZrO2 is 1.5 mol%. According to Dexter's theory, the critical distance between Eu3+ ions for energy transfer was determined to be 16 Å.