We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper focuses on utilizing several different optical diagnostics to experimentally characterize a pure helium atmospheric pressure plasma jet. Axial electric field measurements were carried out along the plasma plume through the use of a non-perturbing method based on polarization-dependent Stark spectroscopy of the helium $492.2$ nm line. The electric field is shown to increase with distance along the plume length, reaching values as high as $24.5$ kV cm$^{-1}$. The rate of increase of the electric field is dependent on the helium gas flow rate, with lower gas flows rising quicker with distance in comparison with larger flow rates, with the typical values remaining within the same range. This sensitivity is linked to gas mixing between the helium and surrounding ambient air. Schlieren imaging of the gas flow is included to support this. The addition of a target is shown to further increase the measured electric field in close range to the target, with the magnitude of this increase being strongly dependent on the distance between the tube exit and target. The relative increase in the electric field is shown to be on average greater for a conducting target of water in comparison with plastic. A minimal equipment optical configuration, which is here referred to as fast two-dimensional monochromatic imaging, is introduced as an approach for estimating excited state densities within the plasma. Densities of the upper helium states for transitions, $1s3s$$^{3}S_{1}$$\rightarrow$$1s2p$$^{3}P^{0}_{0,1,2}$ at $706.5$ nm and $1s3s$$^{1}S_{0}$$\rightarrow$$1s2p$$^{1}P^{0}_{1}$ at $728.1$ nm, were estimated using this approach and found to be of the order of $10^{10}$–$10^{11}$ cm$^{-3}$.
Cultivation of lowbush blueberry (Vaccinium angustifolium Aiton), an important crop in the eastern part of North America, is unique, as it is carried out over the course of two consecutive growing seasons. Pest management, particularly weed management, is impacted by this biennial cultural practice. The choice of methods to control weeds is narrow, and such a system relies heavily on herbicides for weed management. Availability of unique herbicide active ingredients for weed management is limited, and available herbicides are used repeatedly, so the risk of developing resistance is acute. Hair fescue (Festuca filiformis Pourr.), a perennial grass weed, has evolved resistance to hexazinone, a photosystem II inhibitor frequently used in lowbush blueberry production. We show that substitution of phenylalanine to isoleucine at position 255 is responsible for a decreased sensitivity to hexazinone by a factor of 6.12. Early diagnosis of resistance based on the detection of the mutation will alert growers to use alternative control methods and thus help to increase the sustainability of the cropping system.
We describe the scientific goals and survey design of the First Large Absorption Survey in H i (FLASH), a wide field survey for 21-cm line absorption in neutral atomic hydrogen (H i) at intermediate cosmological redshifts. FLASH will be carried out with the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope and is planned to cover the sky south of
$\delta \approx +40\,\deg$
at frequencies between 711.5 and 999.5 MHz. At redshifts between
$z = 0.4$
and
$1.0$
(look-back times of 4 – 8 Gyr), the H i content of the Universe has been poorly explored due to the difficulty of carrying out radio surveys for faint 21-cm line emission and, at ultra-violet wavelengths, space-borne searches for Damped Lyman-
$\alpha$
absorption in quasar spectra. The ASKAP wide field of view and large spectral bandwidth, in combination with a radio-quiet site, will enable a search for absorption lines in the radio spectra of bright continuum sources over 80% of the sky. This survey is expected to detect at least several hundred intervening 21-cm absorbers and will produce an H i-absorption-selected catalogue of galaxies rich in cool, star-forming gas, some of which may be concealed from optical surveys. Likewise, at least several hundred associated 21-cm absorbers are expected to be detected within the host galaxies of radio sources at
$0.4 < z < 1.0$
, providing valuable kinematical information for models of gas accretion and jet-driven feedback in radio-loud active galactic nuclei. FLASH will also detect OH 18-cm absorbers in diffuse molecular gas, megamaser OH emission, radio recombination lines, and stacked H i emission.
First-year cardiology fellows must quickly learn basic competency in echocardiography during fellowship orientation. This educational process was disrupted in 2020 due to the coronavirus pandemic, as our hands-on echocardiography teaching transitioned from practice on paediatric volunteers to simulation-based training. We previously described an improvement in echocardiographic completeness after implementation of a standardised imaging protocol for the performance of acute assessments of ventricular function. Herein, we assessed whether this improvement could be sustained over the two subsequent years, including the fellowship year affected by the pandemic. Echocardiograms performed by first-year paediatric cardiology fellows to assess ventricular function were reviewed for completeness. The frequency with which each requested component was included was measured. A total demographic score (out of 7) and total imaging score (out of 23) were calculated. The pre-protocol years (2015–2017) were compared to the post-protocol years (2018–2020), and the pre-COVID years (2018–2019) were compared to the year affected by COVID (2020). There was a sustained improvement in completeness after protocol implementation with improvement in the demographic score (median increasing from 6 to 7, p < 0.001) and imaging score (median increasing from 13 to 16, p < 0.001). More individual components showed a statistically significant increase in frequency compared to our prior publication. The COVID pandemic resulted in very few differences in completeness. Demographic reporting improved modestly (p = 0.04); the imaging score was unchanged (p = 0.59). The only view obtained less frequently was the apical two-chamber view. A standardised imaging protocol allowed sustained improvements in echocardiographic completeness despite the disruption of fellowship orientation by COVID-19.
We present the most sensitive and detailed view of the neutral hydrogen (
${\rm H\small I}$
) emission associated with the Small Magellanic Cloud (SMC), through the combination of data from the Australian Square Kilometre Array Pathfinder (ASKAP) and Parkes (Murriyang), as part of the Galactic Australian Square Kilometre Array Pathfinder (GASKAP) pilot survey. These GASKAP-HI pilot observations, for the first time, reveal
${\rm H\small I}$
in the SMC on similar physical scales as other important tracers of the interstellar medium, such as molecular gas and dust. The resultant image cube possesses an rms noise level of 1.1 K (
$1.6\,\mathrm{mJy\ beam}^{-1}$
)
$\mathrm{per}\ 0.98\,\mathrm{km\ s}^{-1}$
spectral channel with an angular resolution of
$30^{\prime\prime}$
(
${\sim}10\,\mathrm{pc}$
). We discuss the calibration scheme and the custom imaging pipeline that utilises a joint deconvolution approach, efficiently distributed across a computing cluster, to accurately recover the emission extending across the entire
${\sim}25\,\mathrm{deg}^2$
field-of-view. We provide an overview of the data products and characterise several aspects including the noise properties as a function of angular resolution and the represented spatial scales by deriving the global transfer function over the full spectral range. A preliminary spatial power spectrum analysis on individual spectral channels reveals that the power law nature of the density distribution extends down to scales of 10 pc. We highlight the scientific potential of these data by comparing the properties of an outflowing high-velocity cloud with previous ASKAP+Parkes
${\rm H\small I}$
test observations.
As refugees and asylum seekers are at high risk of developing mental disorders, we assessed the effectiveness of Self-Help Plus (SH + ), a psychological intervention developed by the World Health Organization, in reducing the risk of developing any mental disorders at 12-month follow-up in refugees and asylum seekers resettled in Western Europe.
Methods
Refugees and asylum seekers with psychological distress (General Health Questionnaire-12 ⩾ 3) but without a mental disorder according to the Mini International Neuropsychiatric Interview (M.I.N.I.) were randomised to either SH + or enhanced treatment as usual (ETAU). The frequency of mental disorders at 12 months was measured with the M.I.N.I., while secondary outcomes included self-identified problems, psychological symptoms and other outcomes.
Results
Of 459 participants randomly assigned to SH + or ETAU, 246 accepted to be interviewed at 12 months. No difference in the frequency of any mental disorders was found (relative risk [RR] = 0.841; 95% confidence interval [CI] 0.389–1.819; p-value = 0.659). In the per protocol (PP) population, that is in participants attending at least three group-based sessions, SH + almost halved the frequency of mental disorders at 12 months compared to ETAU, however so few participants and events contributed to this analysis that it yielded a non-significant result (RR = 0.528; 95% CI 0.180–1.544; p-value = 0.230). SH + was associated with improvements at 12 months in psychological distress (p-value = 0.004), depressive symptoms (p-value = 0.011) and wellbeing (p-value = 0.001).
Conclusions
The present study failed to show any long-term preventative effect of SH + in refugees and asylum seekers resettled in Western European countries. Analysis of the PP population and of secondary outcomes provided signals of a potential effect of SH + in the long-term, which would suggest the value of exploring the effects of booster sessions and strategies to increase SH + adherence.
The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 s to
$\sim\!5$
yr. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of
$\sim\!162$
h of observations conducted at a central frequency of 888 MHz between 2019 August and 2020 August, with a typical rms sensitivity of
$0.24\ \mathrm{mJy\ beam}^{-1}$
and angular resolution of
$12-20$
arcseconds. There are 113 fields, each of which was observed for 12 min integration time, with between 5 and 13 repeats, with cadences between 1 day and 8 months. The total area of the pilot survey footprint is 5 131 square degrees, covering six distinct regions of the sky. An initial search of two of these regions, totalling 1 646 square degrees, revealed 28 highly variable and/or transient sources. Seven of these are known pulsars, including the millisecond pulsar J2039–5617. Another seven are stars, four of which have no previously reported radio detection (SCR J0533–4257, LEHPM 2-783, UCAC3 89–412162 and 2MASS J22414436–6119311). Of the remaining 14 sources, two are active galactic nuclei, six are associated with galaxies and the other six have no multi-wavelength counterparts and are yet to be identified.
Heterogeneity in the number of secondary tuberculosis (TB) cases per source case, the effective reproductive number, R, is important in modelling prevention strategies' impact on incidence.
We estimated mean R (Rm) and calculate the dispersion parameter of this distribution, k, using surveillance and genotyping data for U.S. cases during 2009–2018. We modelled transmission assuming cases in a cluster have matching genotypes and share characteristics related to geography, temporal proximity (i.e. serial interval) and time since U.S. arrival among non-U.S.-born persons.
Complete data were available for 55 330/85 958 cases. Varying the serial interval and geographic proximity used to derive clusters, we consistently estimated Rm<1.0 and k < 0.08; the low value of k indicates a small number of source cases produce a disproportionate number of secondary cases.
U.S. TB reproductive number has a highly skewed distribution, indicating a minority of source cases disproportionately contribute to transmission.
We present the data and initial results from the first pilot survey of the Evolutionary Map of the Universe (EMU), observed at 944 MHz with the Australian Square Kilometre Array Pathfinder (ASKAP) telescope. The survey covers
$270 \,\mathrm{deg}^2$
of an area covered by the Dark Energy Survey, reaching a depth of 25–30
$\mu\mathrm{Jy\ beam}^{-1}$
rms at a spatial resolution of
$\sim$
11–18 arcsec, resulting in a catalogue of
$\sim$
220 000 sources, of which
$\sim$
180 000 are single-component sources. Here we present the catalogue of single-component sources, together with (where available) optical and infrared cross-identifications, classifications, and redshifts. This survey explores a new region of parameter space compared to previous surveys. Specifically, the EMU Pilot Survey has a high density of sources, and also a high sensitivity to low surface brightness emission. These properties result in the detection of types of sources that were rarely seen in or absent from previous surveys. We present some of these new results here.
The GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) is a radio continuum survey at 76–227 MHz of the entire southern sky (Declination
$<\!{+}30^{\circ}$
) with an angular resolution of
${\approx}2$
arcmin. In this paper, we combine GLEAM data with optical spectroscopy from the 6dF Galaxy Survey to construct a sample of 1 590 local (median
$z \approx 0.064$
) radio sources with
$S_{200\,\mathrm{MHz}} > 55$
mJy across an area of
${\approx}16\,700\,\mathrm{deg}^{2}$
. From the optical spectra, we identify the dominant physical process responsible for the radio emission from each galaxy: 73% are fuelled by an active galactic nucleus (AGN) and 27% by star formation. We present the local radio luminosity function for AGN and star-forming (SF) galaxies at 200 MHz and characterise the typical radio spectra of these two populations between 76 MHz and
${\sim}1$
GHz. For the AGN, the median spectral index between 200 MHz and
${\sim}1$
GHz,
$\alpha_{\mathrm{high}}$
, is
$-0.600 \pm 0.010$
(where
$S \propto \nu^{\alpha}$
) and the median spectral index within the GLEAM band,
$\alpha_{\mathrm{low}}$
, is
$-0.704 \pm 0.011$
. For the SF galaxies, the median value of
$\alpha_{\mathrm{high}}$
is
$-0.650 \pm 0.010$
and the median value of
$\alpha_{\mathrm{low}}$
is
$-0.596 \pm 0.015$
. Among the AGN population, flat-spectrum sources are more common at lower radio luminosity, suggesting the existence of a significant population of weak radio AGN that remain core-dominated even at low frequencies. However, around 4% of local radio AGN have ultra-steep radio spectra at low frequencies (
$\alpha_{\mathrm{low}} < -1.2$
). These ultra-steep-spectrum sources span a wide range in radio luminosity, and further work is needed to clarify their nature.
The inaugural data from the first systematic program of sea-ice observations in Kotzebue Sound, Alaska, in 2018 coincided with the first winter in living memory when the Sound was not choked with ice. The following winter of 2018–19 was even warmer and characterized by even less ice. Here we discuss the mass balance of landfast ice near Kotzebue (Qikiqtaġruk) during these two anomalously warm winters. We use in situ observations and a 1-D thermodynamic model to address three research questions developed in partnership with an Indigenous Advisory Council. In doing so, we improve our understanding of connections between landfast ice mass balance, marine mammals and subsistence hunting. Specifically, we show: (i) ice growth stopped unusually early due to strong vertical ocean heat flux, which also likely contributed to early start to bearded seal hunting; (ii) unusually thin ice contributed to widespread surface flooding. The associated snow ice formation partly offset the reduced ice growth, but the flooding likely had a negative impact on ringed seal habitat; (iii) sea ice near Kotzebue during the winters of 2017–18 and 2018–19 was likely the thinnest since at least 1945, driven by a combination of warm air temperatures and a persistent ocean heat flux.
This study aimed to investigate general factors associated with prognosis regardless of the type of treatment received, for adults with depression in primary care.
Methods
We searched Medline, Embase, PsycINFO and Cochrane Central (inception to 12/01/2020) for RCTs that included the most commonly used comprehensive measure of depressive and anxiety disorder symptoms and diagnoses, in primary care depression RCTs (the Revised Clinical Interview Schedule: CIS-R). Two-stage random-effects meta-analyses were conducted.
Results
Twelve (n = 6024) of thirteen eligible studies (n = 6175) provided individual patient data. There was a 31% (95%CI: 25 to 37) difference in depressive symptoms at 3–4 months per standard deviation increase in baseline depressive symptoms. Four additional factors: the duration of anxiety; duration of depression; comorbid panic disorder; and a history of antidepressant treatment were also independently associated with poorer prognosis. There was evidence that the difference in prognosis when these factors were combined could be of clinical importance. Adding these variables improved the amount of variance explained in 3–4 month depressive symptoms from 16% using depressive symptom severity alone to 27%. Risk of bias (assessed with QUIPS) was low in all studies and quality (assessed with GRADE) was high. Sensitivity analyses did not alter our conclusions.
Conclusions
When adults seek treatment for depression clinicians should routinely assess for the duration of anxiety, duration of depression, comorbid panic disorder, and a history of antidepressant treatment alongside depressive symptom severity. This could provide clinicians and patients with useful and desired information to elucidate prognosis and aid the clinical management of depression.
We present the South Galactic Pole (SGP) data release from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. These data combine both years of GLEAM observations at 72–231 MHz conducted with the Murchison Widefield Array (MWA) and cover an area of 5 113$\mathrm{deg}^{2}$ centred on the SGP at $20^{\mathrm{h}} 40^{\mathrm{m}} < \mathrm{RA} < 05^{\mathrm{h}} 04^{\mathrm{m}}$ and $-48^{\circ} < \mathrm{Dec} < -2^{\circ} $. At 216 MHz, the typical rms noise is ${\approx}5$ mJy beam–1 and the angular resolution ${\approx}2$ arcmin. The source catalogue contains a total of 108 851 components above $5\sigma$, of which 77% have measured spectral indices between 72 and 231 MHz. Improvements to the data reduction in this release include the use of the GLEAM Extragalactic catalogue as a sky model to calibrate the data, a more efficient and automated algorithm to deconvolve the snapshot images, and a more accurate primary beam model to correct the flux scale. This data release enables more sensitive large-scale studies of extragalactic source populations as well as spectral variability studies on a one-year timescale.
The worldwide production of in vitro-produced embryos in livestock species continues to grow. The current gold standard for selecting quality oocytes and embryos is morphologic assessment, yet this method is subjective and varies based on experience. There is a need for a non-invasive, objective method of selecting viable oocytes and embryos. The aim of this study was to determine if ooplasm area, diameter including zona pellucida (ZP), and ZP thickness of artificially activated oocytes and in vitro fertilized (IVF) zygotes are indicative of development success in vitro and correlated with embryo quality, as assessed by total blastomere number. Diameter affected the probability of development to the blastocyst stage in activated oocytes on day 7 (P < 0.01) and day 8 (P < 0.001), and had a tendency to affect IVF zygotes on day 8 (P = 0.08). Zona pellucida thickness affected the probability of development on day 7 (P < 0.01) and day 8 (P < 0.001) in activated oocytes, and day 8 for IVF zygotes (P < 0.05). An interaction between ZP thickness and diameter was observed on days 7 and 8 (P < 0.05) in IVF zygotes. Area did not significantly affect the probability of development, but was positively correlated with blastomere number on day 8 for IVF zygotes (P = 0.01, conditional R2 = 0.09). Physical parameters of bovine zygotes have the potential for use as a non-invasive, objective selection method. Upon further development, methods used in this study could be integrated into embryo production systems to improve IVF success.
In this paper, we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers $31\,\textrm{deg}^{2}$ at $800\,\textrm{MHz}$. As a two-dimensional array of 36$\times$12 m antennas, with baselines ranging from 22 m to 6 km, ASKAP also has excellent snapshot imaging capability and 10 arcsec resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 and $1800\,\textrm{MHz}$ and is expected to facilitate great advances in our understanding of galaxy formation, cosmology, and radio transients while opening new parameter space for discovery of the unknown.
Radiotherapy is a mainstay of cancer therapy for a wide variety of anatomical areas. An unfortunate side effect of treatment can be radiation damage to the skin which can be a painful and debilitating problem. Previous experience from the experimental use of Flamigel® in two large-scale clinical studies on affected skin has proven sufficiently positive for the addition of a new product in the Flamigel® family (now commercially available in the UK as Flamigel RT®, Flen Health UK). The aim of this investigation is to evaluate the use of this new product to study how effective it is in the prevention and/or treatment of radiation-induced skin damage.
Materials and methods:
A survey was conducted among radiotherapy specialist teams in dedicated UK radiotherapy centres between 1 January 2017 and 31 October 2017. This report is of a preliminary evaluation conducted by UK-based specialists on 108 patients undergoing radiotherapy. The scoring system for skin reactions of the ‘Radiation Therapy Oncology Group’ was used.
Results:
Results show that the use of Flamigel® has the potential to soothe (p = 0·0001), reduce pain (p = 0·0001) and reduce pruritus (p = 0·004). The product met the expectations of the clinicians involved (p < 0·0001) of whom most were happy to continue use or to recommend its use to colleagues (p < 0·0001).
Conclusions:
Flamigel® is an effective treatment in the management of radiation-induced skin reactions. Erythema was unchanged through the study period (p = 0·42). No adverse reactions were reported after the use of Flamigel from twice to six times a day.
The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.
Skousen and Aiuvalasit critique our article on the post-Mississippian occupation of the Horseshoe Lake watershed (White et al. 2020) along two lines: (1) that our findings are not supported due to a lack of archaeological evidence, and (2) that we do not consider alternative hypotheses in explaining the lake's fecal stanol record. We first respond to the matter of fecal stanol deposition in Horseshoe Lake and then address the larger issue, the primacy of archaeological data in interpreting the past.
Late Cretaceous tracks attributable to deinonychosaurs in North America are rare, with only one occurrence of Menglongipus from Alaska and two possible, but indeterminate, occurrences reported from Mexico. Here we describe the first probable deinonychosaur tracks from Canada: a possible trackway and one isolated track on a single horizon from the Upper Cretaceous Wapiti Formation (upper Campanian) near Grande Prairie in Alberta. The presence of a relatively short digit IV differentiates these from argued dromaeosaurid tracks, suggesting the trackmaker was more likely a troodontid. Other noted characteristics of the Wapiti specimens include a rounded heel margin, the absence of a digit II proximal pad impression, and a broad, elliptical digit III. Monodactyl tracks occur in association with the didactyl tracks, mirroring similar discoveries from the Early Cretaceous Epoch of China, providing additional support for their interpretation as deinonychosaurian traces. Although we refrain from assigning the new Wapiti specimens to any ichnotaxon because of their relatively poor undertrack preservation, this discovery is an important addition to the deinonychosaur track record; it helps to fill a poorly represented geographic and temporal window in their known distribution, and demonstrates the presence of a greater North American deinonychosaur ichnodiversity than has previously been recognized.
The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP band of 700–1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo Sky Survey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with
$\sim$
15 arcsec resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination
$+41^\circ$
made over a 288-MHz band centred at 887.5 MHz.