Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-28T17:57:43.260Z Has data issue: false hasContentIssue false

Cost-effectiveness of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) testing and isolation strategies in nursing homes

Published online by Cambridge University Press:  15 February 2024

Sarah M. Bartsch
Affiliation:
Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and Systems (AIMINGS) Center, CUNY Graduate School of Public Health and Health Policy, New York City, New York
Colleen Weatherwax
Affiliation:
Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and Systems (AIMINGS) Center, CUNY Graduate School of Public Health and Health Policy, New York City, New York
Marie F. Martinez
Affiliation:
Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and Systems (AIMINGS) Center, CUNY Graduate School of Public Health and Health Policy, New York City, New York
Kevin L. Chin
Affiliation:
Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and Systems (AIMINGS) Center, CUNY Graduate School of Public Health and Health Policy, New York City, New York
Michael R. Wasserman
Affiliation:
Los Angeles Jewish Home, Reseda, California California Association of Long Term Care Medicine, Santa Clarita, California
Raveena D. Singh
Affiliation:
Division of Infectious Diseases, University of California Irvine School of Medicine, Irvine, California
Jessie L. Heneghan
Affiliation:
Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and Systems (AIMINGS) Center, CUNY Graduate School of Public Health and Health Policy, New York City, New York
Gabrielle M. Gussin
Affiliation:
Division of Infectious Diseases, University of California Irvine School of Medicine, Irvine, California
Sheryl A. Scannell
Affiliation:
Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and Systems (AIMINGS) Center, CUNY Graduate School of Public Health and Health Policy, New York City, New York
Cameron White
Affiliation:
Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and Systems (AIMINGS) Center, CUNY Graduate School of Public Health and Health Policy, New York City, New York
Bruce Leff
Affiliation:
Center for Transformative Geriatric Research, Division of Geriatric Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
Susan S. Huang
Affiliation:
Division of Infectious Diseases, University of California Irvine School of Medicine, Irvine, California
Bruce Y. Lee*
Affiliation:
Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and Systems (AIMINGS) Center, CUNY Graduate School of Public Health and Health Policy, New York City, New York New York City Pandemic Response Institute (PRI), CUNY Graduate School of Public Health and Health Policy, New York City, New York
*
Corresponding author: Bruce Y. Lee; Email: bruceleemdmba@gmail.com

Abstract

Objective:

Nursing home residents may be particularly vulnerable to coronavirus disease 2019 (COVID-19). Therefore, a question is when and how often nursing homes should test staff for COVID-19 and how this may change as severe acute respiratory coronavirus virus 2 (SARS-CoV-2) evolves.

Design:

We developed an agent-based model representing a typical nursing home, COVID-19 spread, and its health and economic outcomes to determine the clinical and economic value of various screening and isolation strategies and how it may change under various circumstances.

Results:

Under winter 2023–2024 SARS-CoV-2 omicron variant conditions, symptom-based antigen testing averted 4.5 COVID-19 cases compared to no testing, saving $191 in direct medical costs. Testing implementation costs far outweighed these savings, resulting in net costs of $990 from the Centers for Medicare & Medicaid Services perspective, $1,545 from the third-party payer perspective, and $57,155 from the societal perspective. Testing did not return sufficient positive health effects to make it cost-effective [$50,000 per quality-adjusted life-year (QALY) threshold], but it exceeded this threshold in ≥59% of simulation trials. Testing remained cost-ineffective when routinely testing staff and varying face mask compliance, vaccine efficacy, and booster coverage. However, all antigen testing strategies became cost-effective (≤$31,906 per QALY) or cost saving (saving ≤$18,372) when the severe outcome risk was ≥3 times higher than that of current omicron variants.

Conclusions:

SARS-CoV-2 testing costs outweighed benefits under winter 2023–2024 conditions; however, testing became cost-effective with increasingly severe clinical outcomes. Cost-effectiveness can change as the epidemic evolves because it depends on clinical severity and other intervention use. Thus, nursing home administrators and policy makers should monitor and evaluate viral virulence and other interventions over time.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Society for Healthcare Epidemiology of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a

Authors of equal contribution.

References

McGarry, BE, Gandhi, AD, Barnett, ML. COVID-19 surveillance testing and resident outcomes in nursing homes. N Engl J Med 2023;388:11011110.CrossRefGoogle ScholarPubMed
Wasserman, M, Ouslander, JG, Lam, A, et al. Diagnostic testing for SARS-CoV-2 in the nursing facility: recommendations of a Delphi panel of long-term care clinicians. J Nutr Health Aging 2020;24:538543.CrossRefGoogle Scholar
Ayalon, L. Subjective socioeconomic status as a predictor of long-term care staff burnout and positive caregiving experiences. Int Psychogeriatr 2007;20:521537.Google ScholarPubMed
Denny-Brown, N, Stone, D, Hays, B, Gallagher, D. COVID-19 intensifies nursing home workforce challenges. US Department of Health and Human Services, Office of the Assistant Secretary for Planning and Evaluation website. https://aspe.hhs.gov/reports/covid-19-intensifies-nursing-home-workforce-challenges. Published 2020. Accessed January 17, 2024.Google Scholar
White, EM, Wetle, TF, Reddy, A, Baier, RR. Front-line nursing home staff experiences during the COVID-19 pandemic. J Am Med Dir Assoc 2021;22:199203.CrossRefGoogle ScholarPubMed
Blain, H, Rolland, Y, Tuaillon, E, et al. Efficacy of a test–retest strategy in residents and healthcare personnel of a nursing home facing a COVID-19 outbreak. J Am Med Dir Assoc 2020;21:933936.CrossRefGoogle Scholar
Tang, O, Bigelow, BF, Sheikh, F, et al. Outcomes of nursing home COVID-19 patients by initial symptoms and comorbidity: results of universal testing of 1970 residents. J Am Med Dir Assoc 2020;21:1767–73.e1.CrossRefGoogle ScholarPubMed
Center for Clinical Standards and Quality/Survey & Certification Group, Centers for Medicare & Medicaid Services (CMS). Interim Final Rule (IFC), CMS-3401-IFC, Additional Policy and Regulatory Revisions in Response to the COVID-19 Public Health Emergency related to Long-Term Care (LTC) Facility Testing Requirements. Baltimore, MD: Department of Health and Human Services; 2022. Report No.: QSO-20-38-NH Contract No.: QSO-20-38-NH.Google Scholar
Bartsch, SM, Ferguson, MC, McKinnell, JA, et al. The potential healthcare costs and resource use associated with COVID-19 in the United States. Health Aff (Millwood) 2020;39:927935.CrossRefGoogle ScholarPubMed
Bartsch, SM, O’Shea, KJ, Chin, KL, et al. Maintaining face mask use before and after achieving different COVID-19 vaccination coverage levels: a modelling study. Lancet Public Health 2022;7:e356e365.CrossRefGoogle Scholar
Bartsch, SM, O’Shea, KJ, Ferguson, MC, et al. Vaccine efficacy needed for a COVID-19 coronavirus vaccine to prevent or stop an epidemic as the sole intervention. Am J Prev Med 2020;59:493503.CrossRefGoogle ScholarPubMed
Bartsch, SM, O’Shea, KJ, Wedlock, PT, et al. The benefits of vaccinating with the first available COVID-19 coronavirus vaccine. Am J Prev Med 2021;60:605613.CrossRefGoogle ScholarPubMed
Bartsch, SM, Wedlock, PT, O’Shea, KJ, et al. Lives and costs saved by expanding and expediting coronavirus disease 2019 vaccination. J Infect Dis 2021;224:938948.CrossRefGoogle ScholarPubMed
Lee, BY, Bartsch, SM, Ferguson, MC, et al. The value of decreasing the duration of the infectious period of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. PLoS Comput Biol 2021;17:e1008470.CrossRefGoogle ScholarPubMed
Wedlock, PT, O’Shea, KJ, Conte, M, et al. Estimated number of N95 respirators needed for healthcare workers in acute-care hospitals during the COVID-19 coronavirus pandemic. Infect Control Hosp Epidemiol 2021;42:13181326.CrossRefGoogle Scholar
Gandhi, A, Yu, H, Grabowski, DC. High nursing staff turnover in nursing homes offers important quality information. Health Affairs 2021;40:384391.CrossRefGoogle ScholarPubMed
Liu, Y, Rocklöv, J. The effective reproductive number of the omicron variant of SARS-CoV-2 is several times relative to delta. J Travel Med 2022;29:taac037.CrossRefGoogle ScholarPubMed
COVID-19 Forecasting Team. Past SARS-CoV-2 infection protection against reinfection: a systematic review and meta-analysis. Lancet 2023;401:833842.CrossRefGoogle Scholar
Interim guidance for managing healthcare personnel with SARS-CoV-2 infection or exposure to SARS-CoV-2. Centers for Disease Control and Prevention website. https://www.cdc.gov/coronavirus/2019-ncov/hcp/guidance-risk-assesment-hcp.html. Updated September 23, 2022. Accessed January 17, 2024.Google Scholar
Human mortality database. University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany) website. www.mortality.org. Published 2015. Accessed December 20, 2017.Google Scholar
Kaufman, Maya. New York to drop masking requirements in hospitals, healthcare facilities. Politico website. https://www.politico.com/news/2023/02/09/new-york-to-drop-masking-requirements-00082179. Published February 9, 2023. Accessed January 17, 2024.Google Scholar
Chidambaram, P, Burns, A. A Look at vaccine and booster rates in nursing facilities as new boosters become available. Kaiser Family Foundation website. https://www.kff.org/medicaid/issue-brief/a-look-at-vaccine-and-booster-rates-in-nursing-facilities-as-new-boosters-become-available/. Published October 6, 2022. Accessed January 17, 2024.Google Scholar
Groppe, M, Fraser, J. Biden’s push for COVID boosters in nursing homes had modest impact. What happened? USA Today website. https://www.usatoday.com/story/news/politics/2023/01/19/nursing-home-covid-booster-vaccination-rates/11067004002/. Published January 19, 2023. Accessed January 17, 2024.Google Scholar
Lee, BY. Digital decision making: computer models and antibiotic prescribing in the twenty-first century. Clin Infect Dis 2008;46:11391141.CrossRefGoogle ScholarPubMed
Supplementary material: File

Bartsch et al. supplementary material

Bartsch et al. supplementary material
Download Bartsch et al. supplementary material(File)
File 129.7 KB