We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Older adults (≥65 years) are the fastest growing population group. Thus, ensuring nutritional well-being of the ‘over-65s’ to optimise health is critically important. Older adults represent a diverse population – some are fit and healthy, others are frail and many live with chronic conditions. Up to 78% of older Irish adults living independently are overweight or obese. The present paper describes how these issues were accommodated into the development of food-based dietary guidelines for older adults living independently in Ireland. Food-based dietary guidelines previously established for the general adult population served as the basis for developing more specific recommendations appropriate for older adults. Published international reports were used to update nutrient intake goals for older adults, and available Irish data on dietary intakes and nutritional status biomarkers were explored from a population-based study (the National Adult Nutrition Survey; NANS) and two longitudinal cohorts: the Trinity-Ulster and Department of Agriculture (TUDA) and the Irish Longitudinal Study on Ageing (TILDA) studies. Nutrients of public health concern were identified for further examination. While most nutrient intake goals were similar to those for the general adult population, other aspects were identified where nutritional concerns of ageing require more specific food-based dietary guidelines. These include, a more protein-dense diet using high-quality protein foods to preserve muscle mass; weight maintenance in overweight or obese older adults with no health issues and, where weight-loss is required, that lean tissue is preserved; the promotion of fortified foods, particularly as a bioavailable source of B vitamins and the need for vitamin D supplementation.
One of the most prominent themes in Annette Kur’s influential scholarship has to do with cumulation of intellectual property rights, especially in relation to design. Professor Kur is much more comfortable with that cumulation than I have been, at least in part because she is less confident that subject matter can neatly be separated.2
The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.
One hypothesis proposed to underlie formal thought disorder (FTD), the incoherent speech is seen in some patients with schizophrenia, is that it reflects impairment in frontal/executive function. While this proposal has received support in neuropsychological studies, it has been relatively little tested using functional imaging. This study aimed to examine brain activations associated with FTD, and its two main factor-analytically derived subsyndromes, during the performance of a working memory task.
Methods
Seventy patients with schizophrenia showing a full range of FTD scores and 70 matched healthy controls underwent fMRI during the performance of the 2-back version of the n-back task. Whole-brain corrected, voxel-based correlations with FTD scores were examined in the patient group.
Results
During 2-back performance the patients showed clusters of significant inverse correlation with FTD scores in the inferior frontal cortex and dorsolateral prefrontal cortex bilaterally, the left temporal cortex and subcortically in the basal ganglia and thalamus. Further analysis revealed that these correlations reflected an association only with ‘alogia’ (poverty of speech, poverty of content of speech and perseveration) and not with the ‘fluent disorganization’ component of FTD.
Conclusions
This study provides functional imaging support for the view that FTD in schizophrenia may involve impaired executive/frontal function. However, the relationship appears to be exclusively with alogia and not with the variables contributing to fluent disorganization.
Functional brain activity has been only studied marginally in schizoaffective disorder (SAD), a disorder whose nosological status is controversial. The present study investigated the prefrontal cortex (PFC) activity of schizomanic patients during performance of a working memory task.
Method
13 schizoaffective patients, with current schizomanic episode (Young> 18); and 26 sex- and age-matched healthy controls underwent functional magnetic resonance imaging (fMRI) while performing baseline, 1-back and 2-back versions of the n-back task. Linear models were used to obtain maps of activations and deactivations in the groups.
Results
During performance of the n-back task, controls showed activation in a cluster of frontal areas and de-activation in the medial orbitofrontal and anterior cingulate cortex. The SAD patients showed significantly less activation in prefrontal areas than the controls. They also showed a marked failure to de-activate in medial frontal cortex. The SAD patients’ impaired task performance was associated with both reduced activation of the dorsolateral PFC and reduced de-activation of the medial frontal areas.
Conclusions
Schizomanic patients show failure of activation in a network of cortical regions, and also a failure to de-activate the ventromedial PFC and anterior cingulate cortex. This latter area corresponds to the one of the components of the 'default mode network´. This pattern of abnormality is similar to that found by our group to characterise schizophrenia (failure to activate and failure to de-activate), but different from that which characterises manic patients (failure to de-activate only).
The paper describes the adaptation and psychometric evaluation of the Hungarian version of the quality of life in depression scale. The adaptation procedure involved: bilingual translation; field-testing for face and content validity; and assessment of instrument's reliability and construct validity. The new language version was shown to be well-accepted by respondents and to have excellent psychometric properties.
This workshop aims to make progress in the knowledge of the cognitive symptoms and her evaluation in the psychotic diseases. Schizophrenia begins in late adolescence causing a derailment of social, educational, and occupational pursuits that extends to the end of life. The psychosocial costs contribute to the extraordinary public health care costs of this illness. Alleviation of the positive symptoms, negative symptoms, depression, and anxiety is insufficient to restore psychosocial status. An improvement in social, educational, and occupational status is dependent on improvement in cognitive status.
Primary Prof. JE Rojo & O. Pino will emphasize the relevant aspects of the neuropsychological evaluation in clinical practice, and relationships between cognitive, clinical, psychosocial status and social performance in patients with psychosis dysfunction.
Although vital to prognosis, cognitive status is often neglected in clinical practice because neuropsychological assessments are expensive and time consuming, and they require considerable expertise. The Screen for Cognitive Impairment in Psychiatry (SCIP) is a 10 to 15 minute assessment of cognitive status developed to encourage routine assessment of cognitive status in clinical practice, and to promote research on the alleviation of cognitive impairments in psychiatric illness. Prof. Purdon will briefly review the rational for a brief assessment of cognitive status. He will present evidence supporting the comparability of three alternate forms of the SCIP from three Canadian normative samples and one large clinical sample. He will also present evidence supporting the validity of the brief screening tool relative to a comprehensive assessment of neuropsychological status in a large sample of psychiatric inpatients. The primary objective will be to encourage the use of the SCIP in routine clinical practice.
Afterwards, Prof. P. McKenna try to describe the new research strategies and methods of investigation in neuropsychology and schizophrenia, the state of art more novelty and relevant.
The measurement of thin film mechanical properties free from substrate influence remains one of the outstanding challenges in nanomechanics. Here, a technique based on indentation of a supported film with a flat punch whose diameter is many times the initial film thickness is introduced. This geometry generates a state of confined uniaxial strain for material beneath the punch, allowing direct access to intrinsic stress versus strain response. For simple elastic–plastic materials, this enables material parameters such as elastic modulus, bulk modulus, Poisson's ratio, and yield stress to be simultaneously determined from a single loading curve. The phenomenon of confined plastic yield has not been previously observed in thin films or homogeneous materials, which we demonstrate here for 170 -470 nm thick polystyrene (PS), polymethyl-methacrylate (PMMA) and amorphous Selenium films on silicon. As well as performing full elastic -plastic parameter extraction for these materials at room temperature, we used the technique to study the variation of yield stress in PS to temperatures above the nominal glass transition of 100 °C.
The use of targets with surface structures for laser-driven particle acceleration has potential to significantly boost the particle and radiation energies because of enhanced laser absorption. We investigate, via experiment and particle-in-cell simulations, the impact of micron-scale surface-structured targets on the spectrum of electrons and protons accelerated by a picosecond laser pulse at relativistic intensity. Our results show that, compared with flat-surfaced targets, structures on this scale give rise to a significant enhancement in particle and radiation emission over a wide range of laser–target interaction parameters. This is due to the longer plasma scale length when using micro-structures on the target front surface. We do not observe an increase in the proton cutoff energy with our microstructured targets, and this is due to the large volume of the relief.
Laser–solid interactions are highly suited as a potential source of high energy X-rays for nondestructive imaging. A bright, energetic X-ray pulse can be driven from a small source, making it ideal for high resolution X-ray radiography. By limiting the lateral dimensions of the target we are able to confine the region over which X-rays are produced, enabling imaging with enhanced resolution and contrast. Using constrained targets we demonstrate experimentally a $(20\pm 3)~\unicode[STIX]{x03BC}\text{m}$ X-ray source, improving the image quality compared to unconstrained foil targets. Modelling demonstrates that a larger sheath field envelope around the perimeter of the constrained targets increases the proportion of electron current that recirculates through the target, driving a brighter source of X-rays.
A new generation of high power laser facilities will provide laser pulses with extremely high powers of 10 petawatt (PW) and even 100 PW, capable of reaching intensities of $10^{23}~\text{W}/\text{cm}^{2}$ in the laser focus. These ultra-high intensities are nevertheless lower than the Schwinger intensity $I_{S}=2.3\times 10^{29}~\text{W}/\text{cm}^{2}$ at which the theory of quantum electrodynamics (QED) predicts that a large part of the energy of the laser photons will be transformed to hard Gamma-ray photons and even to matter, via electron–positron pair production. To enable the investigation of this physics at the intensities achievable with the next generation of high power laser facilities, an approach involving the interaction of two colliding PW laser pulses is being adopted. Theoretical simulations predict strong QED effects with colliding laser pulses of ${\geqslant}10~\text{PW}$ focused to intensities ${\geqslant}10^{22}~\text{W}/\text{cm}^{2}$.
After a population of laser-driven hot electrons traverses a limited thickness solid target, these electrons will encounter the rear surface, creating TV/m fields that heavily influence the subsequent hot-electron propagation. Electrons that fail to overcome the electrostatic potential reflux back into the target. Those electrons that do overcome the field will escape the target. Here, using the particle-in-cell (PIC) code EPOCH and particle tracking of a large population of macro-particles, we investigate the refluxing and escaping electron populations, as well as the magnitude, spatial and temporal evolution of the rear surface electrostatic fields. The temperature of both the escaping and refluxing electrons is reduced by 30%–50% when compared to the initial hot-electron temperature as a function of intensity between $10^{19}$ and $10^{21}~~\text{W}/\text{cm}^{2}$. Using particle tracking we conclude that the highest energy internal hot electrons are guaranteed to escape up to a threshold energy, below which only a small fraction are able to escape the target. We also examine the temporal characteristic of energy changes of the refluxing and escaping electrons and show that the majority of the energy change is as a result of the temporally evolving electric field that forms on the rear surface.
A multichannel calorimeter system is designed and constructed which is capable of delivering single-shot and broad-band spectral measurement of terahertz (THz) radiation generated in intense laser–plasma interactions. The generation mechanism of backward THz radiation (BTR) is studied by using the multichannel calorimeter system in an intense picosecond laser–solid interaction experiment. The dependence of the BTR energy and spectrum on laser energy, target thickness and pre-plasma scale length is obtained. These results indicate that coherent transition radiation is responsible for the low-frequency component (${<}$1 THz) of BTR. It is also observed that a large-scale pre-plasma primarily enhances the high-frequency component (${>}$3 THz) of BTR.
Filamentary structures can form within the beam of protons accelerated during the interaction of an intense laser pulse with an ultrathin foil target. Such behaviour is shown to be dependent upon the formation time of quasi-static magnetic field structures throughout the target volume and the extent of the rear surface proton expansion over the same period. This is observed via both numerical and experimental investigations. By controlling the intensity profile of the laser drive, via the use of two temporally separated pulses, both the initial rear surface proton expansion and magnetic field formation time can be varied, resulting in modification to the degree of filamentary structure present within the laser-driven proton beam.
The spatial-intensity profile of light reflected during the interaction of an intense laser pulse with a microstructured target is investigated experimentally and the potential to apply this as a diagnostic of the interaction physics is explored numerically. Diffraction and speckle patterns are measured in the specularly reflected light in the cases of targets with regular groove and needle-like structures, respectively, highlighting the potential to use this as a diagnostic of the evolving plasma surface. It is shown, via ray-tracing and numerical modelling, that for a laser focal spot diameter smaller than the periodicity of the target structure, the reflected light patterns can potentially be used to diagnose the degree of plasma expansion, and by extension the local plasma temperature, at the focus of the intense laser light. The reflected patterns could also be used to diagnose the size of the laser focal spot during a high-intensity interaction when using a regular structure with known spacing.
Giant electromagnetic pulses (EMP) generated during the interaction of high-power lasers with solid targets can seriously degrade electrical measurements and equipment. EMP emission is caused by the acceleration of hot electrons inside the target, which produce radiation across a wide band from DC to terahertz frequencies. Improved understanding and control of EMP is vital as we enter a new era of high repetition rate, high intensity lasers (e.g. the Extreme Light Infrastructure). We present recent data from the VULCAN laser facility that demonstrates how EMP can be readily and effectively reduced. Characterization of the EMP was achieved using B-dot and D-dot probes that took measurements for a range of different target and laser parameters. We demonstrate that target stalk geometry, material composition, geodesic path length and foil surface area can all play a significant role in the reduction of EMP. A combination of electromagnetic wave and 3D particle-in-cell simulations is used to inform our conclusions about the effects of stalk geometry on EMP, providing an opportunity for comparison with existing charge separation models.
Two signatures of quantum effects on radiation reaction in the collision of a ${\sim}$GeV electron beam with a high intensity (${>}3\times 10^{20}~\text{W}~\text{cm}^{-2}$) laser pulse have been considered. We show that the decrease in the average energy of the electron beam may be used to measure the Gaunt factor $g$ for synchrotron emission. We derive an equation for the evolution of the variance in the energy of the electron beam in the quantum regime, i.e. quantum efficiency parameter $\unicode[STIX]{x1D702}\not \ll 1$. We show that the evolution of the variance may be used as a direct measure of the quantum stochasticity of the radiation reaction and determine the parameter regime where this is observable. For example, stochastic emission results in a 25 % increase in the standard deviation of the energy spectrum of a GeV electron beam, 1 fs after it collides with a laser pulse of intensity $10^{21}~\text{W}~\text{cm}^{-2}$. This effect should therefore be measurable using current high-intensity laser systems.