We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
MicroRNAs (miRNAs) are small noncoding RNAs (sRNAs) that regulate gene expression by inhibiting translation or degrading mRNA. Although the functions of miRNAs in many biological processes have been reported, there is currently no research on the possible roles of miRNAs in Micromelalopha troglodyta (Graeser) involved in the response of plant allelochemicals. In this article, six sRNA libraries (three treated with tanic acid and three control) from M. troglodyta were constructed using Illumina sequencing. From the results, 312 known and 43 novel miRNAs were differentially expressed. Notably, some of the most abundant miRNAs, such as miR-432, miR-541-3p, and miR-4448, involved in important physiological processes were also identified. To better understand the function of the targeted genes, we performed Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The results indicated that differentially expressed miRNA targets were involved in metabolism, development, hormone biosynthesis, and immunity. Finally, we visualized a miRNA-mRNA regulatory module that supports the role of miRNAs in host–allelochemical interactions. To our knowledge, this is the first report on miRNAs responding to tannic acid in M. troglodyta. This study provides indispensable information for understanding the potential roles of miRNAs in M. troglodyta and the applications of these miRNAs in M. troglodyta management.
We aimed to investigate the associations of Dietary Approaches to Stop Hypertension (DASH)-style diet and Mediterranean-style diet with blood pressure (BP) in less-developed ethnic minority regions (LEMR).
Design:
Cross-sectional study.
Setting:
Dietary intakes were assessed by a validated FFQ. Dietary quality was assessed by the DASH-style diet score and the alternative Mediterranean-style diet (aMED) score. The association between dietary quality and BP was evaluated using multivariate linear regression model. We further examined those associations in subgroups of BP level.
Participants:
A total of 81 433 adults from the China Multi-Ethnic Cohort (CMEC) study were included in this study.
Results:
In the overall population, compared with the lowest quintile, the highest quintile of DASH-style diet score was negatively associated with systolic BP (SBP) (coefficient –2·78, 95 % CI –3·15, –2·41; Pfor trend < 0·001), while the highest quintile of aMED score had a weaker negative association with SBP (coefficient –1·43, 95 % CI –1·81, –1·05; Pfor trend < 0·001). Both dietary indices also showed a weaker effect on diastolic BP (coefficient for DASH-style diet –1·06, 95 % CI –1·30, –0·82; coefficient for aMED –0·43, 95 % CI –0·68, –0·19). In the subgroup analysis, both dietary indices showed a stronger beneficial effect on SBP in the hypertension group than in either of the other subgroups.
Conclusion:
Our results indicated that the healthy diet originating from Western developed countries can also have beneficial effects on BP in LEMR. DASH-style diet may be a more appropriate recommendation than aMED as part of a dietary strategy to control BP, especially in hypertensive patients.
Metabolically healthy obesity (MHO) might be an alternative valuable target in obesity treatment. We aimed to assess whether alternative Mediterranean (aMED) diet and Dietary Approaches to Stop Hypertension (DASH) diet were favourably associated with obesity and MHO phenotype in a Chinese multi-ethnic population. We conducted this cross-sectional analysis using the baseline data of the China Multi-Ethnic Cohort study that enrolled 99 556 participants from seven diverse ethnic groups. Participants with self-reported cardiometabolic diseases were excluded to eliminate possible reverse causality. Marginal structural logistic models were used to estimate the associations, with confounders determined by directed acyclic graph (DAG). Among 65 699 included participants, 11·2 % were with obesity. MHO phenotype was present in 5·7 % of total population and 52·7 % of population with obesity. Compared with the lowest quintile, the highest quintile of DASH diet score had 23 % decreased odds of obesity (OR = 0·77, 95 % CI 0·71, 0·83, Ptrend < 0·001) and 27 % increased odds of MHO (OR = 1·27, 95 % CI 1·10, 1·48, Ptrend = 0·001) in population with obesity. However, aMED diet showed no obvious favourable associations. Further adjusting for BMI did not change the associations between diet scores and MHO. Results were robust to various sensitivity analyses. In conclusion, DASH diet rather than aMED diet is associated with reduced risk of obesity and presents BMI-independent metabolic benefits in this large population-based study. Recommendation for adhering to DASH diet may benefit the prevention of obesity and related metabolic disorders in Chinese population.
The Harihada–Chegendalai ophiolitic mélange, which is located between the Bainaimiao arc and the North China Craton, holds significant clues regarding the tectonic setting of the southern margin of the Central Asian Orogenic Belt. The ophiolitic mélange is mainly composed of gabbroic and serpentinized ultramafic rocks. Here, zircon U–Pb dating, in situ zircon Hf isotopic, whole-rock geochemical and in situ mineral chemical data from the ophiolitic mélange are reported. The zircons in the gabbroic rocks yielded concordia U–Pb ages of 450–448 Ma and exhibited slightly positive ϵHf(t) values (0.87–4.34). The geochemical characteristics of the gabbroic rocks indicate that they were generated from a mantle wedge metasomatized by subduction-derived melts from sediments with continental crust contamination, in a fore-arc tectonic setting. These rocks also experienced the accumulation of plagioclase. The geochemical characteristics of the ultramafic rocks and their Cr-spinels indicate that they may constitute part of residual mantle that has experienced a high degree of partial melting and has interacted with fluids/melts released from the subducted slab in the same fore-arc tectonic setting. The ophiolitic mélange may therefore have formed in this fore-arc tectonic setting, resulting from the northward subduction of the South Bainaimiao Ocean beneath the Bainaimiao arc during Late Ordovician time, prior to the collision between the Bainaimiao arc and the North China Craton during the Silurian to Carboniferous periods.
No relevant studies have yet been conducted to explore which measurement can best predict the survival time of patients with cancer cachexia. This study aimed to identify an anthropometric measurement that could predict the 1-year survival of patients with cancer cachexia. We conducted a nested case–control study using data from a multicentre clinical investigation of cancer from 2013 to 2020. Cachexia was defined using the Fearon criteria. A total of 262 patients who survived less than 1 year and 262 patients who survived more than 1 year were included in this study. Six candidate variables were selected based on clinical experience and previous studies. Five variables, BMI, mid-arm circumference, mid-arm muscle circumference, calf circumference and triceps skin fold (TSF), were selected for inclusion in the multivariable model. In the conditional logistic regression analysis, TSF (P = 0·014) was identified as a significant independent protective factor. A similar result was observed in all patients with cancer cachexia (n 3084). In addition, a significantly stronger positive association between TSF and the 1-year survival of patients with cancer cachexia was observed in participants aged > 65 years (OR: 0·94; 95 % CI 0·89, 0·99) than in those aged ≤ 65 years (OR: 0·96; 95 % CI 0·93, 0·99; Pinteraction = 0·013) and in participants with no chronic disease (OR: 0·92; 95 % CI 0·87, 0·97) than in those with chronic disease (OR: 0·97; 95 % CI 0·94, 1·00; Pinteraction = 0·049). According to this study, TSF might be a good anthropometric measurement for predicting 1-year survival in patients with cancer cachexia.
To investigate the effects of dietary fibre on follicular atresia in pigs fed a high-fat diet, we fed thirty-two prepubescent gilts a basal diet (CON) or a CON diet supplemented with 300 g/d dietary fibre (fibre), 240 g/d soya oil (SO) or both (fibre + SO). At the 19th day of the 4th oestrus cycle, gilts fed the SO diet showed 112 % more atretic follicles and greater expression of the apoptotic markers, Bax and caspase-3, and these effects were reversed by the fibre diet. The abundance of SCFA-producing microbes was decreased by the SO diet, but this effect was reversed by fibre treatment. Concentrations of serotonin and melatonin in the serum and follicular fluid were increased by the fibre diet. Overall, dietary fibre protected against high fat feeding-induced follicular atresia at least partly via gut microbiota-related serotonin–melatonin synthesis. These results provide insight into preventing negative effects on fertility in humans consuming a high-energy diet.
More than one million runners have joined the marathon games since 2007 in Taiwan. There were over 150 marathon games held in Taiwan in 2018. The increase rate was 21% as compared to that of 2014. The medical encounter rate was 1.33% in 2015 and increased to 1.41% in 2017. The most common type of injury was muscle spasm. The second most common was abrasion due to falls. The treatment for muscle spasm was RICE only. Cardiac arrest of marathon runners was reported occasionally and time is critical for rescue.
Aim:
To shorten the rescue time of the runners in an emergency. Base on the prodromal research, BLE communication technology is further used to improve the rescue positioning communication technology in the marathon.
Methods:
After rescue notification devices have been set up in each 0.5 km on the runway of the marathon, the runner can send a rescue signal through the rescue notification devices in case of emergency. The rescue signal, periodically advertisement SN# with rescue mark, of the runner can be precisely located and the rescue can be started very soon.
Results:
In the simulation, the rescue signal can be located in 7.5 minutes, fastest in 3 seconds. The precision rate of timing is ±160ms/6σ that under IAAF accuracy requirement. The location error is less than 20 meters, and the rescue time can be shortened to one half as before.
Discussion:
The rescue time of runner is correlated with the quality of marathon EMS. It is critical to the runner, especially in cardiac arrest. By using BLE communication devices, the runner can be located faster and more precisely. As rescue time shortened, CPR & AED can be given sooner. The quality of marathon EMS will be improved substantially.
Although parasites and microbial pathogens are both detrimental to insects, little information is currently available on the mechanism involved in how parasitized hosts balance their immune responses to defend against microbial infections. We addressed this in the present study by comparing the immune response between unparasitized and parasitized pupae of the chrysomelid beetle, Octodonta nipae (Maulik), to Escherichia coli invasion. In an in vivo survival assay, a markedly reduced number of E. coli colony-forming units per microliter was detected in parasitized pupae at 12 and 24 h post-parasitism, together with decreased phagocytosis and enhanced bactericidal activity at 12 h post-parasitism. The effects that parasitism had on the mRNA expression level of selected antimicrobial peptides (AMPs) of O. nipae pupae showed that nearly all transcripts of AMPs examined were highly upregulated during the early and late parasitism stages except defensin 2B, whose mRNA expression level was downregulated at 24 h post-parasitism. Further elucidation on the main maternal fluids responsible for alteration of the primary immune response against E. coli showed that ovarian fluid increased phagocytosis at 48 h post-injection. These results indicated that the enhanced degradation of E. coli in parasitized pupae resulted mainly from the elevated bactericidal activity without observing the increased transcripts of target AMPs. This study contributes to a better understanding of the mechanisms involved in the immune responses of a parasitized host to bacterial infections.
In this paper, the characteristics of microwave propagation channels in drill pipe bore are analyzed by regarding the drill pipe as an irregular lossy cylindrical waveguide. An attenuation law is modeled using multipath propagation theory and an experimental statistical method. It is shown from physical measurement results that 5″ and $5^{1/2 \prime \prime} $ drill pipe bores, widely applied in the field of air drilling, can be used as 2.4 GHz band microwave channels with the caveat that the numerous reflective surfaces in the joint section of the drill pipe produce a great deal of reflected waves. Hence, the drill pipe bore has the characteristics of a dual cluster multipath channel, and multipath fading and delay are the primary factors affecting propagation quality. The study's constructed microwave attenuation model, based on multipath channels, can be regarded as the average attenuation of the unit length in the drill pipe bore, and can be used as the basis for simulation and analysis of the longer drill pipe string. In addition, a large delay between the two clusters leads to a significant increase of the root mean square delay spread. Consequently, multipath fading and delay are the main factors affecting the channel transmission rate.
Structural distortions at the nanoscale are delicately linked with many exotic properties for ferroic thin films. Based on advanced aberration corrected scanning transmission electron microscopy, we observe BiFeO3 thin films with variant tensile strain states and demonstrate at an atomic scale the interplay of intrinsic spontaneous structural distortions with external constraints. Structural parameters (the rhombohedral distortion and domain wall shear distortion) under zero (BiFeO3/GdScO3) and 1.5% (BiFeO3/PrScO3) lateral strain states are quantitatively analyzed which are suppressed within a few unit cells near the film/substrate interfaces. In particular, an interfacial layer with asymmetrical lattice distortions (enhanced and reduced out-of-plane lattice spacing) on the two sides of 109° domain wall is resolved. These structural distortions near the film/substrate interface in ferroic thin films reveal intense tanglement of intrinsic distortions of BiFeO3 with external boundary conditions, which could provide new insights for the development of nanoscale ferroelectric devices.
The thermal properties of organic membranes attract much attention due to the fact that heat dissipation in electronic devices limits their functionality and reliability. Here, we enhance the thermal conductivity of polyvinyl alcohol (PVA) membrane using nano-fibers fabricated by electrospinning. Measured by the 3-Omega method, the results show that the effective thermal conductivity of the electrospinning membranes (with/without Cu nanoparticles) are as high as 0.7 W/m-K at room temperature which is as twice as the value of thermal conductivity of amorphous spin-coated PVA membrane (0.35 W/m-K). The mechanism of enhancement are that, compared with amorphous membrane, the phonon scattering is attenuated and the crystallinity is improved in the electrospinning process. Our studies bring new insights in designing new kind of membrane with high thermal conductivity.
Outside surface fluctuations of inertial confinement fusion (ICF) capsule greatly affect the implosion performance. An atomic force microscope (AFM)-based profilometer is developed to precisely characterize the capsule surface with nanometer resolution. With the standard nine surface profiles and the complete coverage data, 1D and 2D power spectra are obtained to quantitatively qualify the capsule. Capsule center fast aligning, orbit traces automatic recording, 3D capsule orientation have been studied to improve the accuracy and efficiency of the profilometer.
C3N4/Bi2WO6 heterojunction photocatalysts were successfully synthesized using consecutive hydrothermal and calcination processes. These photocatalysts were characterized using x-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy, x-ray photoelectron spectroscopy, and photoluminescence measurements. The results of these measurements indicated that the Bi2WO6 nanoparticles were approximately 30–50 nm and uniformly distributed on the surface of C3N4 lamellar structures. The 20% C3N4/Bi2WO6 displayed enhanced visible-light absorption from 432 nm to 468 nm. Photocatalytic tests also revealed that the 20% C3N4/Bi2WO6 photocatalyst exhibited significantly enhanced photocatalytic activity compared to that of pure C3N4 and Bi2WO6 under irradiation by visible light (λ > 420 nm). Furthermore, the excellent photocatalytic efficiency of the 20% C3N4/Bi2WO6 photocatalyst was determined to be related to the formation of C3N4/Bi2WO6 heterojunctions, and their presence was found to be generally beneficial for the separation of photogenerated electron–hole pairs.
The long-term outcome of never-treated patients with schizophrenia is
unclear.
Aims
To compare the 14-year outcomes of never-treated and treated patients
with schizophrenia and to establish predictors for never being
treated.
Method
All participants with schizophrenia (n = 510) in Xinjin,
Chengdu, China were identified in an epidemiological investigation of 123
572 people and followed up from 1994 to 2008.
Results
The results showed that there were 30.6%, 25.0% and 20.4% of patients who
received no antipsychotic medication in 1994, 2004 and 2008 respectively.
Compared with treated patients, those who were never treated in 2008 were
significantly older, had significantly fewer family members, had higher
rates of homelessness, death from other causes, being unmarried, living
alone, being without a caregiver and poor family attitudes. Partial and
complete remission in treated patients (57.3%) was significantly higher
than that in the never-treated group (29.8%). Predictors of being in the
never-treated group in 2008 encompassed baseline never-treated status,
being without a caregiver and poor mental health status in 1994.
Conclusions
Many patients with schizophrenia still do not receive antipsychotic
medication in rural areas of China. The 14-year follow-up showed that
outcomes for the untreated group were worse. Community-based mental
healthcare, health insurance and family intervention are crucial for
earlier diagnosis, treatment and rehabilitation in the community.
The creep behavior of advanced 9%Cr-1 (BM1) and advanced 9%Cr-2 (BM2) dissimilar welded joints was investigated in this paper, and also the microstructures were elaborately characterized. Based on the fitting with MATLAB, a 3-D curved surface describing the primary and steady-state creep stage was achieved. The comparison of the microstructures of the precreep and aftercreep welded joints shows that δ-ferrite distribution in the heat affected zone (HAZ) of BM2 side plays an important role in determining creep rupture strength. Fracture occurred at the overtempered heat affected zone (OT-HAZ) adjacent to BM2 after creep tests at 538 °C under different stress loads. Microhardness tests revealed that the OT-HAZ adjacent to BM2 has the lowest hardness value compared with the whole welded joint. Numerous creep voids occurring around δ-ferrite, carbides, and grain boundaries were observed on the specimen after creep test. They concentrated and grew up to microcracks, and then induced the fracture at OT-HAZ. Many second phases were also observed in the grain boundary after creep, and the tempered martensite boundaries in the HAZ gradually become obscure as the creep time increases.
Objectives: The aim of this study was to examine the gaps between researchers and policy makers in perceptions and influencing factors of knowledge translation (KT) of health technology assessment (HTA) in China.
Methods: A sample of 382 HTA researchers and 112 policy makers in China were surveyed using structured questionnaires. The questionnaires contained two sections: perceptions of HTA research and assessments of six-stage KT activities. Wilcoxon rank sum test was applied to compare the differences in these two sections between HTA researchers and policy makers. Multivariate linear regression was performed to explore KT determinants of HTA for researchers and policy makers separately.
Results: Policy makers and researchers differed in their perceptions of HTA research in all items except collaboration in research development and presentation of evidence in easy-to-understand language. Significant differences in KT activities existed in all the six stages except academic translation. Regarding KT determinants, close contact between research unit and policy-making department, relevance of HTA to policy making, and importance of HTA on policy making were considered facilitators by both groups. For researchers, practicality of HTA report and presentation of evidence in easy-to-understand language can facilitate KT. Policy makers, on the other hand, considered an overly pedantic nature of HTA research as an obstacle to effective KT.
Conclusions: Substantial gaps existed between HTA researchers and policy makers regarding the perceptions of HTA research and KT activities. There are also some differences in KT determinants by these two groups. Enhancing collaboration, promoting practicality and policy relevance of HTA research, and making HTA findings easily understood are likely to further the KT of HTA evidence.
The effect of the intercritical temperature on the microstructure and mechanical properties of a newly developed quenching and partitioning steel using martensitic microstructure prior to the heat treatment process was studied. Such a quenching and partitioning process possessed a unique microstructure evolution, especially during intercritical annealing after prequenching. Excellent mechanical properties were obtained due to this unique multiphase microstructure. Significant amount of interlath-retained austenite was acquired and the relationship between the microstructure and work-hardening behaviors was proposed. The martensite/austenite islands increased at elevated annealing temperature, which deteriorated the total elongation and increased the tensile strength as hard constituents when it was excessive. The result indicated that the present full martensitic microstructure before the intercritical annealing is probably more suitable to an industrial application and is a better way to produce high strength steels with suitable ductility.
Mouse strain differences in immobility and in sensitivity to antidepressants have been observed in the forced swimming test (FST) and the tail suspension test (TST). However, the neurotransmitter systems and neural substrates that contribute to these differences remain unknown. To investigate the role of the hippocampal serotonin transporter (5-HTT), we measured baseline immobility and the immobility responses to fluoxetine (FLX) in the FST and the TST in male CD-1, C57BL/6, DBA and BALB/c mice. We observed strain differences in baseline immobility time, with CD-1 mice showing the longest and DBA mice showing the shortest. In contrast, DBA and BALB/c mice showed the highest sensitivity to FLX, whereas CD-1 and C57BL/6 mice showed the lowest sensitivity. Also we found strain differences in both the total 5-HTT protein level and the membrane-bound 5-HTT level (estimated by Vmax) as follows: DBA > BALB/c > CD-1 = C57BL/6. The uptake efficiency of the membrane-bound 5-HTT (estimated by 1/Km) was highest in DBA and BALB/c mice and lowest in CD-1 and C57BL/6 mice. A correlation analysis of subregions within the hippocampus revealed that immobility time was negatively correlated with Vmax and positively correlated with Km in the hippocampus. Therefore a higher uptake capacity of the membrane-bound 5-HTT in the hippocampus was associated with lower baseline immobility and greater sensitivity to FLX. These results suggest that alterations in hippocampal 5-HTT activity may contribute to mouse strain differences in the FST and the TST.
Large aperture Nd:phosphate laser glass is a key optical element for an inertial
confinement fusion (ICF) facility. N31, one type of neodymium doped phosphate
glasses, was developed for high peak power laser facility applications in China. The
composition and main properties of N31 glass are given, together with those of LHG-8,
LG-770, and KGSS-0180 Nd:phosphate laser glasses, from Hoya and Schott, and from
Russia. The technologies of pot melting, continuous melting, and edge cladding of
large size N31 phosphate laser glass are briefly described. The small signal gain
profiles of N31 glass slabs from both pot melting and continuous melting at various
values of the pumping energy of the xenon lamp are presented. N31 glass is
characterized by a stimulated emission cross section of $3.8 \times 10^{{-20}}\ \text {cm}^{{2}}$ at 1053 nm, an absorption coefficient of 0.10–0.15% $\text {cm}^{{-1}}$ at laser wavelength, small residual stress around the interface
between the cladding glass and the laser glass, optical homogeneity of $\sim $2 $\times $$10^{{-6}}$ in a 400 mm aperture, and laser damage threshold larger
than $42\ \text {J/cm}^{{2}}$ for a 3 ns pulse width at 1064 nm wavelength.
A new route for atom-economical synthesis of functional polymers was developed. Oxidative polycoupling of 3,5-dimethyl-1-phenylpyrazole with 4,4’-(α,ω-alkylenedioxy) bis(diphenylacetylene)s and 1,2-diphenyl-1,2-bis[4-(phenylethynyl)phenyl]ethene, respectively, were catalyzed by [Cp*RhCl2]2, 1,2,3,4-tetraphenylcyclopenta-1,3-diene and copper(II) acetate in dimethylformamide under stoichiometric imbalance conditions, affording soluble poly(pyrazolylnaphthalene)s in satisfactory yields (isolation yield up to 82%) with high molecular weights (Mw up to 35700). All the polymers were thermally stable, losing little of their weight at high temperatures of 323–422 oC. They possessed good film-forming property and their thin solid films showed high refractive indices (RI = 1.747–1.593) in a wide wavelength region of 400−1000 nm. The polymer carrying tetraphenylethene unit displayed a phenomenon of aggregation-induced emission and showed enhanced light emission in the aggregated state.