We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Three dose-response trials were performed in 2020 and 2021 at two Indiana locations: the Southwest Purdue Agricultural Center (SWPAC) and the Pinney Purdue Agricultural Center (PPAC), to determine the tolerance of two Jack O’Lantern pumpkin cultivars to fomesafen applied preemergence. The experiment was a split-plot arrangement in which the main plot was the fomesafen rate (0, 280, 560, 840, and 1,220 g ai ha−1), and the subplot was the pumpkin cultivar ('Bayhorse Gold’ and 'Carbonado Gold'). As the fomesafen rate increased from 280 to 1,120 g ha−1, the predicted pumpkin emergence decreased from 85 to 25% of the non-treated control at SWPAC-2020, but only from 99 to 74% at both locations in 2021. The severe impact on emergence at SWPAC-2020 was attributed to rainfall. Visible injury included bleaching and chlorosis due to the herbicide splashing from the soil surface onto the leaves and included stunting, but injury was transient. As the fomesafen rate increased from 280 to 1,120 g ha−1, the predicted marketable orange pumpkin yield decreased from 95 to 24% of the non-treated control at SWPAC-2020 and 98 to 74% at PPAC-2021. Similarly, the predicted marketable orange pumpkin fruit number decreased from 94 to 21% at SWPAC-2020 and 98 to 74% at PPAC-2021. Fomesafen rate did not affect marketable orange pumpkin yield and fruit number at SWPAC-2021 and marketable orange pumpkin fruit weight at any location year. Overall, the fomesafen rate of 280 g ha−1 was safe for use preemergence in the pumpkin cultivars 'Bayhorse Gold’ and 'Carbonado Gold’ within one day after planting, but there is a risk of increased crop injury with increasing rainfall.
Morningglories (Ipomoea spp.) are among the most troublesome weeds in cucurbits in the United States; however, little is known about Ipomoea spp. interference with horticultural crops. Two additive design field studies were conducted in 2020 at two locations in Indiana to investigate the interference of ivyleaf morningglory (Ipomoea hederacea Jacq.), entireleaf morningglory (Ipomoea hederacea Jacq. var. integriuscula A. Gray.), and pitted morningglory (Ipomoea lacunosa L.) with triploid watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai]. Immediately after watermelon was transplanted, Ipomoea spp. seedlings were transplanted into the watermelon planting holes at densities of 0 (weed-free control), 3, 6, 12, 18, and 24 plants 27 m−2. Fruit was harvested once a week for 4 wk, and each fruit was classified as marketable (≥4 kg) or non-marketable (<4 kg). At 1 wk after the final harvest, aboveground biomass samples were collected from 1 m2 per plot and oven-dried to obtain watermelon and Ipomoea spp. dry weight. Seed capsules and the number of seeds in 15 capsules were counted from the biomass sample to estimate seed production. Ipomoea spp. densities increasing from 3 to 24 plants 27 m−2 increased marketable watermelon yield loss from 58% to 99%, reduced marketable watermelon fruit number 49% to 98%, reduced individual watermelon fruit weight 17% to 45%, and reduced watermelon aboveground biomass 83% to 94%. Ipomoea spp. seed production ranged from 549 to 7,746 seeds m−2, greatly increasing the weed seedbank. Ipomoea spp. hindered harvest due to their vines wrapping around watermelon fruits. The most likely reason for watermelon yield loss was interference with light and consequently less dry matter being partitioned into fruit development due to less photosynthesis. Yield loss was attributed to fewer fruits and the weight of each fruit.
Efficient photosynthesis requires a balance of ATP and NADPH production/consumption in chloroplasts, and the exportation of reducing equivalents from chloroplasts is important for balancing stromal ATP/NADPH ratio. Here, we showed that the overexpression of purple acid phosphatase 2 on the outer membranes of chloroplasts and mitochondria can streamline the production and consumption of reducing equivalents in these two organelles, respectively. A higher capacity of consumption of reducing equivalents in mitochondria can indirectly help chloroplasts to balance the ATP/NADPH ratio in stroma and recycle NADP+, the electron acceptors of the linear electron flow (LEF). A higher rate of ATP and NADPH production from the LEF, a higher capacity of carbon fixation by the Calvin–Benson–Bassham (CBB) cycle and a greater consumption of NADH in mitochondria enhance photosynthesis in the chloroplasts, ATP production in the mitochondria and sucrose synthesis in the cytosol and eventually boost plant growth and seed yields in the overexpression lines.
Field trials were conducted in 2016 and 2017 at the Southwest Purdue Agricultural Center in Vincennes, IN, to determine the tolerance of plasticulture-grown ‘Fascination’ triploid watermelon to flumioxazin. Treatments were applied after plastic was laid, but 1 d prior to transplanting, and consisted of row middle applications of clomazone (210 g ai ha−1) plus ethafluralin (672 g ai ha−1), flumioxazin (107 g ai ha−1), and flumioxazin (88 g ha−1) plus pyroxasulfone (112 g ai ha−1); a broadcast application of flumioxazin (107 g ha−1); and a nontreated check. The broadcast application of flumioxazin reduced watermelon vine length and normalized difference vegetation index (NDVI) values compared with values for the nontreated check. All other herbicide treatments had vine length and NDVI values similar to those of the nontreated check. At 25/26 d after transplanting (DAP), weedy ground cover in row middles of the nontreated check was 39% and 14% in 2016 and 2017, respectively. Weedy ground cover in herbicide-containing treatments was significantly less, at ≤7% and ≤5% in 2016 and 2017, respectively. Marketable watermelon yield of the nontreated check was 77,931 kg and 11,115 fruits ha−1. The broadcast application of flumioxazin resulted in reduced marketable yield (64,894 kg ha−1) and fewer fruit (9,550 ha−1).
There seems to be geographical differences in decisions about breast conserving surgery (BCS) in breast cancer patients. This study was to evaluate patients’ attitude to BCS and to assess the factors affecting cancer practice in West China.
Methods:
A structured questionnaire was distributed to 184 patients, eliciting information about the patients’ characteristics, occupation, education, family life, recognition of illness, knowledge about BCS, the main means of gaining surgery information, selecting surgery approaches, preferences to breast reservation.
Results:
In all, 163 patients completed the questionnaire. The results indicated that only 7.4% of patients received BCS and 23% of the remaining patients desired to have BCS and the affecting factors were significantly associated with their family life, recognition of illness and the main means of gaining surgery information (P < 0.05). No associations were between BCS selecting and the other variables studied. The most frequent reasons for selecting BCS were keeping the female shape and improving quality of life (71%), the second most were postoperative recovery, minimal influence of physical function (47%) and patients’ knowledge about BCS (42%). The most frequent reasons for not selecting BCS were uncertainty about BCS results and worry about recurrence (81%), the second most was the elderly age unnecessary for BCS (40%).
Conclusions:
The findings indicate that breast cancer patients in West China do not take BCS as the first choice as the best treatment method. It is warranted that further study of more patients, attitude of patients’ partners and physicians to BCS.
Studies revealed that prenatal stress (PS) may increase the vulnerability to depression in their offspring, and ERK-CREB signal system might play a role in its mechanism.
Objectives and aims
The present study investigated the effect of MK-801 on depressive-like behavior and its impacts on ERK2, CREB, Bcl-2 mRNA expression in PS female rat offspring.
Methods
The pregnant rats were randomly divided into three groups, the control group (Con) was left undisturbed, the PS-saline group (PS-saline) and the PS-MK-801 group (PS-MK-801) were subjected to restraint stress on days 14–20 of pregnancy three times daily for 45 min, and received an i.p. administration of saline or MK-801(sigma, 0.2 mg/kg) 30 min before the first stress respectively. Forced swimming test was undertaken to assess depressive-like behavior in one month female offspring. ERK2, CREB, Bcl-2 mRNA in the hippocampus, frontal cortex, and striatum were detected by RT-PCR.
Results
PS-saline spent significantly more immobile time compared to Con and PS-MK-801 (P < 0.05). ERK2 and CREB mRNA expression in hippocampus and frontal cortex was significantly decreased in PS-saline compared to Con and PS-MK-801 (P < 0.05), while in striatum CREB mRNA expression in PS-saline was lower than Con (P < 0.05). Bcl-2 mRNA expression in hippocampus and striatum was significantly decreased in PS-saline (P < 0.05), and in frontal cortex, its expression was significantly lower in PS-saline and PS-MK-801 (P < 0.05).
Conclusions
PS may suppress ERK-CREB signal pathway in female offspring rats, which could be partly prevented by MK- 801. (Supported by National Natural Science Foundation of China, No: 30970952).
Studies have convinced that the rodents' exposure to prenatal stress (PNS) may induce depression and anxiety to their offspring. We focused on the glutamatergic system to explore the mechanisms.
Objectives and aims:
By examining EAAT2,EAAT3 (Excitatory Amino Acid Transporter 2,3), which are the only substances to inactivate glutamate in nervous system, we explored the effect of PNS on glutamatergic system.
Methods:
Pregnant rats were assigned to Control group (CON), Middle period of PNS group (MPS) and Late period of PNS group (LPS). MPS and LPS rats were exposed to restraint stress on days 7–13, 14–20 of pregnancy three times daily for 45 min. EAAT2 and EAAT3 mRNA expression in the hippocampus, frontal cortex, and striatum of one month rat offspring were checked by RT-PCR.
Results:
For the female offspring, EAAT2 mRNA expression of hippocampus in LPS and MPS was significantly lower compared to CON(P = 0.008,p = 0.003); EAAT2 and EAAT3 mRNA expression of frontal cortex in LPS were significantly lower than CON (p = 0.003,p = 0.013). for the male offspring, EAAT2 and EAAT3 mRNA expression of hippocampus in LPS and MPS were significantly lower (p = 0.005, p = 0.05); EAAT2 mRNA expression of frontal cortex was significantly lower in LPS (p = 0.022); EAAT2 mRNA in LPS group and MPS were significantly lower (p = 0.009, p = 0.014), and EAAT3 mRNA expression of striatum in MPS was significantly lower (p = 0.049).
Conclusions:
Decreased EAAT2 and EAAT3 of PNS may explain the increase of glutamate in synaptic cleft and its downstream excitotoxicity. (Supported by National Natural Science Foundation of China, No: 30970952)
Epidemiological studies have convinced that prenatal stress (PS) might cause offspring depression.
Objectives and aims:
Our pervious research work certified that PS can increases the glutamate level of hippocampus of rat offspring, which inspired us to explore the pathogenesis of depression by focusing on glutamatergic system.
Methods:
Pregnant rats were randomly assigned to control group (CON), mid prenatal stress group (MPS) and late prenatal stress group (LPS). The pregnant rats of MPS and LPS were exposed to restraint stress on days 7–13, 14–20 of pregnancy three times for 45 min respectively. Tail suspension test (TST) was performed to examine the depression like behavior and Western-blot were used to test phosphorylated GluR1(pGluR1) of AMPAR expression in the hippocampus, striatum and frontal cortex of one month rat offspring.
Results:
For both male and female offspring, the time of immobility of TST in LPS (156±11, 155±12) and MPS (173±15, 155±12) was significantly longer (P< 0.05) than CON(118±8,113±12), the latency in MPS (18±3, 24±3) was significantly shorter (P< 0.05) than CON (30±5, 58±11). The pGluR1 expression in hippocampus and frontal cortex in LPS (1.77±0.45, 1.00±0.09) and MPS (1.65±0.51, 1.05±0.18) were significantly lower (P< 0.05) than CON (3.72±0.86, 2.05±0.34) in male rat offspring.
Conclusion:
It is suggested that the PS may induce depression like behavior in rat offspring, and glutamate receptors subunit pGluR1 might be involved in the etiology of depression.
(The research is supported by National Natural Science Foundation of China, No: 30970952, 18110059).
Patients with severe mental disorders in low-resource settings have limited access to services, resulting in overwhelming caregiving burden for families. In extreme cases, this has led to the long-term restraining of patients in their homes. China underwent a nationwide initiative to unlock patients and provide continued treatment. This study aims to quantify household economic burden in families after unlocking and treatment, and to identify factors associated with increased burden due to schizophrenia.
Methods
A total of 264 subjects were enrolled from three geographically diverse provinces in 2012. Subjects were patients with schizophrenia who were previously put under restraints and had participated in the ‘unlocking and treatment’ intervention. The primary outcome was the current household economic burden, obtained from past year financial information collected through on-site interview. Patient disease characteristics, treatment, outcomes and family caregiving burden were collected as well. Univariate and multivariate linear regression were used to construct risk factor models for indirect economic burden.
Results
After participating in the intervention, 85% of patients continued to receive mental health services, 70% used medication as prescribed and 80% were never relocked. Family members reported significantly decreased caregiving burden after receiving the intervention. Mean direct and indirect household economic burdens were CNY963 (US$31.7) and CNY11 724 (US$1670) per year, respectively, while family total income was on average CNY12 108 (US$1913) per year. Greater disease severity and poorer patient psychosocial function at time of study were found to be independent factors related to increased indirect burden.
Conclusions
The ‘unlocking and treatment’ intervention has improved the lives of patients and families. Indirect burden due to disease is still a major economic issue that needs to be addressed, potentially through improving treatment and patient functioning. Our findings contribute to the unravelling and eventual elimination of chronic restraining of mentally ill patients in low-resource settings.
A greater understanding of the rumen microbiota and its function may help find new strategies to improve feed efficiency in cattle. This study aimed to investigate whether the cattle breed affects specific ruminal taxonomic microbial groups and functions associated with feed conversion ratio (FCR), using two genetically related Angus breeds as a model. Total RNA was extracted from 24 rumen content samples collected from purebred Black and Red Angus bulls fed the same forage diet and then subjected to metatranscriptomic analysis. Multivariate discriminant analysis (sparse partial least square discriminant analysis (sPLS-DA)) and analysis of composition of microbiomes were conducted to identify microbial signatures characterizing Black and Red Angus cattle. Our analyses revealed relationships among bacterial signatures, host breeds and FCR. Although Black and Red Angus are genetically similar, sPLS-DA detected 25 bacterial species and 10 functions that differentiated the rumen microbial signatures between those two breeds. In Black Angus, we identified bacterial taxa Chitinophaga pinensis, Clostridium stercorarium and microbial functions with large and small subunits ribosomal proteins L16 and S7 exhibiting a higher abundance in the rumen microbiome. In Red Angus, nonetheless, we identified the poorly characterized bacterial taxon Oscillibacter valericigenes with a higher abundance and pathways related to carbohydrate metabolism. Analysis of composition of microbiomes revealed that C. pinensis and C. stercorarium exhibited a higher abundance in Black Angus compared to Red Angus associated with FCR, suggesting that these bacterial species may play a key role in the feed conversion efficiency of forage-fed bulls. This study highlights how the discovery of signatures of bacterial taxa and their functions can be used to harness the full potential of the rumen microbiome in Angus cattle.
Chitinase is responsible for insect chitin hydrolyzation, which is a key process in insect molting and pupation. However, little is known about the chitinase of Spodoptera exigua (SeChi). In this study, based on the SeChi gene (ADI24346) identified in our laboratory, we constructed the recombinant baculovirus P-Chi for the expression of recombinant SeChi (rSeChi) in Hi5 cells. The rSeChi was purified by chelate affinity chromatography, and the purified protein showed activity comparable with that of a commercial SgChi, suggesting that we harvested active SeChi for the first time. The purified protein was subsequently tested for enzymatic properties and revealed to exhibit its highest activity at pH 8 and 40 C. Using homology modeling and molecular docking techniques, the three-dimensional model of SeChi was constructed and screened for inhibitors. In two rounds of screening, twenty compounds were selected. With the purified rSeChi, we tested each of the twenty compounds for inhibitor activity against rSeChi, and seven compounds showed obvious activity. This study provided new information for the chitinase of beet armyworm and for chitinase inhibitor development.
Animal’s feed efficiency in growing cattle (i.e. the animal ability to reach a market or adult BW with the least amount of feed intake), is a key factor in the beef cattle industry. Feeding systems have made huge progress to understand dietary factors influencing the average animal feed efficiency. However, there exists a considerable amount of animal-to-animal variation around the average feed efficiency observed in beef cattle reared in similar conditions, which is still far from being understood. This review aims to identify biological determinants and molecular pathways involved in the between-animal variation in feed efficiency with particular reference to growing beef cattle phenotyped for residual feed intake (RFI). Moreover, the review attempts to distinguish true potential determinants from those revealed through simple associations or indirectly linked to RFI through their association with feed intake. Most representative and studied biological processes which seem to be connected to feed efficiency were reviewed, such as feeding behaviour, digestion and methane production, rumen microbiome structure and functioning, energy metabolism at the whole body and cellular levels, protein turnover, hormone regulation and body composition. In addition, an overall molecular network analysis was conducted for unravelling networks and their linked functions involved in between-animal variation in feed efficiency. The results from this review suggest that feeding and digestive-related mechanisms could be associated with RFI mainly because they co-vary with feed intake. Although much more research is warranted, especially with high-forage diets, the role of feeding and digestive related mechanisms as true determinants of animal variability in feed efficiency could be minor. Concerning the metabolic-related mechanisms, despite the scarcity of studies using reference methods it seems that feed efficient animals have a significantly lower energy metabolic rate independent of the associated intake reduction. This lower heat production in feed efficient animals may result from a decreased protein turnover and a higher efficiency of ATP production in mitochondria, both mechanisms also identified in the molecular network analysis. In contrast, hormones and body composition could not be conclusively related to animal-to-animal variation in feed efficiency. The analysis of potential biological networks underlying RFI variations highlighted other significant pathways such as lipid metabolism and immunity and stress response. Finally, emerging knowledge suggests that metabolic functions underlying genetic variation in feed efficiency could be associated with other important traits in animal production. This emphasizes the relevance of understanding the biological basis of relevant animal traits to better define future balanced breeding programmes.
Characterizing ruminal parameters in the context of sampling routine and feed efficiency is fundamental to understand the efficiency of feed utilization in the bovine. Therefore, we evaluated microbial and volatile fatty acid (VFA) profiles, rumen papillae epithelial and stratum corneum thickness and rumen pH (RpH) and temperature (RT) in feedlot cattle. In all, 48 cattle (32 steers plus 16 bulls), fed a high moisture corn and haylage-based ration, underwent a productive performance test to determine residual feed intake (RFI) using feed intake, growth, BW and composition traits. Rumen fluid was collected, then RpH and RT logger were inserted 5.5±1 days before slaughter. At slaughter, the logger was recovered and rumen fluid and rumen tissue were sampled. The relative daily time spent in specific RpH and RT ranges were determined. Polynomial regression analysis was used to characterize RpH and RT circadian patterns. Animals were divided into efficient and inefficient groups based on RFI to compare productive performance and ruminal parameters. Efficient animals consumed 1.8 kg/day less dry matter than inefficient cattle (P⩽0.05) while achieving the same productive performance (P⩾0.10). Ruminal bacteria population was higher (P⩽0.05) (7.6×1011v. 4.3×1011 copy number of 16S rRNA gene/ml rumen fluid) and methanogen population was lower (P⩽0.05) (2.3×109v. 4.9×109 copy number of 16S rRNA gene/ml rumen fluid) in efficient compared with inefficient cattle at slaughter with no differences (P⩾0.10) between samples collected on-farm. No differences (P⩾0.10) in rumen fluid VFA were also observed between feed efficiency groups either on-farm or at slaughter. However, increased (P⩽0.05) acetate, and decreased (P⩽0.05) propionate, butyrate, valerate and caproate concentrations were observed at slaughter compared with on-farm. Efficient had increased (P⩽0.05) rumen epithelium thickness (136 v. 126 µm) compared with inefficient cattle. Efficient animals also spent 318% and 93.2% more time (P⩽0.05) in acidotic (4.14% v. 1.30%) (pH⩽5.6) and optimal (5.6<pH<6.0) (8.53% v. 4.42%) RpH range compared with inefficient cattle. The circadian patterns revealed lower (P⩽0.05) RpH and no differences (P⩾0.10) in RT pre-, during, and post-prandial periods in efficient compared with inefficient cattle. In essence, superior feed efficiency in cattle seems linked to rumen features consistent with improved efficiency of feed utilization. Microbial abundance, rumen epithelial histomorphology, and RpH, may serve as indicators for feed efficiency in cattle. The divergences of assessments made on-farm and at slaughter should be considered in the development of proxies for feed efficiency.
In the near future, ruminants may be forced to consume low-quality water since potable drinking water will become increasingly scarce in some regions of the world. A completely randomized design trial was completed to evaluate the effect of increasing concentrations of total dissolved salts (TDS) (640, 3187, 5740 and 8326 mg TDS/l) in drinking water on the performance, diet digestibility, microbial protein synthesis, nitrogen (N) and water balance using 24 Red Sindhi heifers (200 ± 5 kg) that were fed Buffel (Cenchrus ciliaris) grass hay and concentrate in a ratio of 50 : 50. After a 15-day diet adaptation period, the digestion study was completed over a 5-day period and the performance trial was completed over a 56-day period. Dry matter intake, average daily gain, feed:gain, intake and digestibility of most feed components were unaffected by the concentration of salt in the water. However, intake and digestibility of neutral detergent fibre declined linearly as TDS inclusion rate increased. Further, the inclusion of TDS resulted in a linear increase in the intake of drinking water and total (food plus drinking) water intake. Similarly, TDS inclusion levels resulted in a linear increase in total water excretion, with urine being the major route of water excretion. In contrast, increasing concentrations of TDS caused a linear decrease in creatinine and allantoin excretions. Finally, increasing the inclusion rate of TDS resulted in a linear decrease in N retention and a linear increase in urinary N excretion, which may pose a considerable challenge for farmers with respect to the reduction and management of nutrient losses.
The present work focuses on the deformation and recovery mechanisms of aged monoclinic U–Nb alloy under tension and load–unload cycle testing using in situ X-ray diffraction (XRD). The U–6.2wt% Nb (U–6.2Nb) alloy was prepared and aged at 200 °C, and then underwent tensile testing followed by the in situ XRD. The experimental results indicate that the change of diffraction peaks can serve to accurately characterize the macroscopic deformation and recovery. Compared with the as-quenched alloy, the aged U–6.2Nb alloy displays different behavior during deformation and subsequent recovery. Phase transformation competes with twin rearrangement to dominate the deformation and recovery between elastic stage and slip stage of the alloy. The lattice plane relationship between α″ and γ° during phase transformation has also been given.
We investigated and quantified the factors which may affect the prevalence of cystic echinococcosis caused by Echinococcus granulosus in Rangtang County using a multidisciplinary approach. From a previously performed field survey, epidemiological data were linked with environmental data. Altitude and land surface temperature were extracted from remote-sensing images. Cumulative logistic regression models were used to identify and quantify the potential risk factors. The multiple regression models confirmed that yaks (χ2 = 4·0447, P = 0·0443), dogs (χ2 = 8·3455, P = 0·0039) and altitude (χ2 = 7·6223, P = 0·0058) were positively correlated with the prevalence of cystic echinococcosis, while land surface temperature may have a negative association. The findings showed that dogs and yaks play the most important role in the transmission of cystic echinococcosis, while altitude and land surface temperature may also be involved in the transmission.
The Shuidonggou site cluster in northern China contains 12 different early prehistoric sequences with great potential to cast light on the transition to Upper Palaeolithic behaviour in East Asia. Here researchers present the latest results from Locality 2, reporting seven occupation levels with hearths, animal bone and diverse industries. Although previously compared with European Upper Palaeolithic sequences, the new work proposes a different trajectory of development. Distinctive macroblade technology arrived in the area, possibly from Mongolia or Siberia, about 41000–34000 years ago. This industry subsequently disappeared, to be replaced by flake technologies.
Genetic selection for residual feed intake (RFI) is an indirect approach for reducing enteric methane (CH4) emissions in beef and dairy cattle. RFI is moderately heritable (0.26 to 0.43), moderately repeatable across diets (0.33 to 0.67) and independent of body size and production, and when adjusted for off-test ultrasound backfat thickness (RFIfat) is also independent of body fatness in growing animals. It is highly dependent on accurate measurement of individual animal feed intake. Within-animal repeatability of feed intake is moderate (0.29 to 0.49) with distinctive diurnal patterns associated with cattle type, diet and genotype, necessitating the recording of feed intake for at least 35 days. In addition, direct measurement of enteric CH4 production will likely be more variable and expensive than measuring feed intake and if conducted should be expressed as CH4 production (g/animal per day) adjusted for body size, growth, body composition and dry matter intake (DMI) or as residual CH4 production. A further disadvantage of a direct CH4 phenotype is that the relationships of enteric CH4 production on other economically important traits are largely unknown. Selection for low RFIfat (efficient, −RFIfat) will result in cattle that consume less dry matter (DMI) and have an improved feed conversion ratio (FCR) compared with high RFIfat cattle (inefficient; +RFIfat). Few antagonistic effects have been reported for the relationships of RFIfat on carcass and meat quality, fertility, cow lifetime productivity and adaptability to stress or extensive grazing conditions. Low RFIfat cattle also produce 15% to 25% less enteric CH4 than +RFIfat cattle, since DMI is positively related to enteric methane (CH4) production. In addition, lower DMI and feeding duration and frequency, and a different rumen bacterial profile that improves rumen fermentation in −RFIfat cattle may favor a 1% to 2% improvement in dry matter and CP digestibility compared with +RFIfat cattle. Rate of genetic change using this approach is expected to improve feed efficiency and reduce enteric CH4 emissions from cattle by 0.75% to 1.0% per year at equal levels of body size, growth and body fatness compared with cattle not selected for RFIfat.
The relationship between recurrent major depression (MD) in women and suicidality is complex. We investigated the extent to which patients who suffered with various forms of suicidal symptomatology can be distinguished from those subjects without such symptoms.
Method
We examined the clinical features of the worst episode in 1970 Han Chinese women with recurrent DSM-IV MD between the ages of 30 and 60 years from across China. Student's t tests, and logistic and multiple logistic regression models were used to determine the association between suicidality and other clinical features of MD.
Results
Suicidal symptomatology is significantly associated with a more severe form of MD, as indexed by both the number of episodes and number of MD symptoms. Patients reporting suicidal thoughts, plans or attempts experienced a significantly greater number of stressful life events. The depressive symptom most strongly associated with lifetime suicide attempt was feelings of worthlessness (odds ratio 4.25, 95% confidence interval 2.9–6.3). Excessive guilt, diminished concentration and impaired decision-making were also significantly associated with a suicide attempt.
Conclusions
This study contributes to the existing literature on risk factors for suicidal symptomatology in depressed women. Identifying specific depressive symptoms and co-morbid psychiatric disorders may help improve the clinical assessment of suicide risk in depressed patients. These findings could be helpful in identifying those who need more intense treatment strategies in order to prevent suicide.