We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This book presents a comprehensive, accessible survey of Western philosophy of music from Pythagoras to the present. Its narrative traces themes and schools through history, in a sequence of five chapters that survey the ancient, medieval, early modern, modern and contemporary periods. Its wide-ranging coverage includes medieval Islamic thinkers, Continental and analytic thinkers, and neglected female thinkers such as Vernon Lee (Violet Paget). All aspects of the philosophy of music are discussed, including music and the cosmos, music's value, music's relation to the other arts, the problem of opera, the origins of musical genius, music's emotional impact, the moral effects of music, the ontology of musical works, and the relevance of music's historical context. The volume will be valuable for students and scholars in philosophy and musicology, and all who are interested in the ways in which philosophers throughout history have thought about music.
We present the first unbiased survey of neutral hydrogen absorption in the Small Magellanic Cloud. The survey utilises pilot neutral hydrogen observations with the Australian Square Kilometre Array Pathfinder telescope as part of the Galactic Australian Square Kilometre Array Pathfinder neutral hydrogen project whose dataset has been processed with the Galactic Australian Square Kilometre Array Pathfinder-HI absorption pipeline, also described here. This dataset provides absorption spectra towards 229 continuum sources, a 275% increase in the number of continuum sources previously published in the Small Magellanic Cloud region, as well as an improvement in the quality of absorption spectra over previous surveys of the Small Magellanic Cloud. Our unbiased view, combined with the closely matched beam size between emission and absorption, reveals a lower cold gas faction (11%) than the 2019 ATCA survey of the Small Magellanic Cloud and is more representative of the Small Magellanic Cloud as a whole. We also find that the optical depth varies greatly between the Small Magellanic Cloud’s bar and wing regions. In the bar we find that the optical depth is generally low (correction factor to the optically thin column density assumption of
$\mathcal{R}_{\mathrm{HI}} \sim 1.04$
) but increases linearly with column density. In the wing however, there is a wide scatter in optical depth despite a tighter range of column densities.
Autonomous vessels and robotics, artificial Intelligence and cybersecurity are transforming international shipping and naval operations. Likewise, blockchain offers new efficiencies for compliance with international shipping records, while renewable energy from currents and waves and offshore nuclear power stations open opportunities for new sources of power within and from the sea. These and other emerging technologies pose a challenge for the governance framework of the law of the sea, which is adapting to accommodate the accelerating rates of global change. This volume examines how the latest technological advances and marine sciences are reshaping the interpretation and application of the law of the sea. The authors explore the legality of new concepts for military operations on the continental shelf, suggest remote sensing methodologies for delimitation of maritime boundaries, and offer a legal roadmap for ensuring maritime cyber security.
Archaeological compliance is defined by state and federal legislation and the constrained, precise language in which it is written. Rules and policies operationalize the law but provide some flexibility in its interpretation and implementation. The pronounced use of “legal” and “scientific” language in archaeological compliance can be considered insensitive or offensive to some tribal members when discussing the disposition and care of the remains and belongings of their ancestors. The language we use constructs our reality and defines how we interpret our interactions of the lived experience. It is therefore necessary to revise the language employed in archaeological compliance to ensure that it reflects the values of the communities that these laws define to determine treatment and ultimate disposition of their ancestral remains and belongings. This article describes and encourages the use of a respectful terminology, developed in conjunction with compliance professionals and tribal representatives, to restructure the language we use and redefine our interactions as more considerate of tribal concerns for repatriation.
There are many structural problems facing the UK at present, from a weakened National Health Service to deeply ingrained inequality. These challenges extend through society to clinical practice and have an impact on current mental health research, which was in a perilous state even before the coronavirus pandemic hit. In this editorial, a group of psychiatric researchers who currently sit on the Academic Faculty of the Royal College of Psychiatrists and represent the breadth of research in mental health from across the UK discuss the challenges faced in academic mental health research. They reflect on the need for additional investment in the specialty and ask whether this is a turning point for the future of mental health research.
Experimental studies of the influence of fluid–structure interaction on cloud cavitation about a stiff stainless steel (SS) and a flexible composite (CF) hydrofoil have been presented in Parts I (Smith et al., J. Fluid Mech., vol. 896, 2020a, p. A1) and II (Smith et al., J. Fluid Mech., vol. 897, 2020b, p. A28). This work further analyses the data and complements the measurements with reduced-order model predictions to explain the complex response. A two degrees-of-freedom steady-state model is used to explain why the tip bending and twisting deformations are much higher for the CF hydrofoil, while the hydrodynamic load coefficients are very similar. A one degree-of-freedom dynamic model, which considers the spanwise bending deflection only, is used to capture the dynamic response of both hydrofoils. Peaks in the frequency response spectrum are observed at the re-entrant jet-driven and shock-wave-driven cavity shedding frequencies, system bending frequency and heterodyne frequencies caused by the mixing of the two cavity shedding frequencies. The predictions capture the increase of the mean system bending frequency and wider bandwidth of frequency modulation with decreasing cavitation number. The results show that, in general, the amplitude of the deformation fluctuation is higher, but the amplitude of the load fluctuation is lower for the CF hydrofoil compared with the SS hydrofoil. Significant dynamic load amplification is observed at subharmonic lock-in when the shock-wave-driven cavity shedding frequency matches with the nearest subharmonic of the system bending frequency of the CF hydrofoil. Both measurements and predictions show an absence of dynamic load amplification at primary lock-in because of the low intensity of cavity load fluctuations with high cavitation number.
Existing theories of democratic reversals emphasize that elites mount actions like coups when democracy is particularly threatening to their interests. However, existing theory has been largely silent on the role of elite social networks, which interact with economic incentives and may facilitate antidemocratic collective action. We develop a model where coups generate rents for elites and show that the effort an elite puts into a coup is increasing in their network centrality. We empirically explore the model using an original dataset of Haitian elite networks that we linked to firm-level data. We show that central families were more likely to be accused of participating in the 1991 coup against the democratic Aristide government. We then find that the retail prices of staple goods that are imported by such elites differentially increase during subsequent periods of nondemocracy. Our results suggest that elite social structure is an important factor in democratic reversals.
High-temperature differential scanning calorimetry was used to understand the thermal properties of Si-rich metal–silicon alloys. Insoluble metals (A and B) were found to produce an alloy with discrete ASi2 and BSi2 dispersed phases. In contrast, metals that form a solid solution result in a dispersed phase that has a composition of AxB1−xSi2, where x varies continuously across each inclusion. This complex composition distribution is putatively caused by differences in the solidification temperatures of ASi2 versus BSi2. Though this behavior was observed for several different combinations of metals, we focus here specifically on the Cr/V/Si system. To better understand the range and most probable element concentrations in the dispersed silicide domains, a method was devised to generate histograms of their Cr and V concentrations from energy-dispersive X-ray spectroscopy hyperspectral images. Varying the Cr/V/Si ratio was found to change the shape of the element histograms, indicating that the distribution of silicide compositions that form is controlled by the input composition. Adding aluminum was found to result in dispersed phases that had a single composition rather than a range of Cr and V concentrations. This demonstrates that aluminum can be an effective additive for altering solidification kinetics in silicon alloys.
ABSTRACT IMPACT: Use of this novel murine model of inflammatory bowel disease (IBD) and C. difficile infection (CDI) will aid in developing new clinical approaches to predict, diagnose, and treat CDI in the IBD population. OBJECTIVES/GOALS: IBD is associated with intestinal inflammation and alterations of the gut microbiota, both of which can diminish colonization resistance to C. difficile. Here, we sought to determine if IBD is sufficient to render mice susceptible to C. difficile colonization and infection in the absence of other perturbations, such as antibiotic treatment. METHODS/STUDY POPULATION: C57BL/6 IL-10-/- mice were colonized with Helicobacter hepaticus to trigger colonic inflammation akin to human IBD. Control mice, not colonized with H. hepaticus, were pretreated with the antibiotic cefoperazone to render the gut microbiota susceptible to CDI. Mice were then gavaged with spores of the toxigenic C. difficile strain VPI 10463 and monitored for C. difficile colonization and disease. The fecal microbiota at the time of C. difficile exposure was profiled by 16S rRNA gene sequencing and analyzed using mothur. Statistical analyses were performed using R. RESULTS/ANTICIPATED RESULTS: Mice with IBD harbored significantly distinct intestinal microbial communities compared to non-IBD controls at the time of C. difficile spore exposure (14 days post-IBD trigger). Mice with IBD were susceptible to persistent C. difficile colonization, while genetically identical non-IBD controls were resistant to C. difficile colonization. Concomitant IBD and CDI was associated with significantly worse clinical and intestinal disease than unaccompanied IBD. DISCUSSION/SIGNIFICANCE OF FINDINGS: Patients with IBD who develop concurrent CDI experience increased morbidity and mortality. These studies in a novel mouse model of IBD and CDI emphasize the dual importance of host responses and alterations of the gut microbiota in susceptibility to C. difficile colonization and infection in the setting of IBD.
Widespread testing for severe acute respiratory coronavirus virus 2 (SARS-CoV-2) is necessary to curb the spread of coronavirus disease 2019 (COVID-19), but testing is undermined when the only option is a nasopharyngeal swab. Self-collected swab techniques can overcome many of the disadvantages of a nasopharyngeal swab, but they require evaluation.
Methods:
Three self-collected non-nasopharyngeal swab techniques (saline gargle, oral swab and combined oral-anterior nasal swab) were compared to a nasopharyngeal swab for SARS-CoV-2 detection at multiple COVID-19 assessment centers in Toronto, Canada. The performance characteristics of each test were assessed.
Results:
The adjusted sensitivity of the saline gargle was 0.90 (95% CI 0.86-0.94), the oral swab was 0.82 (95% CI, 0.72–0.89) and the combined oral–anterior nasal swab was 0.87 (95% CI, 0.77–0.93) compared to a nasopharyngeal swab, which demonstrated a sensitivity of ˜90% when all positive tests were the reference standard. The median cycle threshold values for the SARS-CoV-2 E-gene for concordant and discordant saline gargle specimens were 17 and 31 (P < .001), for the oral swabs these values were 17 and 28 (P < .001), and for oral–anterior nasal swabs these values were 18 and 31 (P = .007).
Conclusions:
Self-collected saline gargle and an oral–anterior nasal swab have a similar sensitivity to a nasopharyngeal swab for the detection of SARS-CoV-2. These alternative collection techniques are cheap and can eliminate barriers to testing, particularly in underserved populations.
Radio-Frequency Identification (RFID) system technology is a key element for the realization of the Industry 4.0 vision, as it is vital for tasks such as entity tracking, identification and asset management. However, the plethora of RFID systems’ elements in combination with the wide range of factors that need to be taken under consideration along with the interrelations amongst them, make the problem of identification and design of the right RFID system, based on users’ needs particularly complex. The research outlined in this paper seeks to optimize this process by developing an integrating schema that will encapsulate this information in a form that is both human and machine processible. Human readability will allow a shared understanding of the RFID technology domain; machine readability, automated reasoning engines to perform logical deduction techniques returning implicit information. For this purpose, the novel RFID System Configuration Ontology (RFID SCO) is developed. Hence, non-RFID experts are enabled to identify the most suitable RFID system according to their needs and RFID experts to retrieve all the relevant information required for the efficient design of the corresponding RFID system. The RFID SCO is validated and tested successfully against real-world scenarios provided by domain experts.
The purpose of this paper is to build on personal engagement and role theory to develop a conceptual definition of engagement to different organizational roles (job, organization, supervisor, and coworkers) and create and validate the Role-Based Engagement Scale (RBES). Data were collected from four samples (n = 1,302) of employees, including three from multiple organizations and one from an aircraft manufacturer. Results across three studies consistently support the four dimension structure of the RBES, its internal consistency, convergent, discriminant, and predictive validity based on a series of confirmatory factor analyses. The RBES is a psychometrically sound instrument that measures engagement to job, organization, supervisor, and coworkers. This instrument will provide more targeted information for human resource management (HRM) professionals tasked with developing training methods and processes to improve low-scoring dimensions of engagement, optimizing HRM interventions.
Hydrogen lithography has been used to template phosphine-based surface chemistry to fabricate atomic-scale devices, a process we abbreviate as atomic precision advanced manufacturing (APAM). Here, we use mid-infrared variable angle spectroscopic ellipsometry (IR-VASE) to characterize single-nanometer thickness phosphorus dopant layers (δ-layers) in silicon made using APAM compatible processes. A large Drude response is directly attributable to the δ-layer and can be used for nondestructive monitoring of the condition of the APAM layer when integrating additional processing steps. The carrier density and mobility extracted from our room temperature IR-VASE measurements are consistent with cryogenic magneto-transport measurements, showing that APAM δ-layers function at room temperature. Finally, the permittivity extracted from these measurements shows that the doping in the APAM δ-layers is so large that their low-frequency in-plane response is reminiscent of a silicide. However, there is no indication of a plasma resonance, likely due to reduced dimensionality and/or low scattering lifetime.
The influence of fluid–structure interaction on cloud cavitation about a hydrofoil is investigated by comparing results from a relatively stiff reference hydrofoil, presented in Part 1, with those obtained on a geometrically identical flexible hydrofoil. Measurements were conducted with a chord-based Reynolds number $Re=0.8\times 10^{6}$ for cavitation numbers, $\unicode[STIX]{x1D70E}$, ranging from 0.2 to 1.2 while the hydrofoil was mounted at an incidence, $\unicode[STIX]{x1D6FC}$, of $6^{\circ }$ to the oncoming flow. Tip deformations and cavitation behaviour were recorded with synchronised force measurements utilising two high-speed cameras. The flexible composite hydrofoil was manufactured as a carbon/glass-epoxy hybrid structure with a lay-up sequence selected principally to consider spanwise bending deformations with no material-induced bend–twist coupling. Hydrodynamic bend–twist coupling is seen to result in nose-up twist deformations causing frequency modulation from the increase in cavity length. The lock-in phenomenon driven by re-entrant jet shedding observed on the stiff hydrofoil is also evident on the flexible hydrofoil at $0.70\leqslant \unicode[STIX]{x1D70E}\leqslant 0.75$, but occurs between different modes. Flexibility is observed to accelerate cavitation regime transition with reducing $\unicode[STIX]{x1D70E}$. This is seen with the rapid growth and influence the shockwave instability has on the forces, deflections and cavitation behaviour on the flexible hydrofoil, suggesting structural behaviour plays a significant role in modifying cavity physics. The reduced stiffness causes secondary lock-in of the flexible hydrofoil’s one-quarter sub-harmonic, $f_{n}/4$, at $\unicode[STIX]{x1D70E}$ = 0.4. This leads to the most severe deflections observed in the conditions tested along with a shift in phase between normal force and tip deflection.
The physics associated with various cavitation regimes about a hydrofoil is investigated in a variable-pressure water tunnel using high-speed photography and synchronised force measurements. Experiments were conducted on a relatively stiff stainless steel hydrofoil at a chord-based Reynolds number, $Re=0.8\times 10^{6}$ for cavitation numbers, $\unicode[STIX]{x1D70E}$, ranging from 0.2 to 1.2, with the hydrofoil experiencing sheet, cloud and supercavitation regimes. The NACA0009 model of tapered planform was vertically mounted in a cantilevered configuration to a six-component force balance at an incidence, $\unicode[STIX]{x1D6FC}$, of $6^{\circ }$ to the oncoming flow. Tip deformations and cavitation behaviour were recorded with synchronised force measurements utilising two high-speed cameras mounted underneath and to the side of the test section. Break-up and shedding of an attached cavity was found to be due to either interfacial instabilities, re-entrant jet formation, shockwave propagation or a complex coupled mechanism, depending on $\unicode[STIX]{x1D70E}$. Three primary shedding modes are identified. The Type IIa and IIb re-entrant jet-driven oscillations exhibit a non-linear dependence on $\unicode[STIX]{x1D70E}$, decreasing in frequency with decreasing $\unicode[STIX]{x1D70E}$ due to growth in the cavity length, and occur at higher $\unicode[STIX]{x1D70E}$ values (Type IIa: 0.4–1.0; Type IIb: 0.7–0.9). Shockwave-driven Type I shedding occurs for lower $\unicode[STIX]{x1D70E}$ values (0.3–0.6) with the oscillation frequency being practically independent of $\unicode[STIX]{x1D70E}$. The Type IIa oscillations locked in to the first sub-harmonic of the hydrofoil’s first bending mode in water which has been modulated due to the reduced added mass of the vapour cavity. Supplementary movies are available with the online version of the paper.