We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Modern low-altitude unmanned aircraft (UA) detection and surveillance systems mostly adopt the multi-sensor fusion technology scheme of radar, visible light, infrared, acoustic and radio detection. Firstly, this paper summarises the latest research progress of UA and bird target detection and recognition technology based on radar, and provides an effective way of detection and recognition from the aspects of echo modeling and micro motion characteristic cognition, manoeuver feature enhancement and extraction, motion trajectory difference, deep learning intelligent classification, etc. Furthermore, this paper also analyses the target feature extraction and recognition algorithms represented by deep learning for other kinds of sensor data. Finally, after a comparison of the detection ability of various detection technologies, a technical scheme for low-altitude UA surveillance system based on four types of sensors is proposed, with a detailed description of its main performance indicators.
The apple buprestid, Agrilus mali Matsumura, that was widespread in north-eastern China, was accidently introduced to the wild apple forest ecosystem in mountainous areas of Xinjiang, China. This invasive beetle feeds on domesticated apples and many species of Malus and presents a serious threat to ancestral apple germplasm sources and apple production worldwide. Estimating the potential area at risk of colonization by A. mali is crucial for instigating appropriate preventative management strategies, especially under global warming. We developed a CLIMEX model of A. mali to project this pest's potential distribution under current and future climatic scenarios in 2100 using CSIRO-Mk 3.0 GCM running the SRES A1B emissions scenario. Under current climate, A. mali could potentially invade neighbouring central Asia and eventually the mid-latitude temperate zone, and some subtropical areas and Pampas Steppe in the Southern Hemisphere. This potential distribution encompasses wild apples species, the ancestral germplasm for domesticated apples. With global warming, the potential distribution shifts to higher latitudes, with the potential range expanding slightly, though the overall suitability could decline in both hemispheres. In 2100, the length of the growing season of this pest in the mid-latitude temperature zone could increase by 1–2 weeks, with higher growth rates in most sites compared with current climate in mid-latitudes, at least in China. Our work highlights the need for strategies to prevent the spread of this pest, managing the threats to wild apples in Tian Shan Mountain forests in Central Asia, and commercial apple production globally. We discuss practical management tactics to reduce the spread of this pest and mitigate its impacts.
Variable camber flap technology can adjust the spanwise circulation distribution, thereby reducing the induced drag. Therefore, the concept of variable camber flap is introduced into the design of propeller aircraft wing, and the design for drag reduction of propeller aircraft is carried out. The numerical simulation of the propeller aircraft is carried out by using the actuator disc method with non-uniform distribution of radial and circumferential loads. Through the unsteady simulation of a single propeller, the aerodynamic load on a periodic propeller is extracted as a boundary condition to the steady simulation of the full aircraft. The load extracted by the actuator disc is compared with the unsteady simulation result, which verifies the reliability of the method. The design for drag reduction at cruise and climb design conditions are respectively carried out with the variable camber flap technology. The variable camber cruise configuration is evaluated at both the begin and end cruise conditions. The results show that, after the flaps deflecting at a small angle according to the circulation distribution, the camber distribution of the wing is adjusted to make the circulation distribution closer to the elliptical circulation distribution. At the design cruise condition, the drag coefficient is reduced by 1.4 counts, and the lift-drag ratio increase by 0.1. At both begin and end cruise conditions, the drag coefficient decreases by 1 count, and the lift-drag ratio increases by 0.07. At the design climb condition, the drag coefficient decreases by 1 count, and the lift-to-drag ratio increases by 0.09.
A shock-induced separation loss reduction method, using local blade suction surface shape modification (smooth ramp structure) with constant adverse pressure gradient with the consideration of radial equilibrium effect to split a single shock foot into multiple weaker shock wave configuration, is investigated on the NASA Rotor 37 for promoting aerodynamic performance of a transonic compressor rotor. Numerical investigation on baseline blade and improved one with blade modification on suction side has been conducted employing the Reynolds-averaged Navier–Stokes method to reveal flow physics of ramp structure. The results indicate that the passage shock foot of baseline is replaced with a family of compression waves and a weaker shock foot generating moderate adverse pressure gradient on ramp profile, which is beneficial for mitigating the shock foot and shrinking flow separation region as well. In addition, the radial secondary flow of low-momentum fluids within boundary layer is decreased significantly in the region of passage shock-wave/boundary-layer interaction on blade suction side, which mitigates the mass flow and mixing intensity of tip leakage flow. With the reduction of flow separation loss induced by passage shock, the adiabatic efficiency and total pressure ratio of improved rotor are superior to baseline model. This study herein implies a potential application of ramp profile in design method of transonic and supersonic compressors.
Recent dimensional models of adversity informed by a neurobiological deficit framework highlights threat and deprivation as core dimensions, whereas models informed by an evolutionary, adaptational and functional framework calls attention to harshness and unpredictability. This report seeks to evaluate an integrative model of threat, deprivation, and unpredictability, drawing on the Fragile Families Study. Confirmatory factor analysis of presumed multiple indicators of each construct reveals an adequate three-factor structure of adversity. Theory-based targeted predictions of the developmental sequelae of each dimension also received empirical support, with deprivation linked to health problems and cognitive ability; threat linked to aggression; and unpredictability to substance use and sexual risk-taking. These findings lend credibility to utility of the three-dimensional integrative framework of adversity. It could thus inform development of dimensional measures of risk assessment and exploration of multidimensional adversity profiles, sensitive to individual differences in lived experiences, supporting patient-centered, strength-based approaches to services.
Fewer than half of patients with major depressive disorder (MDD) respond to psychotherapy. Pre-emptively informing patients of their likelihood of responding could be useful as part of a patient-centered treatment decision-support plan.
Methods
This prospective observational study examined a national sample of 807 patients beginning psychotherapy for MDD at the Veterans Health Administration. Patients completed a self-report survey at baseline and 3-months follow-up (data collected 2018–2020). We developed a machine learning (ML) model to predict psychotherapy response at 3 months using baseline survey, administrative, and geospatial variables in a 70% training sample. Model performance was then evaluated in the 30% test sample.
Results
32.0% of patients responded to treatment after 3 months. The best ML model had an AUC (SE) of 0.652 (0.038) in the test sample. Among the one-third of patients ranked by the model as most likely to respond, 50.0% in the test sample responded to psychotherapy. In comparison, among the remaining two-thirds of patients, <25% responded to psychotherapy. The model selected 43 predictors, of which nearly all were self-report variables.
Conclusions
Patients with MDD could pre-emptively be informed of their likelihood of responding to psychotherapy using a prediction tool based on self-report data. This tool could meaningfully help patients and providers in shared decision-making, although parallel information about the likelihood of responding to alternative treatments would be needed to inform decision-making across multiple treatments.
Without rapid international action to curb greenhouse gas emissions, climate scientists have predicted catastrophic sea-level rise by 2100. Globally, archaeologists are documenting the effects of sea-level rise on coastal cultural heritage. Here, the authors model the impact of 1m, 2m and 5m sea-level rise on China's coastal archaeological sites using data from the Atlas of Chinese Cultural Relics and Shanghai City's Third National Survey of Cultural Relics. Although the resulting number of endangered sites is large, the authors argue that these represent only a fraction of those actually at risk, and they issue a call to mitigate the direct and indirect effects of rising sea levels.
The cooperative guidance problem of multiple inferior missiles intercepting a hypersonic target with the specific impact angle constraint in the two-dimensional plane is addressed in this paper, taking into consideration variations in a missile’s speed. The guidance law is designed with two subsystems: the direction of line-of-sight (LOS) and the direction of normal to LOS. In the direction of LOS, by applying the algebraic graph theory and the consensus theory, the guidance command is designed to make the system convergent in a finite time to satisfy the goal of cooperative interception. In the direction of normal to LOS, the impact angle is constrained to transform into the LOS angle at the time of interception. In view of the difficulty of measuring unknown target acceleration information in real scenarios, the guidance command is designed by utilising a super-twisting algorithm based on a nonsingular fast-terminal sliding mode (NFTSM) surface. Numerical simulation results manifest that the proposed guidance law performs efficiently and the guidance commands are free of chattering. In addition, the overall performance of this guidance law is assessed with Monte Carlo runs in the presence of measurement errors. The simulation results demonstrate that the robustness can be guaranteed, and that overall efficiency and accuracy in intercepting the hypersonic target are achieved.
A smart morphing winglet driven by piezoelectric Macro Fiber Composite (MFC) is designed to adjust cant angle autonomously for various flight conditions. The smart morphing winglet is composed of the MFC actuator, DC-DC converter, power supply, winglet part and wing part. A hinge is designed to transfer the bending deformation of intelligent MFC bending actuator to rotation of the winglet structure so as to achieve the adaptive cant angle. Experimental and numerical work are conducted to evaluate the performance of smart morphing winglet. It is demonstrated that the proposed intelligent MFC bending actuator has an excellent bending performance and load resistance. This smart morphing winglet exhibits the excellent characteristic of flexibility on large deformation and lightweight. Moreover, a series of wind tunnel tests are performed, which demonstrate that the winglet driven by intelligent MFC bending actuator produces sufficient deformation in various wind speed. At high wind speed, the cant angle of the winglet can reach 16 degrees, which is still considered to be very useful for improving the aerodynamic performance of the aircraft. The aerodynamic characteristics are investigated by wind tunnel tests with various attack angles. As a result, when the morphing winglet is actuated, the lift-to-drag ratio could vary up to 11.9% and 6.4%, respectively, under wind speeds of 5.4 and 8.5m/s. Meanwhile, different flight phases such as take-off, cruise and landing are considered to improve aerodynamic performance by adjusting the cant angle of winglet. The smart morphing winglet varies the aerofoil autonomously by controlling the low winglet device input voltage to remain optimal aerodynamic performance during the flight process. It demonstrates the feasibility of piezoelectric composites driving intelligent aircraft.
Extrinsic mortality risks calibrating fast life history (LH) represent a species-general principle that applies to almost all animals including humans. However, empirical research also finds exceptions to the LH principle. The present study proposes a maternal socialization hypothesis, whereby we argue that the more human-relevant attachment system adds to the LH principle by up- and down-regulating environmental harshness and unpredictability and their calibration of LH strategies. Based on a longitudinal sample of 259 rural Chinese adolescents and their primary caregivers, the results support the statistical moderating effect of caregiver–child attachment on the relation between childhood environmental adversities (harshness and unpredictability) and LH strategies. Our theorizing and findings point to an additional mechanism likely involved in the organization and possibly the slowdown of human LH.
Sleep disturbance is an important factor in the pathophysiology and progression of psychiatric disorders, but whether it is a cause, or a downstream effect is still not clear.
Methods
To investigate causal relationships between three sleep-associated traits and seven psychiatric diseases, we used genetic variants related to insomnia, chronotype and sleep duration to perform a two-sample bidirectional Mendelian randomisation analysis. Summary-level data on psychiatric disorders were extracted from the Psychiatric Genomics Consortium. Effect estimates were obtained by using the inverse-variance-weighted (IVW), weights modified IVW, weighted-median methods, MR-Egger regression, MR pleiotropy residual sum and outlier (MR-PRESSO) test and Robust Adjusted Profile Score (RAPS).
Results
The causal odds ratio (OR) estimate of genetically determined insomnia was 1.33 (95% confidence interval (CI) 1.22–1.45; p = 5.03 × 10−11) for attention-deficit/hyperactivity disorder (ADHD), 1.31 (95% CI 1.25–1.37; p = 6.88 × 10−31) for major depressive disorder (MDD) and 1.32 (95% CI 1.23–1.40; p = 1.42 × 10−16) for post-traumatic stress disorder (PTSD). There were suggestive inverse associations of morningness chronotype with risk of MDD and schizophrenia (SCZ). Genetically predicted sleep duration was also nominally associated with the risk of bipolar disorder (BD). Conversely, PTSD and MDD were associated with an increased risk of insomnia (OR = 1.06, 95% CI 1.03–1.10, p = 7.85 × 10−4 for PTSD; OR = 1.37, 95% CI 1.14–1.64; p = 0.001 for MDD). A suggestive inverse association of ADHD and MDD with sleep duration was also observed.
Conclusions
Our findings provide evidence of potential causal relationships between sleep disturbance and psychiatric disorders. This suggests that abnormal sleep patterns may serve as markers for psychiatric disorders and offer opportunities for prevention and management in psychiatric disorders.
To describe the association between successful weaning of inhaled nitric oxide and trends in dead space ratio during such weans in patients empirically initiated on nitric oxide therapy out of concern of pulmonary hypertensive crisis.
Patients:
Children in a cardiac intensive care unit initiated on inhaled nitric oxide out of clinical concern for pulmonary hypertensive crisis retrospectively over 2 years.
Measurements and Main Results:
Twenty-seven patients were included, and nitric oxide was successfully discontinued in 23/27. These patients exhibited decreases in dead space ratio (0.18 versus 0.11, p = 0.047) during nitric oxide weaning, and with no changes in dead space ratio between pre- and post-nitric oxide initiation (p = 0.88) and discontinuation (p = 0.63) phases. These successful patients had a median age of 10 months [4.0, 57.0] and had a pre-existent diagnosis of CHD in 6/23 and pulmonary hypertension in 2/23. Those who failed nitric oxide discontinuation trended with a higher dead space ratio at presentation (0.24 versus 0.10), were more likely to carry a prior diagnosis of pulmonary hypertension (50% versus 8.7%), and had longer mechanical ventilation days (5 versus 12).
Conclusions:
Patients empirically placed on nitric oxide out of concern of pulmonary hypertensive crisis and successfully weaned off showed unchanged or decreased dead space ratio throughout the initiation to discontinuation phases of nitric oxide therapy. Trends in dead space ratio may aid in determining true need for nitric oxide and facilitate effective weaning. Further studies are needed to directly compare trends between success and failure groups.
The early identification and prediction of hand-foot-and-mouth disease (HFMD) play an important role in the disease prevention and control. However, suitable models are different in regions due to the differences in geography, social economy factors. We collected data associated with daily reported HFMD cases and weather factors of Zibo city in 2010~2019 and used the generalised additive model (GAM) to evaluate the effects of weather factors on HFMD cases. Then, GAM, support vectors regression (SVR) and random forest regression (RFR) models are used to compare predictive results. The annual average incidence was 129.72/100 000 from 2010 to 2019. Its distribution showed a unimodal trend, with incidence increasing from March, peaking from May to September. Our study revealed the nonlinear relationship between temperature, rainfall and relative humidity and HFMD cases and based on the predictive result, the performances of three models constructed ranked in descending order are: SVR > GAM> RFR, and SVR has the smallest prediction errors. These findings provide quantitative evidence for the prediction of HFMD for special high-risk regions and can help public health agencies implement prevention and control measures in advance.
Mars exploration motivates the search for extraterrestrial life, the development of space technologies, and the design of human missions and habitations. Here, we seek new insights and pose unresolved questions relating to the natural history of Mars, habitability, robotic and human exploration, planetary protection, and the impacts on human society. Key observations and findings include:
– high escape rates of early Mars' atmosphere, including loss of water, impact present-day habitability;
– putative fossils on Mars will likely be ambiguous biomarkers for life;
– microbial contamination resulting from human habitation is unavoidable; and
– based on Mars' current planetary protection category, robotic payload(s) should characterize the local martian environment for any life-forms prior to human habitation.
Some of the outstanding questions are:
– which interpretation of the hemispheric dichotomy of the planet is correct;
– to what degree did deep-penetrating faults transport subsurface liquids to Mars' surface;
– in what abundance are carbonates formed by atmospheric processes;
– what properties of martian meteorites could be used to constrain their source locations;
– the origin(s) of organic macromolecules;
– was/is Mars inhabited;
– how can missions designed to uncover microbial activity in the subsurface eliminate potential false positives caused by microbial contaminants from Earth;
– how can we ensure that humans and microbes form a stable and benign biosphere; and
– should humans relate to putative extraterrestrial life from a biocentric viewpoint (preservation of all biology), or anthropocentric viewpoint of expanding habitation of space?
Studies of Mars' evolution can shed light on the habitability of extrasolar planets. In addition, Mars exploration can drive future policy developments and confirm (or put into question) the feasibility and/or extent of human habitability of space.
Informed by the National Institute of Mental Health's Research Domain Criteria (RDoC) and developmental psychopathology frameworks, the current study used cortisol area under the curve with respect to ground (AUCg) as an index of differential sensitivity to context, which was expected to predispose young children with elevated vulnerability to adverse caregiving experiences and adaptive sensitivity to intervention effects. Particularly, the study aimed to determine whether improving caregivers’ responsive parenting through the Filming Interactions to Nurture Development (FIND) intervention would buffer children's biologically embedded vulnerability to caregivers’ depressive symptoms. Data were derived from a randomized controlled trial using pretest–posttest design with low-income families of children aged 4 to 36 months (N = 91). Young children's differential sensitivity was measured using cortisol AUCg during a structured stress paradigm. As hypothesized, children whose cortisol AUCg indicated greater sensitivity to social context exhibited more internalizing and externalizing behaviors in relation to caregivers’ elevated depressive symptoms. Critically, the intervention program was effective in attenuating psychopathology symptoms among the more biologically sensitive children. As proven by rigorous statistical tests, the findings of this study partially supported the differential susceptibility hypotheses, indicating both greater vulnerability to adverse conditions and responsiveness to intervention among children with high levels of cortisol AUCg.
The settling velocity of porous particles in linear stratification is affected by the diffusive exchange between interstitial and ambient water. The extent to which buoyancy and interstitial mass adaptation alters the settling velocity depends on the ratio of the diffusive and viscous time scales. We conducted schlieren experiments and lattice Boltzmann simulations for highly porous (95 %) but impermeable spheres settling in linear stratification. For a parameter range that resembles marine porous particles, ‘marine aggregates’, i.e. low Reynolds numbers ($0.05\leq \textit {Re}\leq 10$), intermediate Froude numbers ($0.1\leq \textit {Fr}\leq 100$) and Schmidt number of salt ($\textit {Sc}=700$), we observe delayed mass adaptation of the interstitial fluid due to lower-density fluid being dragged by a particle that forms a density boundary layer around the particle. The boundary layer buffers the diffusive exchange of stratifying agent with the ambient fluid, leading to an enhanced density contrast of the interstitial pore fluid. Stratification-related drag enhancement by means of additional buoyancy of dragging lighter fluid and buoyancy-induced vorticity resembles earlier findings for solid spheres. However, the exchange between density boundary layer and pore fluid substantially increases stratification drag for small $\textit {Fr}$. To estimate the effect of stratification on marine aggregates settling in the ocean, we derived scaling laws and show that small particles ($\leq$0.5 mm) experience enhanced drag which increases retention times by 10 % while larger porous particle (>0.5 mm) settling is dominated by delayed mass adaptation that diminishes settling velocity by 10 % up to almost 100 %. The derived relationships facilitate the integration of stratification-dependent settling velocities into biogeochemical models.
Background: Epileptic discharges localized to the midline vertex are rare. However, they have been associated with intractable seizures and severe long-term consequences in the developing brain. Our study aimed to understand the etiology of pediatric midline seizures and define post-surgical seizure outcomes. Methods: We reviewed charts, electroencephalography (EEG), and neuroimaging studies of ten pediatric patients with epileptic discharges localized to the midline vertex in the Comprehensive Epilepsy Program. The seizures were classified according to the International League Against Epilepsy criteria, patient age, sex, neuroimaging results, seizure etiology and outcomes were obtained. Results: Age of seizure onset was within the first 10 years of life in 90% of patients, with focal seizures being the most prevalent. Focal cortical dysplasia (FCD) was the most common etiology present in 50% of patients. These children had normal neuroimaging studies and intractable epilepsy. However, seizure freedom was achieved following surgical resection of the epileptogenic zone. Conclusions: We demonstrated that patients with midline epileptic discharges are associated with intractable focal seizures and early seizure onset. Despite normal neuroimaging reports, FCD was the most common pathology. Thus our study suggests early localization and resection of the epileptogenic zone may be beneficial for achieving seizure freedom in children with this electroclinical syndrome.
Background: We describe an infant with a diagnosis of GM3 synthase deficiency, presenting with severe neuroirritability from birth. He required multiple admissions due to extreme agitation and caregiver burnout. Multiple pharmacological agents were tried, and the effect of each medication was modest and short-lasting at best. The literature on the management of neuroirritability in children with progressive genetic and metabolic conditions is sparse, and a neuroirritability management protocol has yet to be developed at our institution. Methods: We searched for relevant primary research and articles on PubMed. We reviewed the evidence of each pharmacological agent and added non-pharmacological strategies. We developed management guidelines for neuroirritability at our hospital. This protocol was reviewed by several pediatric neurologists and pediatric palliative care specialists at the Stollery and SickKids Hospitals. Results: We present the Pediatric Neuroirritability Management Protocol for the Stollery Children’s Hospital. Conclusions: Further study is required to assess whether this protocol can be adapted to treat irritability in the context of other neurological conditions such as hypoxic-ischemic encephalopathy and non-accidental injury. In addition, we will expand our guidelines to include other symptoms such as spasticity, dystonia, and autonomic dysfunction.