We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of this study is to establish a fundamental understanding of the flame structure and autoignition characteristics of supercritical hydrothermal flames in three-dimensional shear-driven turbulence. The study involves direct numerical simulation of a non-premixed flame (with fuel comprising a mixture of 10 % $\textrm {H}_2$ and 90 % $\textrm {H}_2\textrm {O}$ in terms of mole fraction) at 25.0 MPa in a slot jet; detailed reaction mechanism and multispecies real-fluid properties are considered in the simulation. Qualitative transient inspection revealed that the flame undergoes a three-stage development process in the streamwise direction: sparse autoignition kernels in the upstream region, intense ignitions and establishment of a continuous flame surface in the middle region, and massive flamelets in the downstream region. Ignition kernels primarily form in the interior of large-scale shear-driven vortices featuring a low scalar dissipation rate. Probability density function (p.d.f.) analysis further confirmed that these kernels mainly form in the premixed combustion mode and on the fuel-lean side, in contrast to the authors’ previous findings concerning autoignition in a two-dimensional mixing layer. Analysis of the preignition chemistry indicator (i.e. $\textrm {H}_2\textrm {O}_{2}$ radicals) revealed that although the fuel-rich condition has a shorter homogeneous autoignition delay time, it does not exhibit any remarkable preignition chemistry or intense heat release in the upstream or middle regions because of its large-scale flow structure. A volume rendering of the dimensionless Damköhler number ($Da$) reveals the distribution of autoignition spots and propagating flames. The joint p.d.f. of the mixture fraction and $Da$ reveals the transition from sparse ignition to intense ignition and, finally, to flame propagation.
Seasonal climate variability is an important component of Earth's climate system, and has a significant impact on ecosystems and social systems. However, the temporal resolution of most proxy-based paleoclimate records is limiting to fully understand the past seasonal changes. Here, we used high-precision monthly resolution Sr/Ca records of three Tridacna squamosa specimens from the northern South China Sea (SCS) to reconstruct the sea surface temperature (SST) seasonality during three time periods from the middle Holocene. The results suggested that SST seasonality in the northern SCS during the middle Holocene (3.21 ± 0.98°C) was smaller than that for recent decades (AD 1994–2004, 4.32 ± 0.59°C). Analysis of modern instrumental data showed that the SST seasonality in the northern SCS was dominated by the winter SST, which was deeply influenced by the intensity of East Asian winter monsoon (EAWM). A strong EAWM usually resulted in cooler winter SST and a larger SST seasonality in the northern SCS. The reconstructed Holocene EAWM records showed that the EAWM strengthened from the middle to late Holocene, which was seen in our reconstruction of less SST seasonality changes during the middle Holocene in the northern SCS. This study highlighted that the Sr/Ca ratios from Tridacna shells can be used as a potential high-resolution indicator of past seasonal climate changes.
The present paper focuses on the structures and dynamics of flame edges in planar turbulent non-premixed flames bounded with a wall using direct numerical simulation (DNS). The global quenching behaviour was first examined and the flame edges were identified based on the intersections of mixture fraction and OH mass fraction iso-surfaces. For the upper branch of the planar jet flame, it is observed that the structures of flame edges change from tribrachial to monobrachial with increasing scalar dissipation rate. The flame edge speed is negatively correlated with the scalar dissipation rate in regions away from the wall, highlighting the role of turbulent mixing on the flame edge dynamics. During flame–wall interactions, the propagation speed of flame edges is mainly affected by the projection of edge flame normal in the wall-normal direction, i.e. $\boldsymbol {N}_{Z}\boldsymbol {\cdot }\boldsymbol {N}_{wall}$. In particular, the propagation speed increases with increasing $\boldsymbol {N}_{Z}\boldsymbol {\cdot }\boldsymbol {N}_{wall}$ in the near-wall region. The interactions of flame edges and turbulence bounded with a wall are characterized by the alignment between edge flame normal and principal strain rates. The normal of quenching edges has a tendency to align with the most extensive strain rate $\boldsymbol {e}_{1}$ in regions where the heat-release-induced dilatation is dominant over turbulent strain. In contrast, when the heat loss by cold wall effect is large enough to counteract the heat release induced by chemical reactions, turbulent strain is prevalent and the edge flame normal of the quenching edges preferentially aligns with the most compressive strain rate $\boldsymbol {e}_{3}$.
Three-dimensional (3-D) measurements of flame stretch are experimentally challenging. In this paper, two-dimensional (2-D) and 3-D measurements of flame stretch and turbulence–flame interactions were examined using direct numerical simulation (DNS) data of turbulent premixed flames, and models to estimate 3-D statistics of flame stretch-related quantities by correcting 2-D measurements were developed. A variety of DNS cases were simulated, including three freely propagating planar flames without a mean shear and a slot-jet flame with a mean shear. The main findings are summarized as follows. First, the mean shear mainly influences the flame orientations. However, it does not change the flame stretch and turbulence–flame interactions qualitatively. The distributions of out-of-plane angle of all cases are nearly isotropic. Second, models were proposed to approximate the 3-D statistics of flame stretch-related quantities using 2-D measurements, the performance of which was verified by comparing modelled and actual 3-D surface averages and probability density functions of tangential strain rate, curvature and displacement velocity. Third, 2-D measurements of flame stretch capture properly the trends of the 3-D results, with flame surface area being produced in low curvature regions and destroyed in highly curved regions. However, the magnitude of flame stretch was under-estimated in 2-D measurements. Finally, 2-D and 3-D turbulence–flame interactions were examined. The flame normal vector is aligned with the most compressive strain rate in both 2-D and 3-D measurements. Meanwhile, the flame normal vector is misaligned (weakly aligned) with the most extensive strain rate in 3-D (2-D) measurements, highlighting the difference in 2-D and 3-D results of turbulence–flame interactions.
The epidemic of coronavirus disease 2019 (COVID-19) began in China and had spread rapidly to many other countries. This study aimed to identify risk factors associated with delayed negative conversion of SARS-CoV-2 in COVID-19 patients. In this retrospective single-centre study, we included 169 consecutive patients with confirmed COVID-19 in Zhongnan Hospital of Wuhan University from 15th January to 2nd March. The cases were divided into two groups according to the median time of SARS-CoV-2 negative conversion. The differences between groups were compared. In total, 169 patients had a median virus negative conversion time of 18 days (interquartile range: 11–25) from symptom onset. Compared with the patients with short-term negative conversion, those with long-term conversion had an older age, higher incidence of comorbidities, chief complaints of cough and chest distress/breath shortness and severer illness on admission, higher level of leucocytes, neutrophils, aspartate aminotransferase, creatine kinase and erythrocyte sedimentation rate (ESR), lower level of CD3+CD4+ lymphocytes and albumin and more likely to receive mechanical ventilation. In multivariate analysis, cough, leucocytes, neutrophils and ESR were positively correlated with delayed virus negative conversion, and CD3+CD4+ lymphocytes were negatively correlated. The integrated indicator of leucocytes, neutrophils and CD3+CD4+ lymphocytes showed a good performance in predicting the negative conversion within 2 weeks (area under ROC curve (AUC) = 0.815), 3 weeks (AUC = 0.804), 4 weeks (AUC = 0.812) and 5 weeks (AUC = 0.786). In conclusion, longer quarantine periods might be more justified for COVID-19 patients with cough, higher levels of leucocytes, neutrophils and ESR and lower levels of CD3+CD4+ lymphocytes.
In this study, direct numerical simulation of the dispersion and motion of inertial particles in a spatially developing compressible turbulent boundary layer at a Mach number of 2 is performed with the Eulerian–Lagrangian point particle method. Two cases are simulated with different particle diameters (Stokes number) but identical inflow particle numbers. Statistical characteristics and preferential accumulation of particles in the very-near-wall and wake regions are systematically investigated through conditional sampling and mechanism analysis. The results reveal that particle streaks are formed in low-speed regions near the wall because of the influence of dominating ejection events. After normalization with the local minimum particle number density, the particle number density profile reveals a self-similar feature at different streamwise positions. Compared with small particles, large particles are more significantly influenced by turbophoresis and demonstrate stronger preferential accumulation; thus, more large particles are clustered in the near-wall regions and the deviation between the mean velocities of the particle and the fluid increases. With the wall effect, both large and small particles are selectively accumulated in high-vorticity regions in the buffer layer in contrast to turbulence without walls. In comparison with incompressible wall-bounded turbulence, a new mechanism for particle preferential accumulation based on local fluid density is discovered. Large particles are located in low-density regions in the inner zones and high-density regions in the outer zones. Nevertheless, small particles remain located in regions with low fluid density, as illustrated by the mechanism analysis of particle dilatation.
A higher dietary intake or serum concentration of betaine has been associated with greater lean body mass in middle-aged and older adults. However, it remains unknown whether betaine intake is associated with age-related loss of skeletal muscle mass (SMM). We assessed the association between dietary betaine intake and relative changes in SMM after 3 years in middle-aged adults. A total of 1242 participants aged 41–60 years from the Guangzhou Nutrition and Health Study 2011–2013 and 2014–2017 with body composition measurements by dual-energy X-ray absorptiometry were included. A face-to-face questionnaire was used to collect general baseline information. After adjustment for potential confounders, multiple linear regression found that energy-adjusted dietary betaine intake was significantly and positively associated with relative changes (i.e. percentage loss or increase) in SMM of legs, limbs and appendicular skeletal mass index (ASMI) over 3 years of follow-up (β 0·322 (se 0·157), 0·309 (se 0·142) and 0·303 (se 0·145), respectively; P < 0·05). The ANCOVA models revealed that participants in the highest betaine tertile had significantly less loss in SMM of limbs and ASMI and more increase in SMM of legs over 3 years of follow-up, compared with those in the bottom betaine tertile (all Ptrend < 0·05). In conclusion, our findings suggest that elevated higher dietary betaine intake may be associated with less loss of SMM of legs, limbs and ASMI in middle-aged adults.
High inductive helical support provides a solution to controlling the alignment error of inner electrodes in magnetically insulated transmission lines (MITLs). Three-dimensional particle-in-cell simulations were performed to examine the current loss mechanism and the effects of structural parameters on electron flow in an MITL with a helical inductor. An empirical expression related to the ratio of electron current loss to anode current and the ratio of anode current to self-limited current was obtained. Electron current loss caused by helical inductor with different structures was displayed. The results indicate that the current loss in an MITL, near an inductive helical support, comprises both the inductor current and the electron current loss. The non-uniform structure and current of a helical inductor cause an abrupt change in the magnetic field near the helical support, which leads to anomalous behavior and current loss of electron flow. In addition, current loss in the inductive helical-supported MITL is negligible when the inductance of the support is sufficiently high. This work facilitates the estimation of electron current loss caused by the inductive helical support in MITLs.
A modified compact Y-junction substrate-integrated waveguide (SIW) four-way power divider (PD)/combiner is proposed in this paper. The proposed approach is based on the traditional Y-junction waveguide. By using direct transition structure from SIW to half-mode SIW, four-way PD that provides equal power split to all four output ports is achieved. The even- and odd-mode equivalent circuits are given to analyze and design the PD. The measured results validate the proposed design methodology and show good agreement with the simulation results. The measured 17 dB return loss bandwidth and 1.2 dB insertion loss bandwidth of this four-way PD are both about 2.5 GHz.
Direct numerical simulations of particle-laden flows in a spatially developing turbulent thermal boundary layer over an isothermally heated wall have been performed with realistic fully developed turbulent inflow boundary conditions. To the authors’ best knowledge, this is the first time the effects of inertial solid particles on turbulent flow and heat transfer in a flat-plate turbulent boundary layer have been investigated, using a two-way coupled Eulerian–Lagrangian method. Results indicate that the presence of particles increases the mean streamwise velocity and temperature gradients of the fluid in the near-wall region. As a result, the skin-friction drag and heat transfer are significantly enhanced in the particle-laden flows with respect to the single-phase flow. The near-wall sweep and ejection motions are suppressed by the particles and hence the Reynolds shear stress and wall-normal turbulent heat flux are attenuated, which leads to reductions in the production of the turbulent kinetic energy and temperature fluctuations. In addition, the coherence and spacing of the near-wall velocity and temperature streaky structures are distinctly increased, while the turbulent vortical structures appear to be disorganized under the effect of the particles. Moreover, the intensity of the streamwise vortices decreases monotonically with increasing particle inertia.
In this paper, a systematic investigation of turbulence modulation by particles and its underlying physical mechanisms in decaying compressible isotropic turbulence is performed by using direct numerical simulations with the Eulerian–Lagrangian point-source approach. Particles interact with turbulence through two-way coupling and the initial turbulent Mach number is 1.2. Five simulations with different particle diameters (or initial Stokes numbers, $St_{0}$) are conducted while fixing both their volume fraction and particle densities. The underlying physical mechanisms responsible for turbulence modulation are analysed through investigating the particle motion in the different cases and the transport equations of turbulent kinetic energy, vorticity and dilatation, especially the two-way coupling terms. Our results show that microparticles ($St_{0}\leqslant 0.5$) augment turbulent kinetic energy and the rotational motion of fluid, critical particles ($St_{0}\approx 1.0$) enhance the rotational motion of fluid, and large particles ($St_{0}\geqslant 5.0$) attenuate turbulent kinetic energy and the rotational motion of fluid. The compressibility of the turbulence field is suppressed for all the cases, and the suppression is more significant if the Stokes number of particles is close to 1. The modifications of turbulent kinetic energy, the rotational motion and the compressibility are all related with the particle inertia and distributions, and the suppression of the compressibility is attributed to the preferential concentration and the inertia of particles.
Ritchmyer–Meshkov instability on an air/SF$_{6}$ interface is experimentally studied in a coaxial converging shock tube by a high-speed laser sheet imaging technique. An unperturbed case is first examined to obtain the characteristics of the converging shock and the shocked interface. For sinusoidal interfaces, the wave pattern and the interface morphology of the whole process are clearly observed. It is quantitatively found that the perturbation amplitude first decreases due to the shock compression, then experiences a rapid growth to a maximum value and finally drops quickly before the reshock. The reduction of growth rate is ascribed to the Rayleigh–Taylor stabilization caused by the interface deceleration motion that is present in the converging circumstance. It is noted that the influence of the wavenumber on the amplitude growth is very little before the reshock, but becomes significant after the reshock.
Direct numerical simulations of particle-laden spatially developing turbulent boundary layers over a flat plate have been performed to investigate the effect of inertial particles on turbulence modulation, using the Eulerian–Lagrangian point-particle approach with two-way coupling. The particles are smaller than the Kolmogorov length scale of the dilute flow, and inter-particle collisions are not considered. The simulation results show that the addition of small solid particles increases the mean streamwise fluid velocity, which in turn leads to a reduction in the boundary layer integral parameters and an increase in the skin-friction drag. These effects become more pronounced as the particle Stokes number and mass loading increase. The streamwise turbulence intensity is slightly enhanced in the close vicinity of the wall but damped in the outer layer. In contrast, the Reynolds stress and the turbulence intensities in the wall-normal and spanwise directions are substantially attenuated across the entire boundary layer, and the levels of attenuation increase monotonically with both particle Stokes number and mass loading. The exchange of kinetic energy between particles and fluid indicates that particle–fluid interactions cause extra energy dissipation, which plays a crucial role in turbulence modulation.
Low-dose clarithromycin has been recommended for the treatment of chronic rhinosinusitis without nasal polyps. However, it is uncertain whether a high dose of clarithromycin is more effective than a low dose.
Methods:
Forty-three chronic rhinosinusitis patients were randomised to low-dose or high-dose clarithromycin groups, and clinical efficacy was evaluated. Pre- and post-treatment measures included: nasal symptom assessment, endoscopic inspection (Lund–Kennedy system), a quality of life questionnaire (the Sino-Nasal Outcome Test 20) and examination of cytokine levels (interleukin-5 and -8) in nasal secretions.
Results:
The high dose of clarithromycin was significantly better in terms of clinical efficacy than the low dose for the treatment of chronic rhinosinusitis (p < 0.025). Significant differences in nasal cytokine levels (interleukin-5 and -8) were also observed between the low-dose and high-dose groups after short-term clarithromycin treatment (p < 0.025).
Conclusion:
Short-term, high-dose clarithromycin appears to be more effective for the treatment of chronic rhinosinusitis than low-dose clarithromycin.
We conducted an interview survey around and within Mengla and Shangyong Nature Reserves, Mengla County, Yunnan, China, in December 2008 to ascertain whether gibbons were present in the area, and in December 2011 we surveyed two sites in the Reserves for the northern white-cheeked gibbon Nomascus leucogenys. We found no signs of the existence of gibbons during the survey. Illegal hunting was common at both sites. Only 36 individuals in nine groups were recorded in Mengla and Shangyong Nature Reserves in the 1980s, and this small and fragmented population was probably unable to survive the pressure of hunting. No white-cheeked gibbon was recorded in Huanglianshan Nature Reserve in a survey carried out by other researchers in 2003. Gibbons have a very low chance of survival in unprotected forest, and we conclude that the white-cheeked gibbon is extinct, or at least ecologically extinct, in China.
The self-referential memory (SRM) effect refers to the phenomenon that stimuli processed with reference to the self are better remembered than those referenced to others. Studies have shown that schizophrenia patients do not have this memorial advantage for self-referenced information. The current study investigated the electrophysiological mechanism of the abolished SRM effect in schizophrenia.
Method
Twenty schizophrenia patients and 22 controls were recruited to complete an SRM task. We used a high-time resolution event-related potential (ERP) technique to analyze the electrophysiological differences between patients and controls during self- and other-reflection processing.
Results
Behavior data indicated that healthy controls had a typical SRM bias that was absent in the schizophrenia patients. ERP comparison between groups showed that the schizophrenia patients presented smaller voltages in both self- and other-reflection conditions in the 160–260 ms (P2 component) and 800–1200 ms (positive slow wave) time windows over the pre/frontal cortex. Furthermore, the N2 amplitudes (270–380 ms) differed between self- and other-reflection conditions in patients but not in normal controls. More importantly, we found that the P3 amplitudes in the parietal cortex correlated significantly with the SRM bias score in the patients (r = –0.688).
Conclusions
These results provide comprehensive and direct electrophysiological evidence for self- and other-reflective dysfunction in schizophrenia patients and contribute to our understanding of the underlying neural substrates of the abolished SRM effect in schizophrenia.
The study of interactions between a high-power laser and atoms has been one of the fundamental and interesting topics in strong field physics for decades. Based on a nonperturbative model, ten years ago, we developed a set of programs to facilitate the study of interactions between a circularly polarized laser and atomic hydrogen. These programs included only contribution from the bound states of the hydrogen atom. However, as the laser intensity increases, contribution from continuum states to the excitation and ionization processes becomes larger and can no longer be neglected. Furthermore, because the original code is not able to add this contribution directly due to its many disadvantages, a major upgrade of the code is required before including the contribution from continuum states in future. In this paper, first we deduce some important formulas for contribution of continuum states and present modifications and tests for the upgraded code in detail. Second we show some comparisons among new results, old results from the original codes and the available experimental data. Overall the new result agrees with experimental data well. Last we present our calculation of above-threshold ionization (ATI) rate and compare it with a pertuba-tive calculation. The comparison shows that our nonperturbative calculation can also produce ATI peak suppression.
Tribological behavior of alumina-particle-reinforced aluminum composites made by powder metallurgy process has been investigated. The nanocomposite containing 15 vol% of Al2O3 nanoparticles exhibits excellent wear resistance by showing significantly low wear rate and abrasive wear mode. The wear rate of the nanocomposite is even lower than stainless steel. We have also demonstrated that such excellent wear resistance only occurred in the composite reinforced with the high volume fraction of nanosized reinforcing particles. The results were discussed in terms of the microstructure of the nanocomposite.
Allelic expression of the rice yield-related gene, leucine-rich receptor-like kinase 6 (LRK6), in the hybrid of 93-11 (Oryza sativa L. subsp. Indica var. 93-11) and Nipponbare (O. sativa L. subsp. Japonica var. Nipponbare) is determined by allelic promoter cis-elements. Using deletion analysis of the LRK6 promoter, we identified two distinct regions that might contribute to LRK6 expression. Sequence alignment revealed differences in these LRK6 promoter regions in 93-11 and Nipponbare. One of the segments, named differential sequence of LRK6 promoter 2 (DSLP2), contains potential transcription factor binding sites. Using a yeast one-hybrid assay, we isolated an ethylene-responsive factor (ERF) protein that binds to DSLP2. Sequence analysis and a GCC-box assay showed that the ERF gene, O. sativa ERF 3 (OsERF3), which belongs to ERF subfamily class II, has a conserved ERF domain and an ERF-associated amphiphilic repression repressor motif. We used an in vivo mutation assay to identify a new motif (5′-TAA(A)GT-3′) located in DSLP2, which interacts with OsERF3. These results suggest that OsERF3, an AP2 (APETALA 2 Gene)/ERF transcription factor, binds the LRK6 promoter at this new motif, which might cause differential expression of LRK6 in the 93-11/Nipponbare hybrid.