Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T14:35:43.633Z Has data issue: false hasContentIssue false

A direct numerical simulation study on the structures and turbulence–flame interactions of a laboratory-scale lean premixed jet flame in cross-flow

Published online by Cambridge University Press:  22 February 2023

Mengzhen Cheng
Affiliation:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
Haiou Wang*
Affiliation:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
Kun Luo
Affiliation:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
Jianren Fan
Affiliation:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
*
Email address for correspondence: wanghaiou@zju.edu.cn

Abstract

In the present work, direct numerical simulation of a laboratory-scale lean premixed reacting jet in cross-flow was performed to explore the flow–flame structures and turbulence–flame interactions. A jet of lean premixed ethylene–air mixtures (equivalence ratio $\phi = 0.6$) was injected into a hot vitiated cross-flow. Both non-reacting and reacting cases were simulated. It was found that the reacting jet penetrates deeper in the cross-flow with a weaker shear layer compared with the non-reacting one. The wake of the non-reacting and reacting jet is characterized by vertical vortices and recirculation zones, respectively. As for the flame structure of the reacting case, the reaction intensity varies considerably in different flame zones. The heat release rate on the leeward side is higher than that on the windward side, but lower than that of the corresponding laminar flame. The analysis of the turbulence–flame interactions of the reacting case showed that the large local Damköhler number ($Da$) related to reaction-induced dilatations results in an increased tendency of the scalar gradient to align with the most extensive strain rate, which is more evident in the regions with high heat release rate on the leeward side. Negative dilatation regions with positive tangential strain rate and negative normal strain rate are observed on the windward side. High positive dilatations appear on the flame front of the leeward side. The tangential strain rate is negatively correlated with the normal strain rate and curvature. Regions with a high local $Da$ on the windward side correspond with high positive curvature regions.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashurst, W.T., Kerstein, A.R., Kerr, R.M. & Gibson, C.H. 1987 Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30, 23432353.CrossRefGoogle Scholar
Baker, C.J. 1980 The turbulent horseshoe vortex. J. Wind Engng Ind. Aerodyn. 6, 923.CrossRefGoogle Scholar
Batchelor, G.K. 1952 The effect of homogeneous turbulence on material lines and surfaces. Proc. R. Soc. Lond. Ser. A 213 (1114), 349366.Google Scholar
Batchelor, G.K., Howells, I.D. & Townsend, A.A. 1959 Small-scale variation of convected quantities like temperature in turbulent fluid: part 2. The case of large conductivity. J. Fluid Mech. 5, 134139.CrossRefGoogle Scholar
Bilger, R.W., Stårner, S.H. & Kee, R.J. 1990 On reduced mechanisms for methane-air combustion in non-premixed flames. Combust. Flame 80, 135149.CrossRefGoogle Scholar
Candel, S.M. & Poinsot, T.J. 1990 Flame stretch and the balance equation for the flame area. Combust. Sci. Technol. 70, 115.CrossRefGoogle Scholar
Chakraborty, N., Hawkes, E.R., Chen, J.H. & Cant, R.S. 2008 The effects of strain rate and curvature on surface density function transport in turbulent premixed methane-air and hydrogen-air flames: a comparative study. Combust. Flame 154, 259280.CrossRefGoogle Scholar
Chen, J.H., et al. 2009 Terascale direct numerical simulations of turbulent combustion using S3D. Comput. Sci. Disc. 2, 015001.CrossRefGoogle Scholar
Chen, J.H. & Im, H.G. 2000 Stretch effects on the burning velocity of turbulent premixed hydrogen/air flames. Proc. Combust. Inst. 28, 211218.CrossRefGoogle Scholar
Cheng, M., Wang, H., Luo, K. & Fan, J. 2022 A DNS study on the flame structures and flame stabilization mechanism of a laboratory-scale lean premixed jet flame in crossflow. Proc. Combust. Inst. 39 (in press) doi: https://doi.org/10.1016/j.proci.2022.09.009.Google Scholar
Cifuentes, L., Dopazo, C., Martin, J. & Jimenez, C. 2014 Local flow topologies and scalar structures in a turbulent premixed flame. Phys. Fluids 26, 065108.CrossRefGoogle Scholar
Cortelezzi, L. & Karagozian, A.R. 2001 On the formation of the counter-rotating vortex pair in transverse jets. J. Fluid Mech. 446, 347373.CrossRefGoogle Scholar
Dayton, J.W., Linevitch, K. & Cetegen, B.M. 2019 Ignition and flame stabilization of a premixed reacting jet in vitiated crossflow. Proc. Combust. Inst. 37, 24172424.CrossRefGoogle Scholar
Dopazo, C., Cifuentes, L., Martin, J. & Jimenez, C. 2015 Strain rates normal to approaching iso-scalar surfaces in a turbulent premixed flame. Combust. Flame 162, 17291736.CrossRefGoogle Scholar
Dopazo, C., Martín, J. & Hierro, J. 2006 Iso-scalar surfaces, mixing and reaction in turbulent flows. C. R. Mec. 334, 483492.CrossRefGoogle Scholar
Dopazo, C., Martín, J. & Hierro, J. 2007 Local geometry of isoscalar surfaces. Phys. Rev. E - Stat. Nonlinear Soft Matt. Phys. 76, 111.Google ScholarPubMed
Echekki, T. & Chen, J.H. 1996 Unsteady strain rate and curvature effects in turbulent premixed methane-air flames. Combust. Flame 106, 184202.CrossRefGoogle Scholar
Fric, T.F. & Roshko, A. 1994 Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 147.CrossRefGoogle Scholar
Grout, R.W., Gruber, A., Kolla, H., Bremer, P.T., Bennett, J.C., Gyulassy, A. & Chen, J.H. 2012 A direct numerical simulation study of turbulence and flame structure in transverse jets analysed in jet-trajectory based coordinates. J. Fluid Mech. 706, 351383.CrossRefGoogle Scholar
Grout, R.W., Gruber, A., Yoo, C.S. & Chen, J.H. 2011 Direct numerical simulation of flame stabilization downstream of a transverse fuel jet in cross-flow. Proc. Combust. Inst. 33, 16291637.CrossRefGoogle Scholar
Han, D. & Mungal, M.G. 2001 Direct measurement of entrainment in reacting/nonreacting turbulent jets. Combust. Flame 124, 370386.CrossRefGoogle Scholar
Han, D. & Mungal, M.G. 2003 Simultaneous measurements of velocity and CH distribution. Part II: deflected jet flames. Combust. Flame 133, 117.CrossRefGoogle Scholar
Hartung, G., Hult, J., Kaminski, C.F., Rogerson, J.W. & Swaminathan, N. 2008 Effect of heat release on turbulence and scalar-turbulence interaction in premixed combustion. Phys. Fluids 20, 035110.CrossRefGoogle Scholar
Hasselbrink, E.F. & Mungal, M.G. 2001 Transverse jets and jet flames. Part 2. Velocity and OH field imaging. J. Fluid Mech. 443, 2768.CrossRefGoogle Scholar
Hawkes, E.R., Chatakonda, O., Kolla, H., Kerstein, A.R. & Chen, J.H. 2012 A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence. Combust. Flame 159, 26902703.CrossRefGoogle Scholar
Hawkes, E.R., Sankaran, R., Chen, J.H., Kaiser, S.A. & Frank, J.H. 2009 An analysis of lower-dimensional approximations to the scalar dissipation rate using direct numerical simulations of plane jet flames. Proc. Combust. Inst. 32 (1), 14551463.CrossRefGoogle Scholar
Hawkes, E.R., Sankaran, R., Sutherland, J.C. & Chen, J.H. 2007 Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal CO/H2 kinetics. Proc. Combust. Inst. 31, 16331640.CrossRefGoogle Scholar
Hermann Schlichting, , 1987 Boundary Layer Theory. McGraw Hill.Google Scholar
Hesse, H., Chakraborty, N. & Mastorakos, E. 2009 The effects of the lewis number of the fuel on the displacement speed of edge flames in igniting turbulent mixing layers. Proc. Combust. Inst. 32, 13991407.CrossRefGoogle Scholar
Karagozian, A.R. 2010 Transverse jets and their control. Prog. Energy Combust. Sci. 36, 531553.CrossRefGoogle Scholar
Kennedy, C.A., Carpenter, M.H. & Lewis, R.M. 2000 Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Maths 35, 177219.CrossRefGoogle Scholar
Kerr, R.M. 1985 Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence. J. Fluid Mech. 153, 3158.CrossRefGoogle Scholar
Kim, H.S. & Pitsch, H. 2007 Scalar gradient and small-scale structure in turbulent premixed combustion. Phys. Fluids 19, 115104.CrossRefGoogle Scholar
Kolla, H., Grout, R.W., Gruber, A. & Chen, J.H. 2012 Mechanisms of flame stabilization and blowout in a reacting turbulent hydrogen jet in cross-flow. Combust. Flame 159, 27552766.CrossRefGoogle Scholar
Lu, T.F., Yoo, C.S., Chen, J.H. & Law, C.K. 2010 Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: a chemical explosive mode analysis. J. Fluid Mech. 652, 4564.CrossRefGoogle Scholar
Luo, Z., Yoo, C.S., Richardson, E.S., Chen, J.H., Law, C.K. & Lu, T. 2012 Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow. Combust. Flame 159, 265274.CrossRefGoogle Scholar
Matalon, M. 2009 Flame dynamics. Proc. Combust. Inst. 32, 5782.CrossRefGoogle Scholar
Minamoto, Y., Fukushima, N., Tanahashi, M., Miyauchi, T., Dunstan, T.D. & Swaminathan, N. 2011 Effect of flow-geometry on turbulence-scalar interaction in premixed flames. Phys. Fluids 23, 125107.CrossRefGoogle Scholar
Moussa, Z.M., Trischka, J.W. & Eskinazi, S. 1977 The near field in the mixing of a round jet with a cross-stream. J. Fluid Mech. 80, 4980.CrossRefGoogle Scholar
Muppidi, S. & Mahesh, K. 2005 Study of trajectories of jets in crossflow using direct numerical simulations. J. Fluid Mech. 530, 81100.CrossRefGoogle Scholar
Muppidi, S. & Mahesh, K. 2006 Two-dimensional model problem to explain counter-rotating vortex pair formation in a transverse jet. Phys. Fluids 18, 085103.CrossRefGoogle Scholar
Muppidi, S. & Mahesh, K. 2007 Direct numerical simulation of round turbulent jets in crossflow. J. Fluid Mech. 574, 5984.CrossRefGoogle Scholar
Muppidi, S. & Mahesh, K. 2008 Direct numerical simulation of passive scalar transport in transverse jets. J. Fluid Mech. 598, 335360.CrossRefGoogle Scholar
Nomura, K.K. & Elghobashi, S.E. 1992 Mixing characteristics of an inhomogeneous scalar in isotropic and homogeneous sheared turbulence. Phys. Fluids A 4, 606625.CrossRefGoogle Scholar
Passot, T. & Pouquet, A. 1987 Numerical simulation of compressible homogeneous flows in the turbulent regime. J. Fluid Mech. 181, 441466.CrossRefGoogle Scholar
Paul, P.H. & Najm, H.N. 1998 Planar laser-induced fluorescence imaging of flame heat release rate. Symp. (Intl) Combust. 27, 4350.CrossRefGoogle Scholar
Poinsot, T.J. 1992 Numerical simulations of Lewis number effects in turbulent premixed flames. J. Fluid Mech. 244, 405436.Google Scholar
Poinsot, T. & Veynante, D. 2001 Theoretical and Numerical Combustion. Edwards.Google Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Sankaran, R., Hawkes, E.R., Chen, J.H., Lu, T. & Law, C.K. 2007 Structure of a spatially developing turbulent lean methane-air Bunsen flame. Proc. Combust. Inst. 31, 12911298.CrossRefGoogle Scholar
Sankaran, R., Hawkes, E.R., Yoo, C.S. & Chen, J.H. 2015 Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane-air jet flames. Combust. Flame 162, 32943306.CrossRefGoogle Scholar
Sauerwein, S.C. & Vakili, A.D. 1999 An experimental study of zero-mass jets in crossflow. In 37th Aerospace Sciences Meeting and Exhibit, pp. 111–144.Google Scholar
Schlegel, F. & Ghoniem, A.F. 2014 Simulation of a high Reynolds number reactive transverse jet and the formation of a triple flame. Combust. Flame 161, 971986.CrossRefGoogle Scholar
Schmitt, D., Kolb, M., Weinzierl, J., Hirsch, C. & Sattelmayer, T. 2013 Ignition and flame stabilization of a premixed jet in hot cross flow. Proc. ASME Turbo Expo 1 A, 110.Google Scholar
Schulz, O. & Noiray, N. 2019 Large eddy simulation of a premixed flame in hot vitiated crossflow with analytically reduced chemistry. Trans. ASME: J. Engng Gas Turbines Power 141, 17.Google Scholar
Schulz, O., Piccoli, E., Felden, A., Staffelbach, G. & Noiray, N. 2019 Autoignition-cascade in the windward mixing layer of a premixed jet in hot vitiated crossflow. Combust. Flame 201, 215233.CrossRefGoogle Scholar
Solana-Pérez, R., Schulz, O. & Noiray, N. 2021 Simulation of the self-ignition of a cold premixed ethylene–air jet in hot vitiated crossflow. Flow Turbul. Combust. 106, 12951311.CrossRefGoogle Scholar
Sponfeldner, T., Boxx, I., Beyrau, F., Hardalupas, Y., Meier, W. & Taylor, A.M.K.P. 2015 On the alignment of fluid-dynamic principal strain-rates with the 3D flamelet-normal in a premixed turbulent V-flame. Proc. Combust. Inst. 35, 12691276.CrossRefGoogle Scholar
Steinberg, A.M., Driscoll, J.F. & Swaminathan, N. 2012 Statistics and dynamics of turbulence-flame alignment in premixed combustion. Combust. Flame 159, 25762588.CrossRefGoogle Scholar
Steinberg, A.M., Sadanandan, R., Demb, C., Kutne, P. & Meier, W. 2013 Structure and stabilization of hydrogen jet flames in cross-flows. Proc. Combust. Inst. 34, 14991507.CrossRefGoogle Scholar
Su, L.K. & Clemens, N.T. 2003 The structure of fine-scale scalar mixing in gas-phase planar turbulent jets. J. Fluid Mech. 488, 129.CrossRefGoogle Scholar
Su, L.K. & Mungal, M.G. 2004 Simultaneous measurements of scalar and velocity field evolution in turbulent crossflowing jets. J. Fluid Mech. 513, 145.CrossRefGoogle Scholar
Sullivan, R., Wilde, B., Noble, D.R., Seitzman, J.M. & Lieuwen, T.C. 2014 Time-averaged characteristics of a reacting fuel jet in vitiated cross-flow. Combust. Flame 161, 17921803.CrossRefGoogle Scholar
Wagner, J.A., Grib, S.W., Dayton, J.W., Renfro, M.W. & Cetegen, B.M. 2017 a Flame stabilization analysis of a premixed reacting jet in vitiated crossflow. Proc. Combust. Inst. 36, 37633771.CrossRefGoogle Scholar
Wagner, J.A., Grib, S.W., Renfro, M.W. & Cetegen, B.M. 2015 Flowfield measurements and flame stabilization of a premixed reacting jet in vitiated crossflow. Combust. Flame 162, 37113727.CrossRefGoogle Scholar
Wagner, J.A., Renfro, M.W. & Cetegen, B.M. 2017 b Premixed jet flame behavior in a hot vitiated crossflow of lean combustion products. Combust. Flame 176, 521533.CrossRefGoogle Scholar
Wang, H., Chen, G., Luo, K., Hawkes, E.R., Chen, J.H. & Fan, J. 2021 a Turbulence/flame/wall interactions in non-premixed inclined slot-jet flames impinging at a wall using direct numerical simulation. Proc. Combust. Inst. 38, 27112720.CrossRefGoogle Scholar
Wang, H., Hawkes, E.R. & Chen, J.H. 2016 Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame. Phys. Fluids 28, 095107.CrossRefGoogle Scholar
Wang, H., Hawkes, E.R. & Chen, J.H. 2017 a A direct numerical simulation study of flame structure and stabilization of an experimental high Ka CH4/air premixed jet flame. Combust. Flame 180, 110123.CrossRefGoogle Scholar
Wang, H., Hawkes, E.R., Chen, J.H., Zhou, B., Li, Z. & Aldén, M. 2017 b Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame - an analysis of flame stretch and flame thickening. J. Fluid Mech. 815, 511536.CrossRefGoogle Scholar
Wang, H., Hawkes, E.R., Ren, J., Chen, G., Luo, K. & Fan, J. 2021 b 2-D and 3-D measurements of flame stretch and turbulence-flame interactions in turbulent premixed flames using DNS. J. Fluid Mech. 913, 127.CrossRefGoogle Scholar
Wang, H., Hawkes, E.R., Zhou, B., Chen, J.H., Li, Z. & Aldén, M. 2017 c A comparison between direct numerical simulation and experiment of the turbulent burning velocity-related statistics in a turbulent methane-air premixed jet flame at high Karlovitz number. Proc. Combust. Inst. 36, 20452053.CrossRefGoogle Scholar
Yamaguchi, H. 2008 Engineering Fluid Mechanics, Springer.Google Scholar
Yoo, C.S., Richardson, E.S., Sankaran, R. & Chen, J.H. 2011 A DNS study on the stabilization mechanism of a turbulent lifted ethylene jet flame in highly-heated coflow. Proc. Combust. Inst. 33, 16191627.CrossRefGoogle Scholar
Yoo, C.S., Sankaran, R. & Chen, J.H. 2009 Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: flame stabilization and structure. J. Fluid Mech. 640, 453481.CrossRefGoogle Scholar
Yuan, L.L. & Street, R.L. 1998 Trajectory and entrainment of a round jet in crossflow. Phys. Fluids 10, 23232335.CrossRefGoogle Scholar
Zhao, S., Er-raiy, A., Bouali, Z. & Mura, A. 2018 Dynamics and kinematics of the reactive scalar gradient in weakly turbulent premixed flames. Combust. Flame 198, 436454.CrossRefGoogle Scholar
Supplementary material: File

Cheng et al. supplementary material

Cheng et al. supplementary material

Download Cheng et al. supplementary material(File)
File 29.7 KB