Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T21:03:20.600Z Has data issue: false hasContentIssue false

Chapter 32 - Physiological MR to evaluate HIV-associated brain disorders

from Section 4 - Infection, inflammation and demyelination

Published online by Cambridge University Press:  05 March 2013

Jonathan H. Gillard
Affiliation:
University of Cambridge
Adam D. Waldman
Affiliation:
Imperial College London
Peter B. Barker
Affiliation:
The Johns Hopkins University School of Medicine
Get access

Summary

Introduction

Physiological MRI and MR spectroscopy (MRS) are highly sensitive, objective, non-invasive techniques to monitor the severity of brain injury as well as the effects of treatments. As MR techniques have no radiation, they are ideal for monitoring progression of disease or treatment effects when repeat measurements are needed. Several recent MR techniques, including proton MRS, functional MRI (fMRI), and physiological MR techniques such as diffusion-weighted MRI (DWI) magnetization transfer (MT), MRI-weighted and perfusion MRI (PWI), have all been applied to evaluate brain injury and opportunistic infections or tumors associated with human immunodeficiency virus (HIV) infection and acquired immunodeficiency syndrome (AIDS). Since most of these techniques are available on commercial MR scanners, they are particularly suitable for diagnostic purposes and for monitoring treatment effects.

This chapter delineates salient features of HIV-associated brain injury (both in HIV dementia and neuroasymptomatic individuals) on MRS and physiological MRI, as well as opportunistic infections associated with HIV. Future directions for the applications of these studies to evaluate the pathophysiology of HIV-associated central nervous system (CNS) injury and for treatment monitoring will be discussed.

Type
Chapter
Information
Clinical MR Neuroimaging
Physiological and Functional Techniques
, pp. 501 - 518
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antinori, A, Arendt, G, Becker, JT, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology 2007; 69: 1789–1799.CrossRefGoogle ScholarPubMed
Menon, DK, Ainsworth, JG and Cox, IJ. Proton MR spectroscopy of the brain in AIDS dementia complex. J Comput Assist Tomogr 1992; 16: 538–542.CrossRefGoogle ScholarPubMed
Paley, M, Cozzone, P, Alonso, J, et al. A multicenter proton magnetic spectroscopy study of neurological complications of AIDS. AIDS Res Hum Retroviruses 1996; 12: 213–222.CrossRefGoogle Scholar
Salvan, A, Vion-Dury, J, Confort-Gouny, S, et al. Cerebral metabolic alterations in human immunodeficiency virus related encephalopathy detected by proton magnetic resonance spectroscopy. Comparison using short and long echo times. Invest Radiol 1997; 32(8): 485–495.CrossRefGoogle Scholar
Chong, WK, Sweeney, B, Wilkinson, ID, et al. Proton spectroscopy of the brain in HIV infection: correlation with clinical, immunologic and MR imaging findings. Radiology 1993; 188: 119–124.CrossRefGoogle ScholarPubMed
Jarvik, JG, Lenkinski, RE, Grossman, RI, et al. Proton MR spectroscopy of HIV-infected patients: characterization of abnormalities with imaging and clinical correlation. Radiology 1993; 186: 739–744.CrossRefGoogle ScholarPubMed
Paley, M, Wilkinson, ID, Hall-Craggs, MA, et al. Short echo time proton spectroscopy of the brain in HIV infection/AIDS. Magn Reson Imaging 1995; 13(6): 871–875.CrossRefGoogle ScholarPubMed
Laubenberger, J, Haussinger, D, Bayer, S, et al. HIV-related metabolic abnormalities in the brain: depiction with proton MR spectroscopy with short echo times. Radiology 1996; 199: 805–810.CrossRefGoogle ScholarPubMed
Tracey, I, Carr, CA, Guimaraes, AR, et al. Brain choline-containing compounds are elevated in HIV-positive patients before the onset of AIDS dementia complex: a proton magnetic resonance spectroscopic study. Neurology 1996; 46: 783–788.CrossRefGoogle ScholarPubMed
English, C, Kaufman, M, Worth, J, et al. Elevated frontal lobe cytosolic choline levels in minimal or mild AIDS dementia complex patients: a proton magnetic resonance spectroscopy study. Biol Psychiatry 1997; 41(41): 500–502.CrossRefGoogle ScholarPubMed
Chang, L, Ernst, T, Leonido-Yee, M, et al. Cerebral metabolite abnormalities correlate with clinical severity of HIV-cognitive motor complex. Neurology 1999; 52: 100–108.CrossRefGoogle Scholar
Chong, WK, Paley, M, Wilkinson, ID, et al. Localized cerebral proton MR spectroscopy in HIV infection and AIDS. AJNR Am J Neuroradiol 1994; 15: 21–25.Google ScholarPubMed
Barker, PB, Lee, RR, McArthur, JC. AIDS dementia complex: evaluation with proton MR spectroscopic imaging. Radiology 1995; 195: 58–64.CrossRefGoogle ScholarPubMed
Meyerhoff, D, Bloomer, C, Cardenas, V, et al. Elevated subcortical choline metabolites in cognitively and clinically asymptomatic HIV+ patients. Neurology 1999; 52(5): 995–1003.CrossRefGoogle ScholarPubMed
Marcus, C, Taylor-Robinson, S, Sargentoni, J, et al. 1H MR spectroscopy of the brain in HIV-1 seropositive subjects evidence for diffuse metabolic abnormalities. Metab Brain Dis 1998; 13(2): 123–36.CrossRefGoogle ScholarPubMed
Suwanwelaa, N, Phanuphak, P, Phanthumchinda, K, et al. Magnetic resonance spectroscopy of the brain in neurologically asymptomatic HIV-infected patients. Magn Reson Imaging 2000; 18: 859–865.CrossRefGoogle ScholarPubMed
von Giesen, H, Wittsack, H, Wenserski, F, et al. Basal ganglia metabolite abnormalities in minor motor disorder associated with human immunodeficiency virus type 1. Arch Neurol 2001; 58: 1281–1286.CrossRefGoogle ScholarPubMed
Chang, L, Ernst, T, Witt, M, et al. Relationships among cerebral metabolites, cognitive function and viral loads in antiretroviral-naive HIV-positive patient. NeuroImage 2002; 17: 1638–1648.CrossRefGoogle Scholar
Lopez-Villegas, D, Lenkinski, RE and Frank, I.Biochemical changes in the frontal lobe of HIV-infected individuals detected by magnetic resonance spectroscopy. Proc Natl Acad Sci USA 1997; 94: 9854–9859.CrossRefGoogle ScholarPubMed
Graf, J, Guggino, W and Turnheim, K. Volume regulation in transporting epithelia. In Interactions in Cell Volume and Cell Function, eds., Lang, F and Häussinger, D. HeidelbergSpringer, 1993, pp. 67–117.Google Scholar
Power, C, Kong, PA, Crawford, TO, et al. Cerebral white matter changes in acquired immunodeficiency syndrome dementia: alterations of the blood-brain barrier. Ann Neurol 1993; 34: 339–350.CrossRefGoogle ScholarPubMed
Chang, L, Ernst, T, Leonido-Yee, M, et al. Highly active antiretroviral therapy reverses brain metabolite abnormalities in mild HIV dementia. Neurology 1999; 53: 782–789.CrossRefGoogle ScholarPubMed
Ernst, T, Chang, L. Elimination of artifacts in short echo time 1H MR spectroscopy of the frontal lobe. Magn Reson Med 1996; 36: 462–468.CrossRefGoogle ScholarPubMed
Meyerhoff, DJ, MacKay, S, Bachman, L, et al. Reduced brain N-acetylaspartate suggests neuronal loss in cognitively impaired immunodeficiency virus-seropositive individuals: in vivo 1H magnetic resonance spectroscopic imaging. Neurology 1993; 43: 509–515.CrossRefGoogle ScholarPubMed
Meyerhoff, D, MacKay, S, Poole, N, et al. N-Acetylaspartate reductions measured by 1H MRSI in cognitively impaired HIV-seropositive individuals. Magn Reson Imaging 1994; 12: 653–659.CrossRefGoogle ScholarPubMed
Meyerhoff, D, Weiner, M and Fein, G. Deep gray matter structures in HIV infection: a proton MR spectroscopic study. AJNR Am J Neuroradiol 1996; 17: 973–978.Google ScholarPubMed
Moller, H, Vermathen, P, Lentschig, M, et al. Metabolic characterization of AIDS dementia complex by spectroscopic imaging. J Magn Reson Imaging 1999; 9: 10–18.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Wilkinson, ID, Lunn, S, Miszkiel, KA, et al. Proton MRS and quantitative MRI assessment of the short term neurological response to antiretroviral therapy in AIDS. J Neurol Neurosurg Psychiatry 1997; 63: 477–482.CrossRefGoogle Scholar
Salvan, A, Vion-Dury, J, Confort-Gouny, S, et al. Brain proton magnetic resonance spectroscopy in HIV-related encephalopathy: identification of evolving metabolic patterns in relation to dementia and therapy. AIDS Res Hum Retroviruses 1997; 13: 1055–1066.CrossRefGoogle ScholarPubMed
Stankoff, B, Tourbah, A, Suarez, S, et al. Clinical and spectroscopic improvement in HIV-associated cognitive impairment. Neurology 2001; 56: 112–115.CrossRefGoogle ScholarPubMed
Chang, L, Ernst, T, Witt, M, et al. Cerebral metabolite abnormalities in antiretroviral-naive HIV-positive patient before and after HAART. Neurology 2000; 54: S47–S52.Google Scholar
Chang, L, Witt, M, Miller, E, et al. Cerebral metabolite changes during the first nine months of HAART. Neurology 2001; 56: S63.Google Scholar
Dore, GJ, McDonald, A, Li, Y, et al. Marked improvement in survival following AIDS dementia complex in the era of highly active antiretroviral therapy. AIDS 2003; 17: 1539–1545.CrossRefGoogle ScholarPubMed
Ghafouri, M, Amini, S, Khalili, K, et al. HIV-1 associated dementia: symptoms and causes. Retrovirology 2006; 3: 28.CrossRefGoogle ScholarPubMed
McArthur, JC, Haughey, N, Gartner, S, et al. Human immunodeficiency virus-associated dementia: an evolving disease. J Neurovirol 2003; 9: 205–221.CrossRefGoogle Scholar
Sacktor, N, Nakasujja, N, Skolasky, R, et al. Antiretroviral therapy improves cognitive impairment in HIV+ individuals in sub-Saharan Africa. Neurology 2006; 67: 311–314.CrossRefGoogle ScholarPubMed
Anthony, IC, Ramage, SN, Carnie, FW, et al. Influence of HAART on HIV-related CNS disease and neuroinflammation. J Neuropathol Exp Neurol 2005; 64: 529–536.CrossRefGoogle ScholarPubMed
Ernst, T, Chang, L. Effect of aging on brain metabolism in antiretroviral-naive HIV-positive patient. AIDS 2004; 18(Suppl 1): S61–S67.CrossRefGoogle Scholar
Chang, L, Lee, P, Yiannoutsos, C, et al. A multicenter in vivo proton-MRS study of HIV-associated dementia and its relationship to age. Neuroimage 2004; 23: 1336–1347.CrossRefGoogle Scholar
Fiscus, S, Adimora, A, Schoenbach, V, et al. Perinatal HIV infection and the effect of zidovudine therapy on transmission in rural and urban counties. JAMA 1996; 275: 1483–1488.CrossRefGoogle ScholarPubMed
Cortey, A, Jarvik, JG, Lenkinski, RE, et al. Proton MR spectroscopy of brain abnormalities in neonates born to HIV-positive mothers. AJNR Am J Neuroradiol 1994; 15: 1853–1859.Google ScholarPubMed
Lu, D, Pavlakis, SG, Frank, Y, et al. Proton MR spectroscopy of the basal ganglia in healthy children and children with AIDS. Radiology 1996; 199: 423–428.CrossRefGoogle ScholarPubMed
Pavlakis, SG, Lu, D, Frank, Y, et al. Brain lactate and N-acetylaspartate in pediatric AIDS encephalopathy. AJNR Am J Neuroradiol 1998; 19: 383–385.Google ScholarPubMed
Salvan, A-M, Lamoureux, S, Michel, G, Localized proton magnetic resonance spectroscopy of the brain in children infected with human immunodeficiency virus with and without encephalopathy. Pediatr Res 1998; 44: 755–762.CrossRefGoogle ScholarPubMed
Keller, MA, Venkatramen, TN, Thomas, A, et al. Altered neurometabolite development in HIV-infected children: correlation with neuropsychological tests. Neurology 2004; 62: 1810–1817.CrossRefGoogle ScholarPubMed
Keller, MA, Venkatramen, TN, Thomas, A, et al. Cerebral metabolites in HIV-infected children followed for 10 months with 1H-MRS. Neurology 2006; 66: 874–879.CrossRefGoogle ScholarPubMed
Banakar, S, Thomas, MA, Deveikis, A, et al. Two-dimensional 1H MR spectroscopy of the brain in human immunodeficiency virus (HIV)-infected children. J Magn Reson Imaging 2008; 27: 710–717.CrossRefGoogle ScholarPubMed
Tracey, I, Hamberg, LM, Guimaraes, AR, et al. Increased cerebral blood volume in HIV-positive patients detected by functional MRI. Neurology 1998; 50: 1821–1826.CrossRefGoogle ScholarPubMed
Rottenberg, DA, Moeller, JR, Strother, SC, et al. The metabolic pathology of the AIDS dementia complex. Ann Neurol 1987; 22: 700–706.CrossRefGoogle ScholarPubMed
Pohl, P, Vogl, G, Fill, H, et al. Single photon emission computed tomography in AIDS dementia complex. J Nucl Med 1988; 29: 1382–1386.Google ScholarPubMed
Holman, BL, Garada, B, Johnson, KA, et al. A comparison of brain perfusion SPECT in cocaine abuse and AIDS dementia complex. J Nucl Med 1992; 33: 1312–1315.Google ScholarPubMed
Harris, GJ, Pearlson, GD, McArthur, JC, et al. Altered cortical blood flow in HIV-seropositive individuals with and without dementia: a single photon emission computed tomography study. AIDS 1994; 8: 495–499.CrossRefGoogle ScholarPubMed
Masdeu, JC, Yudd, A, van Heertun, RL, et al. Single photon emission computed tomography in human immunodeficiency virus encephalopathy: a preliminary report. J Nucl Med 1991; 32: 1471–1475.Google ScholarPubMed
Rottenberg, DA, Sidtis, JJ, Strother, SC, et al. Abnormal cerebral glucose metabolism in HIV-1 seropositive subjects with and without dementia. J Nucl Med 1996; 37: 1133–1141.Google ScholarPubMed
Rosci, MA, Pignorini, F, Bernabei, A, et al. Methods for detecting early signs of AIDS dementia complex in asymptomatic subjects: a quantitative tomography study of 18 cases. AIDS 1996; 6: 1309–1316.CrossRefGoogle Scholar
Schwartz, RB, Komaroff, AL, Garada, BM, et al. SPECT imaging of the brain: comparison of findings in patients with chronic fatigue syndrome, AIDS dementia complex, and major unipolar depression. Am J Roentgenol 1994; 162: 943–951.CrossRefGoogle ScholarPubMed
Chang, L, Ernst, T, Leonido-Yee, M, et al. Perfusion MRI detects rCBF abnormalities in early stages of HIV-cognitive motor complex. Neurology 2000; 54: 389–396.CrossRefGoogle ScholarPubMed
Wenserski, F, von Giesen, H, Wittsack, H, et al. Human immunodeficiency virus 1-associated minor motor disorders: perfusion-weighted MR imaging and H MR spectroscopy. Radiology 2003; 228: 185–192.CrossRefGoogle ScholarPubMed
Raichle, M. Circulatory and metabolic correlates of brain function in normal humans. In Handbook of Physiology: The Nervous System, eds. Mountcastle, V, Plum, F, Geiger, S. Washington, DC: American Physiological Society, 1987, pp. 643–674.Google Scholar
Detre, JA, Leigh, JS, Williams, DS, et al. Perfusion imaging. Magn Reson Med 1992; 23: 37–45.CrossRefGoogle ScholarPubMed
Buxton, R, Frank, L, Wong, E, et al. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 1998; 40: 383–396.CrossRefGoogle ScholarPubMed
Roberts, D, Detre, J, Bolinger, L, et al. Quantitative magnetic resonance imaging of human brain perfusion at 1.5 T using steady-state inversion of arterial water. Proc Natl Acad Sci USA 1994; 91: 33–37.CrossRefGoogle Scholar
Ances, BM, Roc, AC, Wang, J, et al. Caudate blood flow and volume are reduced in HIV+ neurocognitively impaired patients. Neurology 2006; 66: 862–866.CrossRefGoogle ScholarPubMed
Jiang, H, van Zijl, PC, Kim, J, et al. DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Meth Program Biomed 2006; 81: 106–116.CrossRefGoogle ScholarPubMed
Filippi, C, Ulug, A, Ryan, E, et al. Diffusion tensor imaging of patients with HIV and normal-appearing white matter on MR images of the brain. AJNR Am J Neuroradiol 2001; 22: 277–283.Google Scholar
Pomara, N, Crandall, D, Choi, S, et al. White matter abnormalities in HIV-1 infection: a diffusion tensor imaging study. Psychiatry Res 2001; 106: 15–24.CrossRefGoogle ScholarPubMed
Cloak, CC, Chang, L, Ernst, T. Increased frontal white matter diffusion is associated with glial metabolites and psychomotor slowing in HIV. J Neuroimmunol 2004; 157: 147–152.CrossRefGoogle ScholarPubMed
Schaefer, P, Gonzalez, R, Hunter, G, et al. Diagnostic value of apparent diffusion coefficient hyperintensity in selected patients with acute neurologic deficits. J Neuroimaging 2001; 11: 369–380.CrossRefGoogle ScholarPubMed
Thurnher, MM, Castillo, M, Stadler, A, et al. Diffusion-tensor MR imaging of the brain in human immunodeficiency virus-positive patients. AJNR Am J Neuroradiol 2005; 26: 2275–2281.Google ScholarPubMed
Wu, Y, Storey, P, Cohen, BA, et al. Diffusion alterations in corpus callosum of patients with HIV. AJNR Am J Neuroradiol 2006; 27: 656–660.Google Scholar
Pfefferbaum, A, Rosenbloom, MJ, Adalsteinsson, E, et al. Diffusion tensor imaging with quantitative fibre tracking in HIV infection and alcoholism comorbidity: synergistic white matter damage. Brain 2007; 130: 48–64.CrossRefGoogle ScholarPubMed
Ragin, AB, Wu, Y, Storey, P, et al. Bone marrow diffusion measures correlate with dementia severity in HIV-positive patient. AJNR Am J Neuroradiol 2006; 27: 589–592.Google Scholar
Chang, L, Wong, V, Nakama, H, et al. Greater than age-related changes in brain diffusion of HIV-positive patient after 1 year. J Neuroimmune Pharmacol 2008; 3: 265–274.CrossRefGoogle Scholar
Raz, N, Rodrigue, KM, Kennedy, KM, et al. Differential aging of the human striatum: longitudinal evidence. AJNR Am J Neuroradiol 2003; 24: 1849–1856.Google ScholarPubMed
Pfefferbaum, A, Adalsteinsson, E, Rohlfing, T, Sullivan, E. Diffusion tensor imaging of deep gray matter brain structures: effects of age and iron concentration. Neurobiol Aging 2008; Epub ahead of print, PMID 18513834.Google Scholar
Chiappelli, F, Frost, P, Manfrini, E, et al. Cocaine blunts human CD4+ cell activation. Immunopharmacology 1994; 28: 233–240.CrossRefGoogle ScholarPubMed
Siddiqui, NS, Brown, LS and Makuch, RWShort-term declines in CD4 levels associated with cocaine use in HIV-1 seropositive, minority injecting drug users. J Natl Med Assoc 1993; 85: 293–296.Google ScholarPubMed
Rodesch, G, Parizel, PM, Farber, CM. Nervous system manifestations and neuroradiologic findings in acquired immunodeficiency syndromes (AIDS). Neuroradiology 1989; 31: 33–39.CrossRefGoogle Scholar
Navia, BA, Petito, CK, Gold, JWM, et al. Cerebral toxoplasmosis complicating the acquired immune deficiency syndrome: clinical and neuropathological findings in 27 patients. Ann Neurol 1986; 19: 224–238.CrossRefGoogle ScholarPubMed
Levy, R, Bredesen, DE. Central nervous system dysfunction in AIDS. In AIDS and the Nervous System, eds. Rosenblum, ML, Levy, RM, Bredesen, DE. New York: Raven Press 1988, pp. 29–63.Google Scholar
Gray, F, Sharer, LR. Combined pathologies. In Atlas of the Neuropathology of HIV infection ed. Gray, F. Oxford: Oxford Science, 1993, pp. 162–165.Google Scholar
Iglesias-Rozas, JR, Bantz, B and Adler, T. Cerebral lymphoma in AIDS: clinical, radiological, neuropathological and immunopathological study. Clin Neuropath 1991; 10: 65–72.Google ScholarPubMed
Cornford, ME, Holden, JK, Boyd, MC, et al. Neuropathology of the acquired immune deficiency syndrome (AIDS): report of 39 autopsies from Vancouver, British Columbia. Can J Neurol Sci 1992; 19: 442–452.Google ScholarPubMed
Chang, L, Cornford, ME, Chiang, FL, et al. Radiologic-pathologic correlation: cerebral toxoplasmosis and lymphoma in AIDS. AJNR Am J Neuroradiol 1995; 16: 1653–1663.Google Scholar
Weisberg, LA, Greenberg, J and Stazio, A. Computed tomographic findings in cerebral toxoplasmosis in adults. Comput Med Imaging Graph 1988; 12: 379–383.CrossRefGoogle ScholarPubMed
Dina, TS. Primary central nervous system lymphoma versus toxoplasmosis in AIDS. Radiology 1991; 179: 823–828.CrossRefGoogle Scholar
Arendt, G, Hefter, H, Figge, C. Two cases of cerebral toxoplasmosis in patients with AIDS mimicking HIV-related dementia. Journal of Neurology 1991; 238: 439–442.CrossRefGoogle ScholarPubMed
Derouin, F, Thulliez, P, Garin, YJF. Toxoplasma serology in HIV-infected patients: value and limitations. Pathol Biol 1991; 39: 255–259.Google Scholar
Luft, BJ, Brooks, RG, Conley, FK, et al. Toxoplasmic encephalitis in patients with acquired immunodeficiency syndrome. JAMA 1984; 252: 913–917.CrossRefGoogle Scholar
Weiss, LM, Udem, S, Salgo, M, et al. Sensitive and specific detection of toxoplasma DNA in an experimental murine model: use of toxoplasma gondii-specific cDNA. and the polymerase chain reaction. J Infect Dis 1991; 163: 180–186.CrossRefGoogle Scholar
Cristina, N, Pelloux, H, Goulhot, C, et al. Detection of Toxoplasma gondii in patients with AIDS by the polymerase chain reaction. Infection 1993; 21(3): 150–153.CrossRefGoogle ScholarPubMed
Burg, JL, Grover, CM, Pouletty, P, et al. Direct and sensitive detection of a pathogenic protozoan, Toxoplasma gondii, by polymerase chain reaction. J Clin Microbiol 1989; 27: 1787–1792.Google ScholarPubMed
Ramsey, RG, Geremia, GK. CNS complications of AIDS: CT and MR findings. Am J Radiol 1988; 151: 449–454.Google ScholarPubMed
Kaissar, G, Edwards, M and Smith, R. Neuroimaging of AIDS. Indiana Med 1991; 84: 470–474.Google Scholar
Trenkwalder, P, Trenkwalder, C, Feiden, W, et al. Toxoplasmosis with early intracerebral hemorrhage in a patient with the acquired immunodeficiency syndrome. Neurology 1992; 42: 436–438.CrossRefGoogle Scholar
Yamagata, NT, Miller, BL, McBride, D, et al. In Vivo proton spectroscopy of intracranial infections and neoplasms. J Neuroimaging 1994; 4: 23–28.CrossRefGoogle ScholarPubMed
Confort-Gouny, S, Vion-Dury, J, Nicoli, F, et al. A multiparametric data analysis showing the potential of localized proton MR spectroscopy of the brain in the metabolic characterization of neurological diseases. J Neurolog Sci 1993; 118: 123–133.CrossRefGoogle ScholarPubMed
Chang, L, Ernst, T. Proton magnetic resonance spectroscopy and diffusion-weighted MRI in focal AIDS brain lesions. Neuroimaging Clin N Am 1997; 7 (Special Issue): 409–425.Google Scholar
Chinn, RJS, Wilkinson, ID, Hall-Craggs, MA, et al. Toxoplasmosis and primary central nervous system lymphoma in HIV infection: diagnosis with MR spectroscopy. Radiology 1995; 197: 649–654.CrossRefGoogle ScholarPubMed
Levine, AM. Acquired immunodeficiency syndrome-related lymphoma. Blood 1992; 80: 8–20.Google ScholarPubMed
Rosenberg, NL, Hochberg, FH, Miller, G, et al. Primary central nervous system lymphoma related to Epstein–Barr virus in a patient with acquired immune deficiency syndrome. Ann Neurol 1986; 20: 98–102.CrossRefGoogle Scholar
Bashir, R, Luka, J, Cheloha, K, et al. Expression of Epstein–Barr virus proteins in primary CNS lymphoma in patients with AIDS. Neurology 1993; 43: 2358–2362.CrossRefGoogle Scholar
Ciricillo, SF, Rosenblum, ML. Use of CT and MR imaging to distinguish intracranial lesions and to define the need for biopsy in AIDS patients. J Neurosurg 1990; 73: 720–724.CrossRefGoogle Scholar
Morgello, S, Petito, CK and Mouradian, JA. Central nervous system lymphoma in the acquired immunodeficiency syndrome. Clin Neuropathol 1990; 9: 205–215.Google ScholarPubMed
Levy, RM, Mills, CM, Posin, JP, et al. The efficacy and clinical impact of brain imaging in neurologically symptomatic patients with AIDS: a prospective CT/MRI study. J AIDS 1990; 3: 461–471.Google ScholarPubMed
Eisenberg, AD, Mani, JR, Norman, D. Differentiation of toxoplasmosis and lymphoma in HIV-positive patients, utilizing gadolinium-enhanced MRI. Radiology 1990; 177: 231.Google Scholar
So, YT, Beckstead, JH and Davis, RLPrimary central nervous system lymphoma in acquired immune deficiency syndrome: clinical and pathologic study. Ann Neurol 1986; 20: 566–572.CrossRefGoogle Scholar
Cordoliani, Y, Derosier, C, Pharaboz, C, et al. Primary cerebral lymphoma in patients with AIDS: MR findings in 17 cases. Am J Roentgenol 1992; 159: 841–847.Google Scholar
Chiang, F, Miller, B, Chang, L, et al. Fulminant cerebral lymphoma in AIDS. AJNR Am J Neuroradiol 1996; 17: 157–160.Google Scholar
Simone, I, Federico, F, Tortorella, C, et al. Localised 1H-MR spectroscopy for metabolic characterisation of diffuse and focal brain lesions in patients infected with HIV. J Neurol Neurosurg Psychiatry 1998; 64: 516–523.CrossRefGoogle Scholar
Chang, L, Miller, BL, Mcbride, D, et al. Brain lesions in patients with AIDS: H-1 MR spectroscopy. Radiology 1995; 197: 527–531.CrossRefGoogle ScholarPubMed
Skiest, D, Erdman, W, Chang, W, et al. SPECT thallium-201 combined with toxoplasma serology for the presumptive diagnosis of focal central nervous system mass lesions in patients with AIDS. J Infect 2000; 40(3): 274–281.CrossRefGoogle ScholarPubMed
Berger, JR, Kashovitz, B, Donovan-Post, JD, et al. Progressive multifocal leukoencephalopathy associated with human immunodeficiency virus infection: a review of the literature and report of sixteen cases. Ann Int Med 1987; 107: 78–87.CrossRefGoogle ScholarPubMed
Sze, G, Brant-Zawadzki, MN, Normal, D, et al. The neuroradiology of AIDS. Semin Roentgenol 1987; 22: 42–53.CrossRefGoogle Scholar
Mark, AS, Atlas, SW. Progressive multifocal leukoencephalopathy in patients with AIDS: appearance on MR images. Radiology 1989; 173: 517–520.CrossRefGoogle ScholarPubMed
Gillespie, SM, Chang, Y, Lemp, G, et al. Progressive multifocal leukoencephalopathy in persons infected with human immunodeficiency virus, San Francisco, 1981–1989. Ann Neurol 1991; 30(4): 597–604.CrossRefGoogle ScholarPubMed
Major, EO, Amemiya, K, Tornatore, CS, et al. Pathogenesis and molecular biology of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain. Clin Microbiol Rev 1992; 5(1): 49–73.CrossRefGoogle ScholarPubMed
Wheeler, AL, Truwit, CL, Kleinschmidt-DeMasters, BK, et al. Progressive multifocal leukoencephalopathy: contrast enhancement on CT scans and MR images. Am J Roentol 1993; 161: 1049–1051.CrossRefGoogle ScholarPubMed
Whiteman, MLH, Post, MJD, Berger, JR, et al. Progressive multifocal leukoencephalopathy in 47 HIV-seropositive patients: Neuroimaging with clinical and pathologic correlation. Radiology 1993; 187: 233–240.CrossRefGoogle ScholarPubMed
Newton, HB, Makley, M, Slivka, AP, et al. Progressive multifocal leukoencephalopathy presenting as multiple enhancing lesions on MRI: case report and literature review. J Neuroimaging 1995; 5: 125–128.CrossRefGoogle ScholarPubMed
Simpson, DM, Tagliati, M. Neurologic manifestations of HIV infection. Ann Int Med 1994; 121: 769–785.CrossRefGoogle ScholarPubMed
von Einsiedel, RW, Fife, TD, Aksamit, AJ, et al. Progressive multifocal leukoencephalopathy in AIDS: a clinicopathologic study and review of the literature. J Neurol 1993; 240: 391–406.CrossRefGoogle ScholarPubMed
Chang, L, Ernst, T, Tornatore, C, et al. Metabolite abnormalities in progressive multifocal leukoencephalopathy by proton magnetic resonance spectroscopy. Neurology 1997; 48: 836–845.CrossRefGoogle ScholarPubMed
Iranzo, A, Moreno, A, Pujol, J, et al. Proton magnetic resonance spectroscopy pattern of progressive multifocal leukoencephalopathy in AIDS. J Neurol Neurosurg Psychiatry 1999; 66: 520–523.CrossRefGoogle Scholar
Ernst, T, Chang, L, Witt, MD, et al. Progressive multifocal leukoencephalopathy and human immunodeficiency virus-associated white matter lesions in AIDS: imagnetization transfer imaging. Radiology 1999; 210: 539–543.CrossRefGoogle Scholar
Dousset, V, Armand, JP, Lacoste, D, et al. Magnetization transfer study of HIV encephalitis and progressive multifocal leukoencephalopathy. AJNR Am J Neuroradiol 1997; 18: 895–901.Google ScholarPubMed
Clifford, D, Yiannoutsos, C, Glicksman, M, et al. HAART improves prognosis in HIV-associated progressive multifocal leukoencephalopathy. Neurology 1999; 52: 623–625.CrossRefGoogle ScholarPubMed
Tantisiriwat, W, Tebas, P, Clifford, D, et al. Progressive multifocal leukoencephalopathy in patients with AIDS receiving highly active antiretroviral therapy. Clin Infect Dis 1999; 28: 1152–1154.CrossRefGoogle ScholarPubMed
Safdar, A, Rubocki, R, Horvath, J, et al. Fatal immune restoration disease in human immunodeficiency virus type 1-infected patients with progressive multifocal leukoencephalopathy: impact of antiretroviral therapy-associated immune reconstitution. Clin Infect Dis 2002; 35: 1250–1257.CrossRefGoogle ScholarPubMed
Cinque, P, Pierotti, C, Vigano, M, et al. The good and evil of HAART in HIV-related progressive multifocal leukoencephalopathy. J Neurovirol 2001; 7: 358–363.Google ScholarPubMed
Tien, R, Chu, P, Hesselink, J, et al. Intracranial cryptococcosis in immunocompromised patients: CT and MR findings in 29 cases. AJNR Am J Neuroradiol 1991; 12: 283–289.Google Scholar
Ruiz, A, Post, M, Bundschu, C. Dentate nuclei involvement in patients with AIDS with CNS cryptococcosis: imaging findings with pathologic correlation. J Comput Assist Tomogr 1997; 21(2): 175–182.CrossRefGoogle ScholarPubMed
Yu, Y, Jiang, X, Gao, Y. MRI of a pituitary cryptococcoma simulating an adenoma. Neuroradiology 1995; 37: 449–450.CrossRefGoogle ScholarPubMed
Lai, P, Wang, J, Chen, W, et al. Intramedullary spinal cryptococcoma: a case report. J Formosa Med Assoc 2001; 100: 776–778.Google ScholarPubMed
Himmelreich, U, Dzendrowskyj, T, Allen, C, et al. Cryptococcomas distinguished from gliomas with MR spectroscopy: an experimental rat and cell culture study. Radiology 2001; 220: 122–128.CrossRefGoogle ScholarPubMed
Williams, B, Dye, C. Antiretroviral drugs for tuberculosis control in the era of HIV/AIDS. Science 2003; 301: 1535–1537.CrossRefGoogle ScholarPubMed
Boukobza, M, Tamer, I, Guichard, J, et al. Tuberculosis of the central nervous system. MRI features and clinical course in 12 cases. Neuroradiology 1999; 26: 172–181.Google ScholarPubMed
Gupta, RK, Pandey, R, Khan, EM, et al. Intracranial tuberculomas: MRI signal intensity correlation with histopathology and localised proton spectroscopy. Magn Reson Imaging 1993; 11: 443–449.CrossRefGoogle ScholarPubMed
Kaminogo, M, Ishimaru, H, Morikawa, M, et al. Proton MR spectroscopy and diffusion-weighted MR imaging for the diagnosis of intracranial tuberculomas. Report of two cases. Neurol Res 2002; 24: 537–543.CrossRefGoogle Scholar
Gupta, R. Magnetization transfer MR imaging in central nervous system infections. Ind J Radiol Imaging 2002; 12: 51–58.Google Scholar
Gupta, RK, Poptani, H, Kohli, A, et al. In vivo localized proton magnetic resonance spectroscopy of intracranial tuberculomas. Ind J Med Res 1995; 101: 19–24.Google ScholarPubMed
Gupta, R, Husain, M, Vatsal, D, et al. Comparative evaluation of magnetization transfer MR imaging and in-vivo proton MR spectroscopy in brain tuberculomas. Magn Reson Imaging 2002; 20: 375–381.CrossRefGoogle ScholarPubMed
Venkatesh, S, Gupta, R, Pal, L, et al. Spectroscopic increase in choline signal is a nonspecific marker for differentiation of infective/inflammatory from neoplastic lesions of the brain. J Magn Reson Imaging 2001; 14: 8–15.CrossRefGoogle Scholar
Issakhanian, M, Chang, L, Cornford, M, et al. HIV-2 infection with cerebral toxoplasmosis and lymphomatoid granulomatosis. J Neuroimaging 2001; 11: 212–216.CrossRefGoogle ScholarPubMed
Ernst, T, Chang, L, Arnold, S. Increased glial markers predict increased working memory network activation in HIV-positive patient. Neuroimage 2003; 19: 1686–1693.CrossRefGoogle Scholar
Ernst, T, Itti, E, Itti, L, et al. Changes in cerebral metabolism are detected prior to perfusion changes in early HIV-CMC: A coregistered (1)H MRS and SPECT study. J Magn Reson Imaging 2000; 12: 859–865.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Lazareff, JA, Olmstead, C, Bockhorst, KH, et al. Proton magnetic resonance spectroscopic imaging of pediatric low-grade astrocytomas. Child’s Nerv Syst 1996; 12: 130–135.CrossRefGoogle ScholarPubMed
Chang, L, Speck, O, Miller, E, et al. Neural correlates of attention and working memory deficits in HIV-positive patient. Neurology 2001; 57: 1001–1007.CrossRefGoogle Scholar
Chang, L, Tomasi, D, Yakupov, R, et al. Adaptation of the attention network in human immunodeficiency virus brain injury. Ann Neurol 2004; 56: 259–272.CrossRefGoogle ScholarPubMed
Ernst, T, Chang, L, Jovicich, J, et al. Abnormal brain activation on functional MRI in cognitively asymptomatic HIV-positive patient. Neurology 2002; 59: 1343–1349.CrossRefGoogle Scholar
Ernst, T, Yakupov, R, Nakama, H, et al. Declined neural efficiency in cognitively stable HIV-positive patient. Ann Neurol 2009; 65: 316–325.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×