Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-21T18:18:42.130Z Has data issue: false hasContentIssue false

12 - Stochastic Processes

Published online by Cambridge University Press:  06 July 2010

R. M. Dudley
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Stochastic processes have been treated so far mainly in connection with martingales, although a general definition was given: a stochastic process is a function X of two variables t and Ω, tT, Ω ∈ Ω, where (Ω, , P) is a probability space and for each t, X(t,·) is measurable on Ω. Taking T to be the set of positive integers, any sequence of random variables is a stochastic process. In much of the more classical theory of processes, T is a subset of the real line. But by the 1950s, if not before, it began to be realized that there are highly irregular random processes, useful in representing or approximating “noise,” for example, which are in a sense defined over the line but which do not have values at points t. Instead, “integrals” W(f)= ∫ W(t)f(t)dt are defined only if f has some smoothness and/or other regularity properties. Thus an appropriate index set T for the process may be a set of functions on ℝ rather than a subset of ℝ. Such processes are also useful where we may have random functions not only changing in time but defined also on space, so that T may be a set of smooth functions of space as well as, or instead of, time variables. At any rate, the beginnings of the theory of stochastic processes, and a basic existence theorem, hold for an arbitrary index set T without any structure.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta, Alejandro (1983). A new proof of the Hartman-Wintner law of the iterated logarithm.Ann. Probability 11: 270–276CrossRefGoogle Scholar
Andersen, Erik Sparre, and Jessen, Börge (1948). On the introduction of measures in infinite product sets.Danske Vid. Selsk. mat.-Fys. Medd. 25, no. 4. 8 pp.Google Scholar
André, Désiré (1887). Solution directe du problème résolu par M. Bertrand.Comptes Rendus Acad. Sci. Paris 105: 436–437Google Scholar
*Bachelier, Louis Jean Baptiste Alphonse (1900). Théorie de la spéculation.Ann. Ecole Norm. Sup. (Ser. 3) 17: 21–86CrossRefGoogle Scholar
*Bachelier, Louis Jean Baptiste Alphonse (1910). Mouvement d'un point ou d'un système matérial soumis à l'action de forces dépendant du hasard.Comptes Rendus Acad. Sci. Paris 151: 852–855Google Scholar
*Bachelier Louis Jean Baptiste Alphonse (1939). Les nouvelles méthodes du calcul des probabilités. Gauthier–Villars, Paris
Bingham, N H. (1986). Variants on the law of the iterated logarithm.Bull. London Math. Soc. 18: 433–467CrossRefGoogle Scholar
Bochner, Salomon (1955). Harmonic Analysis and the Theory of Probability. University of Calif. Press, Berkeley and Los Angeles
Breiman, Leo (1968). Probability. Addison-Wesley, Reading, Mass
Browder, Felix, E H. Spanier, and M. Gerstenhaber (eds.) (1966). Norbert Wiener, 1894–1964. Amer. Math. Soc., Providence, R. I. Also in Bull Amer. Math. Soc. 72, no. 1, Part II
Brown, Robert (1828). A Brief Description of Microscopical Observations made in the Months of June, July and August 1827, on the Particles contained in the Pollen of Plants; and on the General Existence of Active Molecules in Organic and Inorganic Bodies. London. German transl. inAnn. Phys. 14 (1828): 294–313CrossRefGoogle Scholar
Doob, Joseph L. (1938). Stochastic processes with an integral-valued parameter.Trans. Amer. Math. Soc. 44: 87–150Google Scholar
Doob, Joseph L. (1949). Heuristic approach to the Kolmogorov-Smirnov theorems.Ann. Math. Statist. 20: 393–403CrossRefGoogle Scholar
Doob, Joseph L. (1953). Stochastic Processes. Wiley, New York
Doob, Joseph L. (1966). Wiener's work in probability theory. In Browder et al. (1966), pp.69–71Google Scholar
Dubins, Lester (1968). On a theorem of Skorohod.Ann. Math. Statist. 39: 2094–2097CrossRefGoogle Scholar
Dudley, R M. Jacob Feldman, and Cam, Lucien (1972). Some remarks concerning priorities, in connection with our paper “On seminorms and probabilities.”Ann. Math. 95: 585CrossRefGoogle Scholar
Einstein, Albert (1905). On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat [in German].Ann. Phys. (Ser. 4) 17: 549–560. English transl. in Einstein (1926), pp. 1–18CrossRefGoogle Scholar
Einstein, Albert (1906). Zur Theorie der Brownschen Bewegung.Ann. Phys. (Ser. 4) 19: 371–381. Transl. in Einstein (1926)CrossRefGoogle Scholar
Einstein, Albert (1926). Investigations on the theory of the Brownian movement. Ed. with notes by R. Fürth. Transl. by A D. Cowper. E P. Dutton, New York
Félix, Lucienne (1970). Bachelier, Louis. Dictionary of Scientific Biography, 1, pp. 366–367. Scribner's, New York
Feller, Willy (1943). The general form of the so-called law of the iterated logarithm.Trans. Amer. Math. Soc. 54: 373–402CrossRefGoogle Scholar
Feller, Willy (1968). An Introduction to Probability Theory and Its Applications, 1, 3d ed. Wiley, New York
Fourier, Joseph B J. (1822). Théorie analytique de la chaleur. Gauthier-Villars, Paris
Frolik, Zdenek (1972). Projective limits of measure spaces. Proc. Sixth Berkeley Symp. Math. Statist. Prob. 2: 67–80. Univ. of Calif. Press, Berkeley and Los Angeles
Grattan-Guinness, I[vor] (1972). Joseph Fourier, 1768–1830: A survey of his life and work based on a critical edition of his monograph on the propagation of heat, presented to the Institut de France in 1807. M. I. T. Press, Cambridge, Mass
Hardy, Godfrey H. (1934). Raymond Edward Alan Christopher Paley.J. London Math Soc. 9: 76–80CrossRefGoogle Scholar
Hartman, Philip, and Wintner, Aurel (1941). On the Law of the iterated logarithm.Amer. J. Math. 63: 169–176CrossRefGoogle Scholar
Herivel, John (1975). Joseph Fourier: The man and the physicist. Clarendon Press, Oxford
Hunt, Gilbert A. (1956), Some theorems concerning Brownian motion.Trans. Amer. Math. Sco. 81: 294–319CrossRefGoogle Scholar
Itô, Kiyosi (1944). Stochastic integral.Proc. Imp. Acad. Tokyo 20: 519–524CrossRefGoogle Scholar
Itô, Kiyosi, and Henry P. McKean, Jr. (1965). Diffusion Processes and Their Sample Paths. Springer, New York
Kac, Mark, Jack Kiefer, and Wolfowitz, Joseph (1955). On tests of normality and other tests of goodness of fit based on distance methods.Ann. Math. Statist. 26: 189–211CrossRefGoogle Scholar
Kahane, Jean-Pierre (1976). Commentary on Paley et al. (1933). In Wiener (1976), 1, pp. 558–563Google Scholar
Kakutani, Shizuo (1944). On Brownian motions in n-space.Proce. Imp. Acad. Tokyo 20: 648–652CrossRefGoogle Scholar
Kesten, Harry (1970). The limit points of a normalized random walk.Ann. Math. Statist. 41: 1173–1205CrossRefGoogle Scholar
Khinchin, Alexander Yakovlevich (1923). Über dyadische Brüche.Math. Z. 18: 109–116CrossRefGoogle Scholar
Khinchin, Alexander Yakovlevich (1924). Über einen Satz der Wahrscheinlichkeitsrechnung.Fund. Math. 6: 9–20CrossRefGoogle Scholar
Khinchin, Alexander Yakovlevich (1933). Asymptotische Gesetze der Wahrscheinlichkeitsrechnung. Springer, Berlin; Chelsea, New York (1948)
Klass, Michael J. (1976, 1977). Toward a universal law of the iterated logarithm. Part I,Z. Wahrscheinlichkeitsth. verw. Geb. 36: 165–178, Part II, ibid. 39: 151–165CrossRefGoogle Scholar
Kolmogorov, Andrei N. (1929). Über das Gesetz des iterierten Logarithmus.Math. Ann. 101: 126–135CrossRefGoogle Scholar
Kolmogorov, Andrei N. (1933a). Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin. Transl. as Foundations of Probability. Chelsea, New York (1956)
Kolmogorov, Andrei N. (1933b). Sulla determinazione empirica di una legge di distribuzione (in Italian).Giorn. Ist. Ital. Attuar. 4: 83–91. Russian transl. in Kolmogorov (1986), 134–141Google Scholar
Kolmogorov, Andrei N. (1986). Probability Theory and Mathematical Statistics (selected works; in Russian). Moscow, Nauka
Kostka, D G. (1973). On Khintchine's estimate for large deviations.Ann. Probability 1: 509–512CrossRefGoogle Scholar
Kuiper, Nicolaas H. (1960). Tests concerning random points on a circle.Proc. Kon. Akad. Wetensch. A (Indag. Math. 22) 63: 38–47CrossRefGoogle Scholar
Laplace, Pierre Simon (1809). Mémoire sur divers points d'analyse.J. Ecole Polytechnique, cahier 15, tome 8, pp. 229–264; Oeuvres, XIV, pp. 178–214, esp. pp. 184–193Google Scholar
Levinson, Norman (1966). Wiener's life. In Browder et al. (1966), pp. 1–32Google Scholar
Lévy, Paul (1939). Sur certains processus stochastiques homogènes.Compositio Math. 7: 283–339Google Scholar
Lévy, Paul (1948). Processus stochastiques et mouvement brownien. Gauthier-Villars, Paris
Loève, Michel (1977). Probability Theory 1. 4th ed. Springer, New York
Martikainen, A I. (1980). A converse to the law of the iterated logarithm for a random walk.Theory Probability Appl. 25: 361–362CrossRefGoogle Scholar
McKean, Henry P. (1969). Stochastic Integrals. Academic Press, New York
Paley, Raymond Edward Alan Christopher, Wiener, Norbert, and Zygmund, Antoni (1933). Notes on random functions.Math. Z. 37: 647–668. Also in Wiener (1976), 1, pp. 536–557CrossRefGoogle Scholar
Paley, Raymond Edward Alan Christopher, and N. Wiener (1934). Fourier Transforms in the complex domain. Amer. Math. Soc. Colloq. Publs. 19
Pinsky, Mark (1969). An elementary derivation of Khintchine's estimate for large deviations.Proc. Amer. Math. Soc. 22: 288–290Google Scholar
J C. Poggendorffs biographisch-literarisches Handwörterbuch 7b Teil 6 (1979). Paley, R E. A C. Akademie-Verlag, Berlin
Pruitt, William E. (1981). General one-sided laws of the iterated logarithm.Ann. Probab. 9: 1–48CrossRefGoogle Scholar
Root, David H. (1969). The existence of certain stopping times on Brownian motion.Ann. Math. Statist. 40: 715–718CrossRefGoogle Scholar
Rosalsky, Andrew (1980). On the converse to the iterated logarithm law.Sankhyā Ser. A 42: 103–108Google Scholar
Segal, Irving Ezra (1954). Abstract probability spaces and a theorem of Kolmogoroff.Amer. J. Math. 76: 721–732CrossRefGoogle Scholar
Segal, Irving Ezra (1956). Tensor algebras over Hilbert spaces, I.Trans. Amer. Math. Soc. 81: 106–134CrossRefGoogle Scholar
Sheu, Shey Shiung (1986). Representing a distribution by stopping a Brownian motion: Root's construction.Bull. Austral. Math. Soc. 34: 427–431CrossRefGoogle Scholar
Skorohod, Anatolii Vladimirovich (1961). Studies in the Theory of Random Processes [in Russian]. Univ. of Kiev. Transl. Addison-Wesley, Reading, Mass. (1965)
Smirnov, Nikolai Vasil'evich (1939). Estimation of the deviation between empirical distribution curves of two independent samples [in Russian].Bull. Univ. Moscow 2, no. 2, pp. 3–14. Repr. in Smirnov (1970), pp. 117–127, 267Google Scholar
Smirnov, Nikolai Vasil'evich (1970). Theory of probability and mathematical statistics: Selected works [in Russian]. Nauka, Moscow
Smoluchowski, Marian (1906). Zur kinetischen Theorie der Brownschen Molekular-bewegung und der Suspensionen.Ann. Phys. (Ser. 4) 21: 756–780CrossRefGoogle Scholar
Stout, William F. (1974). Almost Sure Convergence. Academic Press, New York
Strassen, Volker (1964). An invariance principle for the law of the iterated logarithm.Z. Wahrsch. verw. Geb. 3: 211–226CrossRefGoogle Scholar
Strassen, Volker (1966). A converse to the law of the iterated logarithm.Z. Wahrsch. verw. Geb. 4: 265–268CrossRefGoogle Scholar
Thompson, D'Arcy (1959). Growth and Form. Cambridge Univ. Press. (1st ed. 1917.)
Tucker, Howard G. (1967). A Graduate Course in Probability. Academic Press. New York
Ulam, Stanislaw (1957). Marian Smoluchowski and the theory of probabilities in physics.Amer. J. Phys. 25: 475–481CrossRefGoogle Scholar
Wiener, Norbert (1923). Differential space.J. Math. Phys. M. I. T. 2: 131–174. Also in Wiener (1976), 1, pp. 455–498CrossRefGoogle Scholar
Wiener, Norbert (1953). Ex-Prodigy: My Childhood and Youth. Simon & Schuster, New York. Repr. M. I. T. Press, Cambridge, Mass. (1964)
Wiener, Norbert (1956). I Am a Mathematician. Doubleday, New York. Repr. M. I. T. Press, Cambridge, Mass. (1964)
Wiener, Norbert (1976–1986). Norbert Wiener: Collected Works with Commentaries. Ed. Pesi Masani. 4 vols. M. I. T. Press, Cambridge, Mass

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Stochastic Processes
  • R. M. Dudley, Massachusetts Institute of Technology
  • Book: Real Analysis and Probability
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755347.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Stochastic Processes
  • R. M. Dudley, Massachusetts Institute of Technology
  • Book: Real Analysis and Probability
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755347.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Stochastic Processes
  • R. M. Dudley, Massachusetts Institute of Technology
  • Book: Real Analysis and Probability
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755347.013
Available formats
×