Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-08T13:39:33.492Z Has data issue: false hasContentIssue false

9 - The utility of visual motion for goal-directed reaching

from Part I - Time–space during action: perisaccadic mislocalization and reaching

Published online by Cambridge University Press:  05 October 2010

Romi Nijhawan
Affiliation:
University of Sussex
Beena Khurana
Affiliation:
University of Sussex
Get access

Summary

Summary

Visual information is crucial for goal-directed reaching. Recently a number of studies have shown that motion in particular is an important source of information for the visuomotor system. For example, when reaching for a stationary object, nearby visual movement, even when irrelevant to the object or task, can influence the trajectory of the hand. Although it is clear that various kinds of visual motion can influence goal-directed reaching movements, it is less clear how or why they do so. In this chapter, we consider whether the influence of motion on reaching is unique compared to its influence on other forms of visually guided behavior. We also address how motion is coded by the visuomotor system and whether there is one motion processing system that underlies both perception and visually guided reaching. Ultimately, visual motion may operate on a number of levels, influencing goal-directed reaching through more than one mechanism, some of which may actually be beneficial for accurate behavior.

Introduction

Visual motion is constantly produced as we move our eyes and head and as objects move in the world. The visuomotor system, therefore, faces a serious challenge in that it must register target as well as background motion and then segment these different sources of motion in order to direct actions to objects. Over the last three decades, a broad and expanding literature has examined how the visuomotor system processes and uses visual motion in goal-directed behavior.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. J Opt Soc Am [A] 2(2): 284–299.CrossRefGoogle ScholarPubMed
Anstis, S. M. (1970). Phi movement as a subtraction process. Vision Res 10(12): 1411–1430.CrossRefGoogle ScholarPubMed
Anstis, S. M. (1980). The perception of apparent movement. Philos Trans R Soc Lond B Biol Sci 290(1038): 153–168.CrossRefGoogle ScholarPubMed
Anstis, S. M., & Cavanagh, P. (1983). A minimum motion technique for judging equiluminance. In J., Mollon & R. T., Sharpe (eds.), Color Vision: Physiology and Psychophysics (155–166). London: Academic Press.Google Scholar
Ariff, G., Donchin, O., Nanayakkara, T., & Shadmehr, R. (2002). A real-time state predictor in motor control: study of saccadic eye movements during unseen reaching movements. J Neurosci 22(17): 7721–7729.CrossRefGoogle ScholarPubMed
Ashida, H. (2004). Action-specific extrapolation of target motion in human visual system. Neuropsychologia 42(11): 1515–1524.CrossRefGoogle ScholarPubMed
Assad, J. A., & Maunsell, J. H. (1995). Neuronal correlates of inferred motion in primate posterior parietal cortex. Nature 373(6514): 518–521.CrossRefGoogle ScholarPubMed
Ballard, D. H., Hayhoe, M. M., Li, F., & Whitehead, S. D. (1992). Hand-eye coordination during sequential tasks. Philos Trans R Soc Lond B Biol Sci 337(1281): 331–338; discussion 338–339.CrossRefGoogle ScholarPubMed
Biguer, B., Jeannerod, M., & Prablanc, C. (1982). The coordination of eye, head, and arm movements during reaching at a single visual target. Exp Brain Res 46(2): 301–304.CrossRefGoogle Scholar
Binsted, G., Chua, R., Helsen, W., & Elliott, D. (2001). Eye-hand coordination in goal-directed aiming. Hum Mov Sci 20(4–5): 563–585.CrossRefGoogle ScholarPubMed
Bock, O., & Jungling, S. (1999). Reprogramming of grip aperture in a double-step virtual grasping paradigm. Exp Brain Res 125(1): 61–66.CrossRefGoogle Scholar
Brenner, E., & Smeets, J. B. (1994). Different frames of reference for position and motion. Naturwissenschaften 81(1): 30–32.CrossRefGoogle Scholar
Brenner, E., & Smeets, J. B. (1997). Fast responses of the human hand to changes in target position. J Mot Behav 29(4): 297–310.CrossRefGoogle ScholarPubMed
Brenner, E., & Smeets, J. B. (2003). Fast corrections of movements with a computer mouse. Spat Vis 16(3–4): 365–376.CrossRefGoogle ScholarPubMed
Brenner, E., & Smeets, J. B. (2004). Colour vision can contribute to fast corrections of arm movements. Exp Brain Res 158(3): 302–307.CrossRefGoogle ScholarPubMed
Brenner, E., Smeets, J. B., & de Lussanet, M. H. (1998). Hitting moving targets. Continuous control of the acceleration of the hand on the basis of the target's velocity. Exp Brain Res 122(4): 467–474.CrossRefGoogle ScholarPubMed
Bridgeman, B. (1995). A review of the role of efference copy in sensory and oculomotor control systems. Ann Biomed Eng 23(4): 409–422.CrossRefGoogle ScholarPubMed
Bridgeman, B., Kirch, M., & Sperling, A. (1981). Segregation of cognitive and motor aspects of visual function using induced motion. Percept Psychophys 29(4): 336–342.CrossRefGoogle Scholar
Bridgeman, B., Lewis, S., Heit, G., & Nagle, M. (1979). Relation between cognitive and motor-oriented systems of visual position perception. J Exp Psychol Hum Percept Perform 5(4): 692–700.CrossRefGoogle ScholarPubMed
Bridgeman, B., Peery, S., & Anand, S. (1997). Interaction of cognitive and sensorimotor maps of visual space. Percept Psychophys 59(3): 456–469.CrossRefGoogle ScholarPubMed
Britten, K. H., & van Wezel, R. J. (1998). Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nat Neurosci 1(1): 59–63.CrossRefGoogle ScholarPubMed
Buneo, C. A., Jarvis, M. R., Batista, A. P., & Andersen, R. A. (2002). Direct visuomotor transformations for reaching. Nature 416(6881): 632–636.CrossRefGoogle ScholarPubMed
Burr, D. C., & Ross, J. (2002). Direct evidence that “speedlines” influence motion mechanisms. J Neurosci 22(19): 8661–8664.CrossRefGoogle ScholarPubMed
Burr, D. C., Ross, J., & Morrone, M. C. (1986). Seeing objects in motion. Proc R Soc Lond B Biol Sci 227(1247): 249–265.CrossRefGoogle ScholarPubMed
Castiello, U., Paulignan, Y., & Jeannerod, M. (1991). Temporal dissociation of motor responses and subjective awareness. A study in normal subjects. Brain 114(Pt 6): 2639–2655.CrossRefGoogle ScholarPubMed
Cavanagh, P. (1992). Attention-based motion perception. Science 257(5076): 1563–1565.CrossRefGoogle ScholarPubMed
Cavanagh, P., & Mather, G. (1989). Motion: the long and short of it. Spat Vis 4(2–3): 103–129.CrossRefGoogle Scholar
Cavanagh, P., Tyler, C. W., & Favreau, O. E. (1984). Perceived velocity of moving chromatic gratings. J Opt Soc Am A 1: 893–899.CrossRefGoogle ScholarPubMed
Collewijn, H., & Tamminga, E. P. (1984). Human smooth and saccadic eye movements during voluntary pursuit of different target motions on different backgrounds. J Physiol 351: 217–250.CrossRefGoogle ScholarPubMed
Cowey, A., & Stoerig, P. (1991). The neurobiology of blindsight. Trends Neurosci 14(4): 140–145.CrossRefGoogle ScholarPubMed
Crawford, J. D., Medendorp, W. P., & Marotta, J. J. (2004). Spatial transformations for eye-hand coordination. J Neurophysiol 92(1): 10–19.CrossRefGoogle ScholarPubMed
Cropper, S. J., & Derrington, A. M. (1994). Motion of chromatic stimuli: first-order or second-order? Vision Res 34(1): 49–58.CrossRefGoogle ScholarPubMed
Cropper, S. J., & Derrington, A. M. (1996). Rapid colour-specific detection of motion in human vision. Nature 379(6560): 72–74.CrossRefGoogle ScholarPubMed
Culham, J., He, S., Dukelow, S., & Verstraten, F. A. (2001). Visual motion and the human brain: what has neuroimaging told us? Acta Psychol (Amst) 107(1–3): 69–94.CrossRefGoogle ScholarPubMed
Dassonville, P., Bridgeman, B., Kaur Bala, J., Thiem, P., & Sampanes, A. (2004). The induced Roelofs effect: two visual systems or the shift of a single reference frame? Vision Res 44(6): 603–611.CrossRefGoogle ScholarPubMed
Day, B. L., & Lyon, I. N. (2000). Voluntary modification of automatic arm movements evoked by motion of a visual target. Exp Brain Res 130(2): 159–168.CrossRefGoogle ScholarPubMed
De Valois, R. L., & De Valois, K. K. (1991). Vernier acuity with stationary moving gabors. Vision Res 31(9): 1619–1626.CrossRefGoogle ScholarPubMed
Del Viva, M. M., & Morrone, M. C. (1998). Motion analysis by feature tracking. Vision Res 38(22): 3633–3653.CrossRefGoogle ScholarPubMed
Derrington, A. M. (2000). Vision: can colour contribute to motion? Curr Biol 10(7): R268–270.CrossRefGoogle Scholar
Derrington, A. M., Allen, H. A., & Delicato, L. S. (2004). Visual mechanisms of motion analysis and motion perception. Annu Rev Psychol 55: 181–205.CrossRefGoogle ScholarPubMed
Desmurget, M., & Grafton, S. (2000). Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 4(11): 423–431.CrossRefGoogle ScholarPubMed
Diedrichsen, J., Nambisan, R., Kennerley, S. W., & Ivry, R. B. (2004). Independent on-line control of the two hands during bimanual reaching. Eur J Neurosci 19(6): 1643–1652.CrossRefGoogle ScholarPubMed
Duffy, C. J., & Wurtz, R. H. (1991a). Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J Neurophysiol 65(6): 1329–1345.CrossRefGoogle ScholarPubMed
Duffy, C. J., & Wurtz, R. H. (1991b). Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. J Neurophysiol 65(6): 1346–1359.CrossRefGoogle ScholarPubMed
Dukelow, S. P., DeSouza, J. F., Culham, J. C., Van Den Berg, A. V., Menon, R. S., & Vilis, T. (2001). Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. J Neurophysiol 86(4): 1991–2000.CrossRefGoogle ScholarPubMed
Engel, K. C., Anderson, J. H., & Soechting, J. F. (2000). Similarity in the response of smooth pursuit and manual tracking to a change in the direction of target motion. J Neurophysiol 84(3): 1149–1156.CrossRefGoogle ScholarPubMed
Fischer, B., & Rogal, L. (1986). Eye-hand-coordination in man: a reaction time study. Biol Cybern 55(4): 253–261.CrossRefGoogle ScholarPubMed
Freeman, T. C. (2001). Transducer models of head-centred motion perception. Vision Res 41(21): 2741–2755.CrossRefGoogle ScholarPubMed
Geisler, W. S. (1999). Motion streaks provide a spatial code for motion direction. Nature 400(6739): 65–69.CrossRefGoogle ScholarPubMed
Gibson, J. J. (1986). The Ecological Approach to Visual Perception. Hillsdale, NJ: Erlbaum.Google Scholar
Goltz, H. C., & Whitney, D. (2004). The influence of background motion on smooth pursuit: separation matters. Journal of Vision 4: 649.CrossRefGoogle Scholar
Gomi, H., Abekawa, N., & Nishida, S. (2005). Implicit sensorimotor control: rapid motor responses of arm and eye share the visual motion encoding [Abstract]. Journal of Vision 5(8): 363a; http://journalofvision.org/5/8/363/, doi:10.1167/5.8.363CrossRefGoogle Scholar
Gomi, H., Abekawa, N., & Nishida, S. (2006). Spatiotemporal tuning of rapid interactions between visual-motion analysis and reaching movement. J Neurosci 26(20): 5301–5308.CrossRefGoogle Scholar
Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends Neurosci 15(1): 20–25.CrossRefGoogle ScholarPubMed
Goodale, M. A., Pelisson, D., & Prablanc, C. (1986). Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature 320(6064): 748–750.CrossRefGoogle ScholarPubMed
Gray, R. (2002). Behavior of college baseball players in a virtual batting task. J Exp Psychol Hum Percept Perform 28(5): 1131–1148.CrossRefGoogle Scholar
Greenlee, M. W. (2000). Human cortical areas underlying the perception of optic flow: brain imaging studies. Int Rev Neurobiol 44: 269–292.CrossRefGoogle ScholarPubMed
Hayes, A. (2000). Apparent position governs contour-element binding by the visual system. Proc R Soc Lond B Biol Sci 267(1450): 1341–1345.CrossRefGoogle ScholarPubMed
Henriques, D. Y., Klier, E. M., Smith, M. A., Lowy, D., & Crawford, J. D. (1998a). Gaze-centered remapping of remembered visual space in an open-loop pointing task. J Neurosci 18(4): 1583–1594.CrossRefGoogle Scholar
Henriques, D. Y., Klier, E. M., Smith, M. A., Lowy, D., & Crawford, J. D. (1998b). Gaze-centered remapping of remembered visual space in an open-loop pointing task. J Neurosci 18(4): 1583–1594.CrossRefGoogle Scholar
Henriques, D. Y., Medendorp, W. P., Gielen, C. C., & Crawford, J. D. (2003). Geometric computations underlying eye-hand coordination: orientations of the two eyes and the head. Exp Brain Res 152(1): 70–78.CrossRefGoogle ScholarPubMed
Herman, R., & Maulucci, R. (1981). Visually triggered eye-arm movements in man. Exp Brain Res 42(3–4): 392–398.Google ScholarPubMed
Hikosaka, K., Iwai, E., Saito, H., & Tanaka, K. (1988). Polysensory properties of neurons in the anterior bank of the caudal superior temporal sulcus of the macaque monkey. J Neurophysiol 60(5): 1615–1637.CrossRefGoogle ScholarPubMed
Hikosaka, O., Miyauchi, S., & Shimojo, S. (1993). Focal visual attention produces illusory temporal order and motion sensation. Vision Res 33(9): 1219–1240.CrossRefGoogle ScholarPubMed
Howard, I. P., & Marton, C. (1992). Visual pursuit over textured backgrounds in different depth planes. Exp Brain Res 90(3): 625–629.CrossRefGoogle ScholarPubMed
Huk, A. C., Dougherty, R. F., & Heeger, D. J. (2002). Retinotopy and functional subdivision of human areas MT and MST. J Neurosci 22(16): 7195–7205.CrossRefGoogle ScholarPubMed
Ingle, D. (1973). Two visual systems in the frog. Science 181(104): 1053–1055.CrossRefGoogle ScholarPubMed
Jacob, P., & Jeannerod, M. (2003). Ways of Seeing. Oxford: Oxford University Press.CrossRefGoogle Scholar
Kawano, K., & Miles, F. A. (1986). Short-latency ocular following responses of monkey. II. Dependence on a prior saccadic eye movement. J Neurophysiol 56(5): 1355–1380.CrossRefGoogle ScholarPubMed
Kawano, K., Shidara, M., Watanabe, Y., & Yamane, S. (1994). Neural activity in cortical area MST of alert monkey during ocular following responses. J Neurophysiol 71(6): 2305–2324.CrossRefGoogle ScholarPubMed
Keller, E. L., & Khan, N. S. (1986). Smooth-pursuit initiation in the presence of a textured background in monkey. Vision Res 26(6): 943–955.CrossRefGoogle ScholarPubMed
Kerzel, D., & Gegenfurtner, K. R. (2003). Neuronal processing delays are compensated in the sensorimotor branch of the visual system. Curr Biol 13(22): 1975–1978.CrossRefGoogle ScholarPubMed
Kerzel, D., & Gegenfurtner, K. R. (2005). Motion-induced illusory displacement reexamined: differences between perception and action? Exp Brain Res 162(2): 191–201.CrossRefGoogle ScholarPubMed
Kowler, E., van der Steen, J., Tamminga, E. P., & Collewijn, H. (1984). Voluntary selection of the target for smooth eye movement in the presence of superimposed, full-field stationary and moving stimuli. Vision Res 24(12): 1789–1798.CrossRefGoogle ScholarPubMed
Land, M. F., & McLeod, P. (2000). From eye movements to actions: how batsmen hit the ball. Nat Neurosci 3(12): 1340–1345.CrossRefGoogle Scholar
Lee, D. N. (1980). The optic flow field: the foundation of vision. Philos Trans R Soc Lond B Biol Sci 290(1038): 169–179.CrossRefGoogle Scholar
Lee, D. N., & Aronson, E. (1974). Visual proprioceptive control of standing in human infants. Perception & Psychophysics 15: 529–532.CrossRefGoogle Scholar
Lee, D. N., & Reddish, P. E. (1981). Plummeting gannets: a paradigm of ecological optics. Nature 293(5830): 293–294.CrossRefGoogle Scholar
Lindner, A., Schwarz, U., & Ilg, U. J. (2001). Cancellation of self-induced retinal image motion during smooth pursuit eye movements. Vision Res 41(13): 1685–1694.CrossRefGoogle ScholarPubMed
Livingstone, M., & Hubel, D. (1988). Segregation of form, colour, movement, and depth: anatomy, physiology, and perception. Science 240(4853): 740–749.CrossRefGoogle ScholarPubMed
Lu, Z. L., Lesmes, L. A., & Sperling, G. (1999). Perceptual motion standstill in rapidly moving chromatic displays. Proc Natl Acad Sci U S A 96(26): 15374–15379.CrossRefGoogle ScholarPubMed
Lu, Z. L., & Sperling, G. (1995). Attention-generated apparent motion. Nature 377(6546): 237–239.CrossRefGoogle ScholarPubMed
Lu, Z. L., & Sperling, G. (2001a). Three-systems theory of human visual motion perception: review and update. J Opt Soc Am A Opt Image Sci Vis 18(9): 2331–2370.CrossRefGoogle ScholarPubMed
Lu, Z. L., & Sperling, G. (2001b). Sensitive calibration and measurement procedures based on the amplification principle in motion perception. Vision Res 41(18): 2355–2374.CrossRefGoogle ScholarPubMed
Mack, A., & Herman, E. (1973). Position constancy during pursuit eye movement: an investigation of the Filehne illusion. Q J Exp Psychol 25(1): 71–84.CrossRefGoogle ScholarPubMed
Masson, G., Proteau, L., & Mestre, D. R. (1995). Effects of stationary and moving textured backgrounds on the visuo- oculo-manual tracking in humans. Vision Res 35(6): 837–852.CrossRefGoogle ScholarPubMed
Masson, G. S., Busettini, C., Yang, D. S., & Miles, F. A. (2001). Short-latency ocular following in humans: sensitivity to binocular disparity. Vision Res 41(25–26): 3371–3387.CrossRefGoogle ScholarPubMed
Masson, G. S., Yang, D. S., & Miles, F. A. (2002). Reversed short-latency ocular following. Vision Res 42(17): 2081–2087.CrossRefGoogle ScholarPubMed
McGraw, P. V., Whitaker, D., Skillen, J., & Chung, S. T. (2002). Motion adaptation distorts perceived visual position. Curr Biol 12(23): 2042–2047.CrossRefGoogle ScholarPubMed
Miles, F. A., Kawano, K., & Optican, L. M. (1986). Short-latency ocular following responses of monkey. I. Dependence on temporospatial properties of visual input. J Neurophysiol 56(5): 1321–1354.CrossRefGoogle ScholarPubMed
Mohrmann, H., & Thier, P. (1995). The influence of structured visual backgrounds on smooth-pursuit initiation, steady-state pursuit and smooth-pursuit termination. Biol Cybern 73(1): 83–93.CrossRefGoogle ScholarPubMed
Mohrmann-Lendla, H., & Fleischer, A. G. (1991). The effect of a moving background on aimed hand movements. Ergonomics 34(3): 353–364.CrossRefGoogle ScholarPubMed
Nakayama, K., & Tyler, C. W. (1981). Psychophysical isolation of movement sensitivity by removal of familiar position cues. Vision Res 21(4): 427–433.CrossRefGoogle ScholarPubMed
Neggers, S. F., & Bekkering, H. (2001). Gaze anchoring to a pointing target is present during the entire pointing movement and is driven by a non-visual signal. J Neurophysiol 86(2): 961–970.CrossRefGoogle ScholarPubMed
Newsome, W. T., & Pare, E. B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J Neurosci 8(6): 2201–2211.CrossRefGoogle Scholar
Niemann, T., & Hoffmann, K. P. (1997). The influence of stationary and moving textured backgrounds on smooth-pursuit initiation and steady state pursuit in humans. Exp Brain Res 115(3): 531–540.CrossRefGoogle ScholarPubMed
Nishida, S. (2004). Motion-based analysis of spatial patterns by the human visual system. Curr Biol 14(10): 830–839.CrossRefGoogle ScholarPubMed
Nishida, S., & Johnston, A. (1999). Influence of motion signals on the perceived position of spatial pattern. Nature 397(6720): 610–612.CrossRefGoogle ScholarPubMed
Paillard, J. (1982). The contribution of peripheral and central vision to visually guided reaching. In D. J., Ingle, M. A., Goodale, & D. J. W., Mansfield (eds.), Analysis of Visual Behaviour (367–385). Cambridge, MA: MIT Press.Google Scholar
Paillard, J. (1996). Fast and slow feedback loops for the visual correction of spatial errors in a pointing task: A reappraisal. Can J Physiol Pharmacol 74(4): 401–417.CrossRefGoogle Scholar
Paulignan, Y., Jeannerod, M., MacKenzie, C., & Marteniuk, R. (1991a). Selective perturbation of visual input during prehension movements. 2. The effects of changing object size. Exp Brain Res 87(2): 407–420.CrossRefGoogle ScholarPubMed
Paulignan, Y., MacKenzie, C., Marteniuk, R., & Jeannerod, M. (1991b). Selective perturbation of visual input during prehension movements. 1. The effects of changing object position. Exp Brain Res 83(3): 502–512.CrossRefGoogle ScholarPubMed
Pelisson, D., Prablanc, C., Goodale, M. A., & Jeannerod, M. (1986). Visual control of reaching movements without vision of the limb. II. Evidence of fast unconscious processes correcting the trajectory of the hand to the final position of a double-step stimulus. Exp Brain Res 62(2): 303–311.Google ScholarPubMed
Pelz, J., Hayhoe, M., & Loeber, R. (2001). The coordination of eye, head, and hand movements in a natural task. Exp Brain Res 139(3): 266–277.CrossRefGoogle Scholar
Pisella, L., Grea, H., Tilikete, C., Vighetto, A., Desmurget, M., Rode, G., et al. (2000). An ‘automatic pilot’ for the hand in human posterior parietal cortex: toward reinterpreting optic ataxia. Nat Neurosci 3(7): 729–736.CrossRefGoogle ScholarPubMed
Post, R. B., & Welch, R. B. (2004). Studies of open-loop pointing in the presence of induced motion. Percept Psychophys 66(6): 1045–1055.CrossRefGoogle ScholarPubMed
Prablanc, C., Echallier, J. F., Komilis, E., & Jeannerod, M. (1979). Optimal response of eye and hand motor systems in pointing at a visual target. I. Spatio-temporal characteristics of eye and hand movements and their relationships when varying the amount of visual information. Biol Cybern 35(2): 113–124.CrossRefGoogle Scholar
Prablanc, C., & Martin, O. (1992). Automatic control during hand reaching at undetected two-dimensional target displacements. J Neurophysiol 67(2): 455–469.CrossRefGoogle ScholarPubMed
Previc, F. H. (1992). The effects of dynamic visual stimulation on perception and motor control. J Vestib Res 2(4): 285–295.Google ScholarPubMed
Proteau, L., & Masson, G. (1997). Visual perception modifies goal-directed movement control: supporting evidence from a visual perturbation paradigm. Q J Exp Psychol A 50(4): 726–741.CrossRefGoogle ScholarPubMed
Ramachandran, V. S., & Anstis, S. M. (1990). Illusory displacement of equiluminous kinetic edges. Perception 19(5): 611–616.CrossRefGoogle ScholarPubMed
Regan, D. (1997). Visual factors in hitting and catching. J Sports Sci 15(6): 533–558.CrossRefGoogle ScholarPubMed
Saijo, N., Murakami, I., Nishida, S., & Gomi, H. (2005). Large-field visual motion directly induces an involuntary rapid manual following response. J Neurosci 25(20): 4941–4951.CrossRefGoogle ScholarPubMed
Saito, H., Yukie, M., Tanaka, K., Hikosaka, K., Fukada, Y., & Iwai, E. (1986). Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J Neurosci 6(1): 145–157.CrossRefGoogle ScholarPubMed
Savelsbergh, G. J., Whiting, H. T., & Bootsma, R. J. (1991). Grasping tau. J Exp Psychol Hum Percept Perform 17(2): 315–322.CrossRefGoogle ScholarPubMed
Schenk, T., Ellison, A., Rice, N., & Milner, A. D. (2005). The role of v5/MT+ in the control of catching movements: an RTMS study. Neuropsychologia 43(2): 189–198.CrossRefGoogle Scholar
Schenk, T., Mai, N., Ditterich, J., & Zihl, J. (2000). Can a motion-blind patient reach for moving objects? Eur J Neurosci 12(9): 3351–3360.CrossRefGoogle ScholarPubMed
Schenk, T., Mair, B., & Zihl, J. (2004). The use of visual feedback and on-line target information in catching and grasping. Exp Brain Res 154(1): 85–96.CrossRefGoogle ScholarPubMed
Schmolesky, M. T., Wang, Y., Hanes, D. P., Thompson, K. G., Leutgeb, S., Schall, J. D., et al. (1998). Signal timing across the macaque visual system. J Neurophysiol 79(6): 3272–3278.CrossRefGoogle ScholarPubMed
Schneider, G. E. (1969). Two visual systems. Science 163(870): 895–902.CrossRefGoogle ScholarPubMed
Schwarz, U., & Ilg, U. J. (1999). Asymmetry in visual motion processing. Neuroreport 10(12): 2477–2480.CrossRefGoogle ScholarPubMed
Seiffert, A. E., & Cavanagh, P. (1998). Position displacement, not velocity, is the cue to motion detection of second-order stimuli. Vision Res 38(22): 3569–3582.CrossRefGoogle Scholar
Sheth, B. R., & Shimojo, S. (2000). In space, the past can be recast but not the present. Perception 29(11): 1279–1290.CrossRefGoogle Scholar
Shidara, M., & Kawano, K. (1993). Role of Purkinje cells in the ventral paraflocculus in short-latency ocular following responses. Exp Brain Res 93: 185–195.CrossRefGoogle ScholarPubMed
Shioiri, S., & Cavanagh, P. (1990). Isi produces reverse apparent motion. Vision Res 30(5): 757–768.CrossRefGoogle ScholarPubMed
Smeets, J. B., & Brenner, E. (1995a and b). Perception and action are based on the same visual information: distinction between position and velocity. J Exp Psychol Hum Percept Perform 21(1): 19–31.CrossRefGoogle ScholarPubMed
Soechting, J. F., Engel, K. C., & Flanders, M. (2001). The Duncker illusion and eye-hand coordination. J Neurophysiol 85(2): 843–854.CrossRefGoogle ScholarPubMed
Tanaka, K., & Saito, H. (1989). Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J Neurophysiol 62(3): 626–641.CrossRefGoogle ScholarPubMed
Tresilian, J. R. (1993). Four questions of time to contact: a critical examination of research on interceptive timing. Perception 22(6): 653–680.CrossRefGoogle ScholarPubMed
Trevarthen, C. B. (1968). Two mechanisms of vision in primates. Psychol Forsch 31(4): 299–348.CrossRefGoogle ScholarPubMed
Tse, P. U., & Logothetis, N. K. (2002). The duration of 3-d form analysis in transformational apparent motion. Percept Psychophys 64(2): 244–265.CrossRefGoogle ScholarPubMed
Turrell, Y., Bard, C., Fleury, M., Teasdale, N., & Martin, O. (1998). Corrective loops involved in fast aiming movements: effect of task and environment. Exp Brain Res 120(1): 41–51.CrossRefGoogle Scholar
Ullman, S. (1979). The Interpretation of Visual Motion. Cambridge, MA: MIT Press.Google Scholar
van Asten, W. N., Gielen, C. C., & van der Gon, J. J. (1988). Postural movements induced by rotations of visual scenes. J Opt Soc Am A 5(10): 1781–1789.CrossRefGoogle ScholarPubMed
van Santen, J. P. H., & Sperling, G. (1985). Elaborated Reichard detectors. J Opt Soc Am A 2(2): 300–321.CrossRefGoogle Scholar
van Sonderen, J. F., Denier van der Gon, J. J., & Gielen, C. C. (1988). Conditions determining early modification of motor programmes in response to changes in target location. Exp Brain Res 71(2): 320–328.CrossRefGoogle ScholarPubMed
van Sonderen, J. F., Gielen, C. C., & Denier van der Gon, J. J. (1989). Motor programmes for goal-directed movements are continuously adjusted according to changes in target location. Exp Brain Res 78(1): 139–146.CrossRefGoogle ScholarPubMed
Wang, Y., & Frost, B. J. (1992). Time to collision is signalled by neurons in the nucleus rotundus of pigeons. Nature 356(6366): 236–238.CrossRefGoogle ScholarPubMed
Warren, W. H. Jr., Kay, B. A., Zosh, W. D., Duchon, A. P., & Sahuc, S. (2001). Optic flow is used to control human walking. Nat Neurosci 4(2): 213–216.CrossRefGoogle ScholarPubMed
Watamaniuk, S. N. (2005). The predictive power of trajectory motion. Vision Res 45(24): 2993–3003.CrossRefGoogle ScholarPubMed
Watamaniuk, S. N., & McKee, S. P. (1995). Seeing motion behind occluders. Nature 377(6551): 729–730.CrossRefGoogle ScholarPubMed
Watson, A. B., & Ahumada, A. J. Jr. (1985). Model of human visual-motion sensing. J Opt Soc Am A 2(2): 322–341.CrossRefGoogle ScholarPubMed
Wertheim, A. H. (1981). On the relativity of perceived motion. Acta Psychol (Amst) 48(1–3): 97–110.CrossRefGoogle ScholarPubMed
Whitaker, D., McGraw, P. V., & Pearson, S. (1999). Non-veridical size perception of expanding and contracting objects. Vision Res 39(18): 2999–3009.CrossRefGoogle ScholarPubMed
Whitney, D. (2002). The influence of visual motion on perceived position. Trends Cogn Sci 6(5): 211–216.CrossRefGoogle ScholarPubMed
Whitney, D., & Cavanagh, P. (2000). Motion distorts visual space: shifting the perceived position of remote stationary objects. Nat Neurosci 3(9): 954–959.CrossRefGoogle ScholarPubMed
Whitney, D., Ellison, A., Rice, N. J., Arnold, D., Goodale, M., Walsh, V., et al. (2007). Visually guided reaching depends on motion area MT+. Cereb Cortex 17(11): 2644–2649.CrossRefGoogle ScholarPubMed
Whitney, D., & Goodale, M. A. (2005). Visual motion due to eye movements helps guide the hand. Exp Brain Res 162(3): 394–400. Epub 2005 Jan 2015.CrossRefGoogle ScholarPubMed
Whitney, D., Westwood, D. A., & Goodale, M. A. (2003). The influence of visual motion on fast reaching movements to a stationary object. Nature 423(6942): 869–873.CrossRefGoogle ScholarPubMed
Yamagishi, N., Anderson, S. J., & Ashida, H. (2001). Evidence for dissociation between the perceptual and visuomotor systems in humans. Proc R Soc Lond B Biol Sci 268(1470): 973–977.CrossRefGoogle ScholarPubMed
Yee, R. D., Daniels, S. A., Jones, O. W., Baloh, R. W., & Honrubia, V. (1983). Effects of an optokinetic background on pursuit eye movements. Invest Ophthalmol Vis Sci 24(8): 1115–1122.Google ScholarPubMed
Zihl, J., von Cramon, D., & Mai, N. (1983). Selective disturbance of movement vision after bilateral brain damage. Brain 106(Pt 2): 313–340.CrossRefGoogle ScholarPubMed
Zivotofsky, A. Z., Averbuch-Heller, L., Thomas, C. W., Das, V. E., Discenna, A. O., & Leigh, R. J. (1995). Tracking of illusory target motion: differences between gaze and head responses. Vision Res 35(21): 3029–3035.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×