Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-08-01T02:35:00.584Z Has data issue: false hasContentIssue false

3 - Factors influencing perisaccadic visual mislocalization

from Part I - Time–space during action: perisaccadic mislocalization and reaching

Published online by Cambridge University Press:  05 October 2010

Romi Nijhawan
Affiliation:
University of Sussex
Beena Khurana
Affiliation:
University of Sussex
Get access

Summary

Summary

This chapter is a critical review and discussion of psychophysical studies on perisaccadic visual mislocalization. In particular, it focuses on factors influencing the mislocalization curves. The chapter is organized as follows: first some findings on perisaccadic mislocalization observed in complete darkness are reviewed, followed by empirical and theoretical considerations on eye position signals estimated psychophysically from the mislocalization curves. Next, issues on mislocalization in a lit environment are discussed. Finally, findings on perisaccadic perceptual effects of flickering stimulus are reviewed. Although our understanding of how saccadic eye movements affect visual localization has advanced dramatically in recent years, we probably have only a crude outline of the phenomena and, therefore, further research is needed.

Visual mislocalization in the dark

Basic findings

In a saccade, the projection of the world sweeps across the retina at high speed. Nevertheless, we usually do not notice this visual motion, and the world continues to appear visually stable. This perceptual phenomenon is called “visual stability.”

Although visual stability is preserved during saccades under normal conditions, the perception of the position of objects flashed before, during, or just after a saccade is altered. Examinations into perisaccadic mislocalization were first made in the 1960s by Matin and his colleagues (Matin & Pearce 1965; Matin et al. 1969, 1970). They reported that errors in perceptual localization occurred before the saccade onset and finished slightly after it. Subsequent studies showed essentially the same results (Honda 1989, 1990, 1991; Dassonville et al. 1992, 1995; Sogo & Osaka, 2001).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Awater, H., & Lappe, M. (2004). Perception of visual space at the time of pro- and anti-saccades. J Neurophysiol 91: 2457–2464.CrossRefGoogle ScholarPubMed
Bischof, N., & Kramer, E. (1968). Untersuchungen und Uberlegungen zur Richtungswarnehmung bei willkurlichen sakkadischen Augenbewegungen. Psychologische Forschung 32: 185–218.CrossRefGoogle Scholar
Bockisch, C. J., & Miller, J. M. (1999). Different motor systems use similar damped extraretinal eye position information. Vision Res 39: 1025–1038.CrossRefGoogle ScholarPubMed
Boucher, L., Groh, J. M., & Hughes, H. C. (2001). Afferent delays and the mislocalization of perisaccadic stimuli. Vision Res 41: 2631–2644.CrossRefGoogle ScholarPubMed
Brenner, E., Meijer, W. J., & Cornelissen, F. W. (2005). Judging relative positions across saccades. Vision Res 45: 1587–1602.CrossRefGoogle ScholarPubMed
Burr, D. C., Morrone, C., & Ross, J. (2001). Separate visual representations for perception and action revealed by saccadic eye movements. Curr Biol 11: 798–802.CrossRefGoogle ScholarPubMed
Cai, R. H., Pouget, A., Schlag-Rey, M., & Schlag, J. (1997). Perceived geometrical relationships affected by eye-movement signals. Nature 386: 601–604.CrossRefGoogle ScholarPubMed
Cho, S., & Lee, C. (2003). Expansion of visual space after saccadic eye movements. J Vis 3: 906–918.CrossRefGoogle ScholarPubMed
Currie, B., McConkie, G., Carlson-Radvansky, L., & Irwin, D. (2000). The role of the saccade target objects in the perception of a visually stable world. Atten Percep Psychophys 62: 673–683.CrossRefGoogle Scholar
Dassonville, P., Schlag, J., & Schlag-Rey, M. (1992). Oculomotor localization relies on a damped representation of saccadic eye displacement in human and nonhuman primates. Vis Neurosci 9: 261–269.CrossRefGoogle ScholarPubMed
Dassonville, P., Schlag, J., & Schlag-Rey, M. (1995). The use of egocentric and exocentric location cues in saccadic programming. Vision Res 35: 2129–2199.CrossRefGoogle ScholarPubMed
Deubel, H., Bridgeman, B., & Schneider, W. X. (1998). Immediate post-saccadic information mediates space constancy. Vision Res 38: 3147–3159.CrossRefGoogle ScholarPubMed
Duhamel, J. R., Colby, C. L., & Goldberg, M. E. (1992). The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255: 90–92.CrossRefGoogle ScholarPubMed
Grusser, O.-J., Krizic, A., & Weiss, L. (1987). Afterimage movement during saccades in the dark. Vision Res 27: 215–226.CrossRefGoogle Scholar
Hallett, P. E. (1978). Primary and secondary saccades to goals defined by instructions. Vision Res 18: 1279–1296.CrossRefGoogle ScholarPubMed
Hallett, P. E., & Lightstone, A. D. (1976a). Saccadic eye movements towards stimuli triggered by prior saccades. Vision Res 16: 99–106.CrossRefGoogle ScholarPubMed
Hallett, P. E., & Lightstone, A. D. (1976b). Saccadic eye movements to flashed targets. Vision Res 16: 107–114.CrossRefGoogle ScholarPubMed
Hansen, R. M., & Skavenski, A. A. (1977). Accuracy of eye position information for motor control. Vision Res 17: 919–926.CrossRefGoogle ScholarPubMed
Hansen, R. M., & Skavenski, A. A. (1985). Accuracy of spatial localization near the time of saccadic eye movements. Vision Res 25: 1077–1082.CrossRefGoogle Scholar
von Helmholtz, H. (1866). Handbuch der Physiologischen Optik. Leipzig: Voss.Google Scholar
Hershberger, W. (1987). Saccadic eye movements and the perception of visual direction. Perception & Psychophysics 41: 34.CrossRefGoogle ScholarPubMed
Honda, H. (1989). Perceptual localization of visual stimuli flashed during saccades. Perception & Psychophysics 45: 162–174.CrossRefGoogle ScholarPubMed
Honda, H. (1990). Eye movements to a visual stimulus flashed before, during, or after a saccade. In M., Jeannerod (ed.), Attention and Performance XIII: Motor Representation and Control (567–582). Hillsdale, NJ: Erlbaum.Google Scholar
Honda, H. (1991). The time courses of visual mislocalization and of extraretinal eye position signals at the time of vertical saccades. Vision Res 31: 1915–1921.CrossRefGoogle ScholarPubMed
Honda, H. (1993). Saccade-contingent displacement of the apparent position of visual stimuli flashed on a dimly illuminated structured background. Vision Res 33: 709–716.CrossRefGoogle ScholarPubMed
Honda, H. (1995). Visual mislocalization produced by a rapid image displacement on the retina: Examination by means of dichoptic presentation of a target and its background scene. Vision Res 35: 3021–3028.CrossRefGoogle ScholarPubMed
Honda, H. (1997). Interaction of extraretinal eye position signals in a double-step saccade task: psychophysical estimation. Exp Brain Res 113: 327–336.CrossRefGoogle Scholar
Honda, H. (1999). Modification of saccade-contingent visual mislocalization by the presence of a visual frame of reference. Vision Res 39: 51–57.CrossRefGoogle ScholarPubMed
Honda, H. (2006). Achievement of transsaccadic visual stability using presaccadic and postsaccadic visual information. Vision Res 46: 3483–3493.CrossRefGoogle ScholarPubMed
Jordan, J. S., & Hershberger, W. A. (1994). Timing the shift in retinal local signs that accompanies a saccadic eye movement. Perception & Psychophysics 55: 657–666.CrossRefGoogle ScholarPubMed
Kaiser, M., & Lappe, M. (2004). Perisaccadic mislocalization orthogonal to saccade direction. Neuron 41: 293–300.CrossRefGoogle ScholarPubMed
Kennard, D. W., Hartmann, R. W., Kraft, D. P., & Glaser, G. H. (1971). Brief conceptual (nonreal) events during eye movements. Biol Psychiatry 3: 205–215.Google Scholar
Krekelberg, B., Kubischik, M., Hoffmann, K.-P., & Bremmer, F. (2003). Neural correlates of visual localization and perisaccadic mislocalization. Neuron 37: 537–545.CrossRefGoogle ScholarPubMed
Lappe, M., Awater, H., & Krekelberg, B. (2000). Postsaccadic visual references generated presaccadic compression of space. Nature 403: 892–894.CrossRefGoogle Scholar
Mateeff, S. (1978). Saccadic eye movements and localization of visual stimuli. Perception & Psychophysics 24: 215–224.CrossRefGoogle ScholarPubMed
Matin, L., Matin, E., & Pearce, D. G. (1969). Visual perception of direction when voluntary saccades occur: I. Relation of visual direction of a fixation target extinguished before a saccade to a flash presented during the saccade. Perception & Psychophysics 5: 65–80.CrossRefGoogle Scholar
Matin, L., Matin, E., & Pola, J. (1970). Visual perception of direction when voluntary saccades occur: II. Relation of visual direction of a fixation target extinguished before a saccade to a subsequent test flash presented before the saccade. Perception & Psychophysics 8: 9–14.CrossRefGoogle Scholar
Matin, L., & Pearce, D. G. (1965). Visual perception of direction for stimuli flashed during voluntary saccadic eye movements. Science 148: 1485–1488.CrossRefGoogle ScholarPubMed
Matsumiya, K., & Uchikawa, K. (2001). Apparent size of an object remains uncompressed during presaccadic compression of visual space. Vision Res 41: 3039–3050.CrossRefGoogle ScholarPubMed
Miller, J. M. (1996). Egocentric localization of a perisaccadic flash by manual pointing. Vision Res 36: 837–851.CrossRefGoogle ScholarPubMed
Milner, A. D., & Goodale, M. A. (1995). The Visual Brain in Action. Oxford: Oxford University Press.Google Scholar
O'Regan, K. (1984). Retinal versus extraretinal influences in flash localization during saccadic eye movements in the presence of a visible background. Perception & Psychophysics 36: 1–14.CrossRefGoogle ScholarPubMed
Ross, J., Morrone, M. C., & Burr, D. C. (1997). Compression of visual space before saccades. Nature 386: 598–601.CrossRefGoogle ScholarPubMed
Schlag, J., & Schlag-Rey, M. (1995). Illusory localization of stimuli flashed in the dark before saccades. Vision Res 35: 2347–2357.CrossRefGoogle ScholarPubMed
Sogo, H., & Osaka, N. (2001). Perception of relation of stimuli locations successively flashed before saccade. Vision Res 41: 935–942.CrossRefGoogle ScholarPubMed
Sommer, M. A., & Wurtz, R. H. (2002). A pathway in primate brain for internal monitoring of movements. Science 296: 1480–1482.CrossRefGoogle ScholarPubMed
Sperry, R. W. (1950). Neural basis of the spontaneous optokinetic responses produced by visual inversion. J Comp Physiol Psychol 43: 482–489.CrossRefGoogle Scholar
Stevens, J. K., Emerson, R. C., Gerstein, G. L., Kallos, T., Neufeld, G. R., Nichols, C. W., et al. (1976). Paralysis of the awake human: visual perceptions. Vision Res 15: 93–98.CrossRefGoogle Scholar
Tolias, A. S., Moore, T., Smirnakis, S. M., Tehovnik, E. J., Siapas, A. G., & Schiller, P. H. (2001). Eye movements modulate visual receptive fields of V4 neurons. Neuron 29: 757–767.CrossRefGoogle ScholarPubMed
Umeno, M. M., & Goldberg, M. E. (1997). Spatial processing in the monkey frontal eye field. I. Predictive visual responses. J Neurophysiol 78: 1373–1383.CrossRefGoogle ScholarPubMed
Von Holst, E., & Mittelstaedt, H. (1954). Das Reafferenzprinzip. Naturewissenschafften 37: 464–476.CrossRefGoogle Scholar
Walker, M. F., Fitzgibbon, E. J., & Goldberg, M. E. (1995). Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. J Neurophysiol 73: 1988–2003.CrossRefGoogle ScholarPubMed
Watanabe, J., Noritake, A., Maeda, T., Tachi, A., & Nishida, S. (2005). Perisaccadic perception of continuous flickers. Vision Res 45: 413–430.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×