Skip to main content Accessibility help
×
Home
  • Cited by 1
  • Print publication year: 2010
  • Online publication date: October 2010

9 - The utility of visual motion for goal-directed reaching

from Part I - Time–space during action: perisaccadic mislocalization and reaching

Summary

Summary

Visual information is crucial for goal-directed reaching. Recently a number of studies have shown that motion in particular is an important source of information for the visuomotor system. For example, when reaching for a stationary object, nearby visual movement, even when irrelevant to the object or task, can influence the trajectory of the hand. Although it is clear that various kinds of visual motion can influence goal-directed reaching movements, it is less clear how or why they do so. In this chapter, we consider whether the influence of motion on reaching is unique compared to its influence on other forms of visually guided behavior. We also address how motion is coded by the visuomotor system and whether there is one motion processing system that underlies both perception and visually guided reaching. Ultimately, visual motion may operate on a number of levels, influencing goal-directed reaching through more than one mechanism, some of which may actually be beneficial for accurate behavior.

Introduction

Visual motion is constantly produced as we move our eyes and head and as objects move in the world. The visuomotor system, therefore, faces a serious challenge in that it must register target as well as background motion and then segment these different sources of motion in order to direct actions to objects. Over the last three decades, a broad and expanding literature has examined how the visuomotor system processes and uses visual motion in goal-directed behavior.

Related content

Powered by UNSILO
References
Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. J Opt Soc Am [A] 2(2): 284–299.
Anstis, S. M. (1970). Phi movement as a subtraction process. Vision Res 10(12): 1411–1430.
Anstis, S. M. (1980). The perception of apparent movement. Philos Trans R Soc Lond B Biol Sci 290(1038): 153–168.
Anstis, S. M., & Cavanagh, P. (1983). A minimum motion technique for judging equiluminance. In J., Mollon & R. T., Sharpe (eds.), Color Vision: Physiology and Psychophysics (155–166). London: Academic Press.
Ariff, G., Donchin, O., Nanayakkara, T., & Shadmehr, R. (2002). A real-time state predictor in motor control: study of saccadic eye movements during unseen reaching movements. J Neurosci 22(17): 7721–7729.
Ashida, H. (2004). Action-specific extrapolation of target motion in human visual system. Neuropsychologia 42(11): 1515–1524.
Assad, J. A., & Maunsell, J. H. (1995). Neuronal correlates of inferred motion in primate posterior parietal cortex. Nature 373(6514): 518–521.
Ballard, D. H., Hayhoe, M. M., Li, F., & Whitehead, S. D. (1992). Hand-eye coordination during sequential tasks. Philos Trans R Soc Lond B Biol Sci 337(1281): 331–338; discussion 338–339.
Biguer, B., Jeannerod, M., & Prablanc, C. (1982). The coordination of eye, head, and arm movements during reaching at a single visual target. Exp Brain Res 46(2): 301–304.
Binsted, G., Chua, R., Helsen, W., & Elliott, D. (2001). Eye-hand coordination in goal-directed aiming. Hum Mov Sci 20(4–5): 563–585.
Bock, O., & Jungling, S. (1999). Reprogramming of grip aperture in a double-step virtual grasping paradigm. Exp Brain Res 125(1): 61–66.
Brenner, E., & Smeets, J. B. (1994). Different frames of reference for position and motion. Naturwissenschaften 81(1): 30–32.
Brenner, E., & Smeets, J. B. (1997). Fast responses of the human hand to changes in target position. J Mot Behav 29(4): 297–310.
Brenner, E., & Smeets, J. B. (2003). Fast corrections of movements with a computer mouse. Spat Vis 16(3–4): 365–376.
Brenner, E., & Smeets, J. B. (2004). Colour vision can contribute to fast corrections of arm movements. Exp Brain Res 158(3): 302–307.
Brenner, E., Smeets, J. B., & de Lussanet, M. H. (1998). Hitting moving targets. Continuous control of the acceleration of the hand on the basis of the target's velocity. Exp Brain Res 122(4): 467–474.
Bridgeman, B. (1995). A review of the role of efference copy in sensory and oculomotor control systems. Ann Biomed Eng 23(4): 409–422.
Bridgeman, B., Kirch, M., & Sperling, A. (1981). Segregation of cognitive and motor aspects of visual function using induced motion. Percept Psychophys 29(4): 336–342.
Bridgeman, B., Lewis, S., Heit, G., & Nagle, M. (1979). Relation between cognitive and motor-oriented systems of visual position perception. J Exp Psychol Hum Percept Perform 5(4): 692–700.
Bridgeman, B., Peery, S., & Anand, S. (1997). Interaction of cognitive and sensorimotor maps of visual space. Percept Psychophys 59(3): 456–469.
Britten, K. H., & van Wezel, R. J. (1998). Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nat Neurosci 1(1): 59–63.
Buneo, C. A., Jarvis, M. R., Batista, A. P., & Andersen, R. A. (2002). Direct visuomotor transformations for reaching. Nature 416(6881): 632–636.
Burr, D. C., & Ross, J. (2002). Direct evidence that “speedlines” influence motion mechanisms. J Neurosci 22(19): 8661–8664.
Burr, D. C., Ross, J., & Morrone, M. C. (1986). Seeing objects in motion. Proc R Soc Lond B Biol Sci 227(1247): 249–265.
Castiello, U., Paulignan, Y., & Jeannerod, M. (1991). Temporal dissociation of motor responses and subjective awareness. A study in normal subjects. Brain 114(Pt 6): 2639–2655.
Cavanagh, P. (1992). Attention-based motion perception. Science 257(5076): 1563–1565.
Cavanagh, P., & Mather, G. (1989). Motion: the long and short of it. Spat Vis 4(2–3): 103–129.
Cavanagh, P., Tyler, C. W., & Favreau, O. E. (1984). Perceived velocity of moving chromatic gratings. J Opt Soc Am A 1: 893–899.
Collewijn, H., & Tamminga, E. P. (1984). Human smooth and saccadic eye movements during voluntary pursuit of different target motions on different backgrounds. J Physiol 351: 217–250.
Cowey, A., & Stoerig, P. (1991). The neurobiology of blindsight. Trends Neurosci 14(4): 140–145.
Crawford, J. D., Medendorp, W. P., & Marotta, J. J. (2004). Spatial transformations for eye-hand coordination. J Neurophysiol 92(1): 10–19.
Cropper, S. J., & Derrington, A. M. (1994). Motion of chromatic stimuli: first-order or second-order? Vision Res 34(1): 49–58.
Cropper, S. J., & Derrington, A. M. (1996). Rapid colour-specific detection of motion in human vision. Nature 379(6560): 72–74.
Culham, J., He, S., Dukelow, S., & Verstraten, F. A. (2001). Visual motion and the human brain: what has neuroimaging told us? Acta Psychol (Amst) 107(1–3): 69–94.
Dassonville, P., Bridgeman, B., Kaur Bala, J., Thiem, P., & Sampanes, A. (2004). The induced Roelofs effect: two visual systems or the shift of a single reference frame? Vision Res 44(6): 603–611.
Day, B. L., & Lyon, I. N. (2000). Voluntary modification of automatic arm movements evoked by motion of a visual target. Exp Brain Res 130(2): 159–168.
De Valois, R. L., & De Valois, K. K. (1991). Vernier acuity with stationary moving gabors. Vision Res 31(9): 1619–1626.
Del Viva, M. M., & Morrone, M. C. (1998). Motion analysis by feature tracking. Vision Res 38(22): 3633–3653.
Derrington, A. M. (2000). Vision: can colour contribute to motion? Curr Biol 10(7): R268–270.
Derrington, A. M., Allen, H. A., & Delicato, L. S. (2004). Visual mechanisms of motion analysis and motion perception. Annu Rev Psychol 55: 181–205.
Desmurget, M., & Grafton, S. (2000). Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 4(11): 423–431.
Diedrichsen, J., Nambisan, R., Kennerley, S. W., & Ivry, R. B. (2004). Independent on-line control of the two hands during bimanual reaching. Eur J Neurosci 19(6): 1643–1652.
Duffy, C. J., & Wurtz, R. H. (1991a). Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J Neurophysiol 65(6): 1329–1345.
Duffy, C. J., & Wurtz, R. H. (1991b). Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. J Neurophysiol 65(6): 1346–1359.
Dukelow, S. P., DeSouza, J. F., Culham, J. C., Van Den Berg, A. V., Menon, R. S., & Vilis, T. (2001). Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. J Neurophysiol 86(4): 1991–2000.
Engel, K. C., Anderson, J. H., & Soechting, J. F. (2000). Similarity in the response of smooth pursuit and manual tracking to a change in the direction of target motion. J Neurophysiol 84(3): 1149–1156.
Fischer, B., & Rogal, L. (1986). Eye-hand-coordination in man: a reaction time study. Biol Cybern 55(4): 253–261.
Freeman, T. C. (2001). Transducer models of head-centred motion perception. Vision Res 41(21): 2741–2755.
Geisler, W. S. (1999). Motion streaks provide a spatial code for motion direction. Nature 400(6739): 65–69.
Gibson, J. J. (1986). The Ecological Approach to Visual Perception. Hillsdale, NJ: Erlbaum.
Goltz, H. C., & Whitney, D. (2004). The influence of background motion on smooth pursuit: separation matters. Journal of Vision 4: 649.
Gomi, H., Abekawa, N., & Nishida, S. (2005). Implicit sensorimotor control: rapid motor responses of arm and eye share the visual motion encoding [Abstract]. Journal of Vision 5(8): 363a; http://journalofvision.org/5/8/363/, doi:10.1167/5.8.363
Gomi, H., Abekawa, N., & Nishida, S. (2006). Spatiotemporal tuning of rapid interactions between visual-motion analysis and reaching movement. J Neurosci 26(20): 5301–5308.
Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends Neurosci 15(1): 20–25.
Goodale, M. A., Pelisson, D., & Prablanc, C. (1986). Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature 320(6064): 748–750.
Gray, R. (2002). Behavior of college baseball players in a virtual batting task. J Exp Psychol Hum Percept Perform 28(5): 1131–1148.
Greenlee, M. W. (2000). Human cortical areas underlying the perception of optic flow: brain imaging studies. Int Rev Neurobiol 44: 269–292.
Hayes, A. (2000). Apparent position governs contour-element binding by the visual system. Proc R Soc Lond B Biol Sci 267(1450): 1341–1345.
Henriques, D. Y., Klier, E. M., Smith, M. A., Lowy, D., & Crawford, J. D. (1998a). Gaze-centered remapping of remembered visual space in an open-loop pointing task. J Neurosci 18(4): 1583–1594.
Henriques, D. Y., Klier, E. M., Smith, M. A., Lowy, D., & Crawford, J. D. (1998b). Gaze-centered remapping of remembered visual space in an open-loop pointing task. J Neurosci 18(4): 1583–1594.
Henriques, D. Y., Medendorp, W. P., Gielen, C. C., & Crawford, J. D. (2003). Geometric computations underlying eye-hand coordination: orientations of the two eyes and the head. Exp Brain Res 152(1): 70–78.
Herman, R., & Maulucci, R. (1981). Visually triggered eye-arm movements in man. Exp Brain Res 42(3–4): 392–398.
Hikosaka, K., Iwai, E., Saito, H., & Tanaka, K. (1988). Polysensory properties of neurons in the anterior bank of the caudal superior temporal sulcus of the macaque monkey. J Neurophysiol 60(5): 1615–1637.
Hikosaka, O., Miyauchi, S., & Shimojo, S. (1993). Focal visual attention produces illusory temporal order and motion sensation. Vision Res 33(9): 1219–1240.
Howard, I. P., & Marton, C. (1992). Visual pursuit over textured backgrounds in different depth planes. Exp Brain Res 90(3): 625–629.
Huk, A. C., Dougherty, R. F., & Heeger, D. J. (2002). Retinotopy and functional subdivision of human areas MT and MST. J Neurosci 22(16): 7195–7205.
Ingle, D. (1973). Two visual systems in the frog. Science 181(104): 1053–1055.
Jacob, P., & Jeannerod, M. (2003). Ways of Seeing. Oxford: Oxford University Press.
Kawano, K., & Miles, F. A. (1986). Short-latency ocular following responses of monkey. II. Dependence on a prior saccadic eye movement. J Neurophysiol 56(5): 1355–1380.
Kawano, K., Shidara, M., Watanabe, Y., & Yamane, S. (1994). Neural activity in cortical area MST of alert monkey during ocular following responses. J Neurophysiol 71(6): 2305–2324.
Keller, E. L., & Khan, N. S. (1986). Smooth-pursuit initiation in the presence of a textured background in monkey. Vision Res 26(6): 943–955.
Kerzel, D., & Gegenfurtner, K. R. (2003). Neuronal processing delays are compensated in the sensorimotor branch of the visual system. Curr Biol 13(22): 1975–1978.
Kerzel, D., & Gegenfurtner, K. R. (2005). Motion-induced illusory displacement reexamined: differences between perception and action? Exp Brain Res 162(2): 191–201.
Kowler, E., van der Steen, J., Tamminga, E. P., & Collewijn, H. (1984). Voluntary selection of the target for smooth eye movement in the presence of superimposed, full-field stationary and moving stimuli. Vision Res 24(12): 1789–1798.
Land, M. F., & McLeod, P. (2000). From eye movements to actions: how batsmen hit the ball. Nat Neurosci 3(12): 1340–1345.
Lee, D. N. (1980). The optic flow field: the foundation of vision. Philos Trans R Soc Lond B Biol Sci 290(1038): 169–179.
Lee, D. N., & Aronson, E. (1974). Visual proprioceptive control of standing in human infants. Perception & Psychophysics 15: 529–532.
Lee, D. N., & Reddish, P. E. (1981). Plummeting gannets: a paradigm of ecological optics. Nature 293(5830): 293–294.
Lindner, A., Schwarz, U., & Ilg, U. J. (2001). Cancellation of self-induced retinal image motion during smooth pursuit eye movements. Vision Res 41(13): 1685–1694.
Livingstone, M., & Hubel, D. (1988). Segregation of form, colour, movement, and depth: anatomy, physiology, and perception. Science 240(4853): 740–749.
Lu, Z. L., Lesmes, L. A., & Sperling, G. (1999). Perceptual motion standstill in rapidly moving chromatic displays. Proc Natl Acad Sci U S A 96(26): 15374–15379.
Lu, Z. L., & Sperling, G. (1995). Attention-generated apparent motion. Nature 377(6546): 237–239.
Lu, Z. L., & Sperling, G. (2001a). Three-systems theory of human visual motion perception: review and update. J Opt Soc Am A Opt Image Sci Vis 18(9): 2331–2370.
Lu, Z. L., & Sperling, G. (2001b). Sensitive calibration and measurement procedures based on the amplification principle in motion perception. Vision Res 41(18): 2355–2374.
Mack, A., & Herman, E. (1973). Position constancy during pursuit eye movement: an investigation of the Filehne illusion. Q J Exp Psychol 25(1): 71–84.
Masson, G., Proteau, L., & Mestre, D. R. (1995). Effects of stationary and moving textured backgrounds on the visuo- oculo-manual tracking in humans. Vision Res 35(6): 837–852.
Masson, G. S., Busettini, C., Yang, D. S., & Miles, F. A. (2001). Short-latency ocular following in humans: sensitivity to binocular disparity. Vision Res 41(25–26): 3371–3387.
Masson, G. S., Yang, D. S., & Miles, F. A. (2002). Reversed short-latency ocular following. Vision Res 42(17): 2081–2087.
McGraw, P. V., Whitaker, D., Skillen, J., & Chung, S. T. (2002). Motion adaptation distorts perceived visual position. Curr Biol 12(23): 2042–2047.
Miles, F. A., Kawano, K., & Optican, L. M. (1986). Short-latency ocular following responses of monkey. I. Dependence on temporospatial properties of visual input. J Neurophysiol 56(5): 1321–1354.
Mohrmann, H., & Thier, P. (1995). The influence of structured visual backgrounds on smooth-pursuit initiation, steady-state pursuit and smooth-pursuit termination. Biol Cybern 73(1): 83–93.
Mohrmann-Lendla, H., & Fleischer, A. G. (1991). The effect of a moving background on aimed hand movements. Ergonomics 34(3): 353–364.
Nakayama, K., & Tyler, C. W. (1981). Psychophysical isolation of movement sensitivity by removal of familiar position cues. Vision Res 21(4): 427–433.
Neggers, S. F., & Bekkering, H. (2001). Gaze anchoring to a pointing target is present during the entire pointing movement and is driven by a non-visual signal. J Neurophysiol 86(2): 961–970.
Newsome, W. T., & Pare, E. B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J Neurosci 8(6): 2201–2211.
Niemann, T., & Hoffmann, K. P. (1997). The influence of stationary and moving textured backgrounds on smooth-pursuit initiation and steady state pursuit in humans. Exp Brain Res 115(3): 531–540.
Nishida, S. (2004). Motion-based analysis of spatial patterns by the human visual system. Curr Biol 14(10): 830–839.
Nishida, S., & Johnston, A. (1999). Influence of motion signals on the perceived position of spatial pattern. Nature 397(6720): 610–612.
Paillard, J. (1982). The contribution of peripheral and central vision to visually guided reaching. In D. J., Ingle, M. A., Goodale, & D. J. W., Mansfield (eds.), Analysis of Visual Behaviour (367–385). Cambridge, MA: MIT Press.
Paillard, J. (1996). Fast and slow feedback loops for the visual correction of spatial errors in a pointing task: A reappraisal. Can J Physiol Pharmacol 74(4): 401–417.
Paulignan, Y., Jeannerod, M., MacKenzie, C., & Marteniuk, R. (1991a). Selective perturbation of visual input during prehension movements. 2. The effects of changing object size. Exp Brain Res 87(2): 407–420.
Paulignan, Y., MacKenzie, C., Marteniuk, R., & Jeannerod, M. (1991b). Selective perturbation of visual input during prehension movements. 1. The effects of changing object position. Exp Brain Res 83(3): 502–512.
Pelisson, D., Prablanc, C., Goodale, M. A., & Jeannerod, M. (1986). Visual control of reaching movements without vision of the limb. II. Evidence of fast unconscious processes correcting the trajectory of the hand to the final position of a double-step stimulus. Exp Brain Res 62(2): 303–311.
Pelz, J., Hayhoe, M., & Loeber, R. (2001). The coordination of eye, head, and hand movements in a natural task. Exp Brain Res 139(3): 266–277.
Pisella, L., Grea, H., Tilikete, C., Vighetto, A., Desmurget, M., Rode, G., et al. (2000). An ‘automatic pilot’ for the hand in human posterior parietal cortex: toward reinterpreting optic ataxia. Nat Neurosci 3(7): 729–736.
Post, R. B., & Welch, R. B. (2004). Studies of open-loop pointing in the presence of induced motion. Percept Psychophys 66(6): 1045–1055.
Prablanc, C., Echallier, J. F., Komilis, E., & Jeannerod, M. (1979). Optimal response of eye and hand motor systems in pointing at a visual target. I. Spatio-temporal characteristics of eye and hand movements and their relationships when varying the amount of visual information. Biol Cybern 35(2): 113–124.
Prablanc, C., & Martin, O. (1992). Automatic control during hand reaching at undetected two-dimensional target displacements. J Neurophysiol 67(2): 455–469.
Previc, F. H. (1992). The effects of dynamic visual stimulation on perception and motor control. J Vestib Res 2(4): 285–295.
Proteau, L., & Masson, G. (1997). Visual perception modifies goal-directed movement control: supporting evidence from a visual perturbation paradigm. Q J Exp Psychol A 50(4): 726–741.
Ramachandran, V. S., & Anstis, S. M. (1990). Illusory displacement of equiluminous kinetic edges. Perception 19(5): 611–616.
Regan, D. (1997). Visual factors in hitting and catching. J Sports Sci 15(6): 533–558.
Saijo, N., Murakami, I., Nishida, S., & Gomi, H. (2005). Large-field visual motion directly induces an involuntary rapid manual following response. J Neurosci 25(20): 4941–4951.
Saito, H., Yukie, M., Tanaka, K., Hikosaka, K., Fukada, Y., & Iwai, E. (1986). Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J Neurosci 6(1): 145–157.
Savelsbergh, G. J., Whiting, H. T., & Bootsma, R. J. (1991). Grasping tau. J Exp Psychol Hum Percept Perform 17(2): 315–322.
Schenk, T., Ellison, A., Rice, N., & Milner, A. D. (2005). The role of v5/MT+ in the control of catching movements: an RTMS study. Neuropsychologia 43(2): 189–198.
Schenk, T., Mai, N., Ditterich, J., & Zihl, J. (2000). Can a motion-blind patient reach for moving objects? Eur J Neurosci 12(9): 3351–3360.
Schenk, T., Mair, B., & Zihl, J. (2004). The use of visual feedback and on-line target information in catching and grasping. Exp Brain Res 154(1): 85–96.
Schmolesky, M. T., Wang, Y., Hanes, D. P., Thompson, K. G., Leutgeb, S., Schall, J. D., et al. (1998). Signal timing across the macaque visual system. J Neurophysiol 79(6): 3272–3278.
Schneider, G. E. (1969). Two visual systems. Science 163(870): 895–902.
Schwarz, U., & Ilg, U. J. (1999). Asymmetry in visual motion processing. Neuroreport 10(12): 2477–2480.
Seiffert, A. E., & Cavanagh, P. (1998). Position displacement, not velocity, is the cue to motion detection of second-order stimuli. Vision Res 38(22): 3569–3582.
Sheth, B. R., & Shimojo, S. (2000). In space, the past can be recast but not the present. Perception 29(11): 1279–1290.
Shidara, M., & Kawano, K. (1993). Role of Purkinje cells in the ventral paraflocculus in short-latency ocular following responses. Exp Brain Res 93: 185–195.
Shioiri, S., & Cavanagh, P. (1990). Isi produces reverse apparent motion. Vision Res 30(5): 757–768.
Smeets, J. B., & Brenner, E. (1995a and b). Perception and action are based on the same visual information: distinction between position and velocity. J Exp Psychol Hum Percept Perform 21(1): 19–31.
Soechting, J. F., Engel, K. C., & Flanders, M. (2001). The Duncker illusion and eye-hand coordination. J Neurophysiol 85(2): 843–854.
Tanaka, K., & Saito, H. (1989). Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J Neurophysiol 62(3): 626–641.
Tresilian, J. R. (1993). Four questions of time to contact: a critical examination of research on interceptive timing. Perception 22(6): 653–680.
Trevarthen, C. B. (1968). Two mechanisms of vision in primates. Psychol Forsch 31(4): 299–348.
Tse, P. U., & Logothetis, N. K. (2002). The duration of 3-d form analysis in transformational apparent motion. Percept Psychophys 64(2): 244–265.
Turrell, Y., Bard, C., Fleury, M., Teasdale, N., & Martin, O. (1998). Corrective loops involved in fast aiming movements: effect of task and environment. Exp Brain Res 120(1): 41–51.
Ullman, S. (1979). The Interpretation of Visual Motion. Cambridge, MA: MIT Press.
van Asten, W. N., Gielen, C. C., & van der Gon, J. J. (1988). Postural movements induced by rotations of visual scenes. J Opt Soc Am A 5(10): 1781–1789.
van Santen, J. P. H., & Sperling, G. (1985). Elaborated Reichard detectors. J Opt Soc Am A 2(2): 300–321.
van Sonderen, J. F., Denier van der Gon, J. J., & Gielen, C. C. (1988). Conditions determining early modification of motor programmes in response to changes in target location. Exp Brain Res 71(2): 320–328.
van Sonderen, J. F., Gielen, C. C., & Denier van der Gon, J. J. (1989). Motor programmes for goal-directed movements are continuously adjusted according to changes in target location. Exp Brain Res 78(1): 139–146.
Wang, Y., & Frost, B. J. (1992). Time to collision is signalled by neurons in the nucleus rotundus of pigeons. Nature 356(6366): 236–238.
Warren, W. H. Jr., Kay, B. A., Zosh, W. D., Duchon, A. P., & Sahuc, S. (2001). Optic flow is used to control human walking. Nat Neurosci 4(2): 213–216.
Watamaniuk, S. N. (2005). The predictive power of trajectory motion. Vision Res 45(24): 2993–3003.
Watamaniuk, S. N., & McKee, S. P. (1995). Seeing motion behind occluders. Nature 377(6551): 729–730.
Watson, A. B., & Ahumada, A. J. Jr. (1985). Model of human visual-motion sensing. J Opt Soc Am A 2(2): 322–341.
Wertheim, A. H. (1981). On the relativity of perceived motion. Acta Psychol (Amst) 48(1–3): 97–110.
Whitaker, D., McGraw, P. V., & Pearson, S. (1999). Non-veridical size perception of expanding and contracting objects. Vision Res 39(18): 2999–3009.
Whitney, D. (2002). The influence of visual motion on perceived position. Trends Cogn Sci 6(5): 211–216.
Whitney, D., & Cavanagh, P. (2000). Motion distorts visual space: shifting the perceived position of remote stationary objects. Nat Neurosci 3(9): 954–959.
Whitney, D., Ellison, A., Rice, N. J., Arnold, D., Goodale, M., Walsh, V., et al. (2007). Visually guided reaching depends on motion area MT+. Cereb Cortex 17(11): 2644–2649.
Whitney, D., & Goodale, M. A. (2005). Visual motion due to eye movements helps guide the hand. Exp Brain Res 162(3): 394–400. Epub 2005 Jan 2015.
Whitney, D., Westwood, D. A., & Goodale, M. A. (2003). The influence of visual motion on fast reaching movements to a stationary object. Nature 423(6942): 869–873.
Yamagishi, N., Anderson, S. J., & Ashida, H. (2001). Evidence for dissociation between the perceptual and visuomotor systems in humans. Proc R Soc Lond B Biol Sci 268(1470): 973–977.
Yee, R. D., Daniels, S. A., Jones, O. W., Baloh, R. W., & Honrubia, V. (1983). Effects of an optokinetic background on pursuit eye movements. Invest Ophthalmol Vis Sci 24(8): 1115–1122.
Zihl, J., von Cramon, D., & Mai, N. (1983). Selective disturbance of movement vision after bilateral brain damage. Brain 106(Pt 2): 313–340.
Zivotofsky, A. Z., Averbuch-Heller, L., Thomas, C. W., Das, V. E., Discenna, A. O., & Leigh, R. J. (1995). Tracking of illusory target motion: differences between gaze and head responses. Vision Res 35(21): 3029–3035.