Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-28T09:22:34.771Z Has data issue: false hasContentIssue false

10 - Model-Based Clustering for Expression Data via a Dirichlet Process Mixture Model

Published online by Cambridge University Press:  23 November 2009

Kim-Anh Do
Affiliation:
University of Texas, MD Anderson Cancer Center
Peter Müller
Affiliation:
Swiss Federal Institute of Technology, Zürich
Marina Vannucci
Affiliation:
Rice University, Houston
Get access

Summary

Abstract

This chapter describes a clustering procedure for microarray expression data based on a well-defined statistical model, specifically, a conjugate Dirichlet process mixture model. The clustering algorithm groups genes whose latent variables governing expression are equal, that is, genes belonging to the same mixture component. The model is fit with Markov chain Monte Carlo and the computational burden is eased by exploiting conjugacy. This chapter introduces a method to get a point estimate of the true clustering based on least-squares distances from the posterior probability that two genes are clustered. Unlike ad hoc clustering methods, the model provides measures of uncertainty about the clustering. Further, the model automatically estimates the number of clusters and quantifies uncertainty about this important parameter. The method is compared to other clustering methods in a simulation study. Finally, the method is demonstrated with actual microarray data.

Introduction

The main goal of clustering microarray data is to group genes that present highly correlated data; this correlation may reflect underlying biological factors of interest, such as regulation by a common transcription factor. A variety of heuristic clustering methods exist, including k-means clustering (MacQueen 1967) and hierarchical agglomerative clustering. These methods have had an enormous impact in genomics (Eisen et al. 1998) and are intuitively appealing. Nevertheless, the statistical properties of these heuristic clustering methods are generally not known. Model-based clustering procedures have been proposed for microarray data, including (1) the MCLUST procedure of Fraley and Raftery (2002) and Yeung et al. (2001), and (2) the Bayesian mixture model based clustering of Medvedovic and Sivaganesan (2002) and Medvedovic et al. (2004).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×