Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T18:43:56.973Z Has data issue: false hasContentIssue false

8 - Sparse Statistical Modelling in Gene Expression Genomics

Published online by Cambridge University Press:  23 November 2009

Kim-Anh Do
Affiliation:
University of Texas, MD Anderson Cancer Center
Peter Müller
Affiliation:
Swiss Federal Institute of Technology, Zürich
Marina Vannucci
Affiliation:
Rice University, Houston
Get access

Summary

Abstract

The concept of sparsity is more and more central to practical data analysis and inference with increasingly high-dimensional data. Gene expression genomics is a key example context. As part of a series of projects that has developed Bayesian methodology for large-scale regression, ANOVA, and latent factor models, we have extended traditional Bayesian “variable selection” priors and modelling ideas to new hierarchical sparsity priors that are providing substantial practical gains in addressing false discovery and isolating significant gene-specific parameters/effects in highly multivariate studies involving thousands of genes. We discuss and review these developments, in the contexts of multivariate regression, ANOVA, and latent factor models for multivariate gene expression data arising in either observational or designed experimental studies. The development includes the use of sparse regression components to provide gene-sample-specific normalisation/correction based on control and housekeeping factors, an important general issue and one that can be critical – and critically misleading if ignored – in many gene expression studies. Two rich data sets are used to provide context and illustration. The first data set arises from a gene expression experiment designed to investigate the transcriptional response – in terms of responsive gene subsets and their expression signatures – to interventions that upregulate a series of key oncogenes. The second data set is observational, breast cancer tumour-derived data evaluated utilising a sparse latent factor model to define and isolate factors underlying the hugely complex patterns of association in gene expression patterns. We also mention software that implements these and other models and methods in one comprehensive framework.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×