Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T09:02:17.872Z Has data issue: false hasContentIssue false

6 - The Role of Botanic Gardens and Arboreta in Restoring Plants

From Populations to Ecosystems

Published online by Cambridge University Press:  30 August 2017

Stephen Blackmore
Affiliation:
Botanic Gardens Conservation International (BGCI)
Sara Oldfield
Affiliation:
International Union for Conservation of Nature (IUCN)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Plant Conservation Science and Practice
The Role of Botanic Gardens
, pp. 134 - 165
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, J. B., Takimoto, G. T., Schindler, D. E., Hayes, M. M. and Kauffman, M. J. (2016). Resource waves: phenological diversity enhances foraging opportunities for mobile consumers. Ecology, 97(5):10991112, doi: 10.1890/15–0554.CrossRefGoogle ScholarPubMed
Aronson, J., On Behalf of The ERA of Botanic Gardens. (2014). The ecological restoration alliance of botanic gardens: a new initiative takes root. Restoration Ecology, 22: 713715.CrossRefGoogle Scholar
Barak, R. S., Fant, J. B., Kramer, A. T. and Skogen, K. A. (2015). Assessing the value of potential ‘native winners’ for restoration of cheatgrass-invaded habitat. Western North American Naturalist, 75: 5869.CrossRefGoogle Scholar
Basey, A. C., Fant, J. B. and Kramer, A. T. (2015). Producing native plant materials for restoration: 10 rules to collect and maintain genetic diversity. Native Plants Journal, 16: 3753.Google Scholar
Benayas, J. M. R., Newton, A. C., Diaz, A. and Bullock, J. M. (2009). Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science, 325: 11211124.Google Scholar
Benigno, S. M., Cawthray, G. R., Dixon, K. W. and Stevens, J. C. (2012). Soil physical strength rather than excess ethylene reduces root elongation of Eucalyptus seedlings in mechanically impeded sandy soils. Plant Growth Regulation, 68: 261270.Google Scholar
Benigno, S. M., Dixon, K. W. and Stevens, J. C. (2013). Increasing soil water retention with native-sourced mulch improves seedling establishment in postmine Mediterranean sandy soils. Restoration Ecology, 21: 617626.Google Scholar
Benigno, S. M., Dixon, K. W. and Stevens, J. C. (2014). Seedling mortality during biphasic drought in sandy Mediterranean soils. Functional Plant Biology, 41: 12391248.CrossRefGoogle ScholarPubMed
BGCI (2016a). North American Botanic Garden Strategy for Plant Conservation, 2016–2020. Illinois, US: Botanic Gardens Conservation International.Google Scholar
BGCI (2016b). Botanic Garden Conservation International website, available online at: http://www.bgci.org/worldwide/article/120/ [accessed 25 April 2016].Google Scholar
Blackmore, S. (2014). Seeds of hope on the mountainside. Resurgence and Ecologist, 287: 3839.Google Scholar
BLM (2009). Native Plant Materials Development Program: Progress Report for FY2001–2007. Washington DC: US Department of Interior, Bureau of Land Management, 42 pp.Google Scholar
Breed, M. F., Stead, M. G., Ottewell, K. M., Gardner, M. G. and Lowe, A. J. (2013). Which provenance and where? Seed sourcing strategies for revegetation in a changing environment. Conservation Genetics, 14: 110.Google Scholar
Broadhurst, L. M., Lowe, A., Coates, D. J., Cunningham, S. A., McDonald, M., Vesk, P. A. and Yates, C. (2008). Seed supply for broadscale restoration: Maximizing evolutionary potential. Evolutionary Applications, 1: 587597.Google Scholar
Brumback, W. E., Weihrauch, D. M. and Kimball, K. D. (2004). Propagation and transplanting of an endangered alpine species, Robbins’ cinquefoil, Potentilla robbinsiana (Rosaceae). Native Plant Journal, 5: 9197.Google Scholar
Cadotte, M. W., Carscadden, K. and Mirotchnick, N. (2011). Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 48: 10791087.CrossRefGoogle Scholar
Chiwocha, S. D. S., Dixon, K. W., Flematti, G. R., Ghisalberti, E. L., Merritt, D. J., Nelson, D. C., Riseborough, J. M., Smith, S. M., Stevens, J. C. (2009). Karrikins: a new family of plant growth regulators in smoke. Plant Science, 177: 252256.Google Scholar
Cires, E., De Smet, Y., Cuesta, C., Goetghebeur, P., Sharrock, S., Gibbs, D., Oldfield, S., Kramer, A. and Samain, M. S. (2013). Gap analyses to support ex situ conservation of genetic diversity in Magnolia, a flagship group. Biodiversity and Conservation, 22: 567590.Google Scholar
Clark, C. M., Flynn, D. F. B., Butterfield, B. J. and Reich, P. B. (2012). Testing the link between functional diversity and ecosystem functioning in a Minnesota grassland experiment. PLoS ONE, 7:e52821.CrossRefGoogle Scholar
Court, F. E. (2012). Pioneers of Ecological Restoration. Madison, WI. University of Wisconsin Press, 314 pp.Google Scholar
Diaz, S. and Cabido, M. (2001). Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology and Evolution, 16: 646655.CrossRefGoogle Scholar
Donaldson, J. S. (2009). Botanic gardens science for conservation and global change. Trends in Plant Science 14: 608613.Google Scholar
ERA (2016a). Ecological Restoration Alliance of Botanic Gardens website. Available online at: http://www.erabg.org/project/35/ [accessed 27April 2016].Google Scholar
ERA (2016b). Ecological Restoration Alliance of Botanic Gardens website. Available online at: http://erabg.org/introduction/ [accessed 27April 2016].Google Scholar
Erickson, T., Barrett, R., Merritt, D. and Dixon, K. (2016). Pilbara Seed Atlas and Field Guide: Plant Restoration in Australia’s Arid Northwest. Clayton, Victoria: CSIRO Publishing, 312 pp.CrossRefGoogle Scholar
Falk, D. A. and Holsinger, K. E. (Eds) (1991). Genetics and Conservation of Rare Plants. New York: Oxford University Press, 283 pp.Google Scholar
Falk, D. A., Millar, C. I. and Olwell, M. (Eds). (1996). Restoring Diversity: Strategies for Reintroduction of Endangered Plants. Washington, DC: Island Press, 505 pp.Google Scholar
Federal Register (2002). Endangered and threatened wildlife and plants; removal of Potentilla robbinsiana (Robbins’ cinquefoil) from the federal list of endangered and threatened plants. Final Rule. Vol. 67, No. 166.Google Scholar
FitzJohn, R. G., Pennell, M. W., Zanne, A. E., Stevens, P. F., Tank, D. C. and Cornwell, W. K. (2014). How much of the world is woody? Journal of Ecology, 102: 12661272.Google Scholar
Flematti, G. R., Ghisalberti, E. L., Dixon, K. W. and Trengove, R. D. (2004). A compound from smoke that promotes seed germination. Science, 305: 977.CrossRefGoogle ScholarPubMed
Frick, K. M., Ritchie, A. L. and Krauss, S. L. (2014). Field of dreams: Restitution of pollinator services in restored bird-pollinated plant populations. Restoration Ecology, 22: 832840.Google Scholar
Gamfeldt, L., Snäll, T. Bagchi, R. et al. (2013). Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications, 4: 1340, doi: 10.1038/ncomms2328.CrossRefGoogle ScholarPubMed
Griffiths, E. and Stevens, J. C. (2013). Managing nutrient regimes improves seedling root-growth potential of framework banksia-woodland species. Australian Journal of Botany, 61: 600610.Google Scholar
Guerrant, E. O. Jr. (2012). Characterizing Two Decades of Rare Plant Reintroductions. In: Maschinski, J. and Haskins, K. E. (Eds), Plant Reintroduction in a Changing Climate: Promises and Perils. Washington, DC: Island Press, pp. 929.Google Scholar
Guerrant, E.O. Jr. (2013). The value and propriety of reintroduction as a conservation tool for rare plants. Botany, 91: vx.Google Scholar
Guerrant, E. O., Havens, K. and Maunder, M. (Eds) (2004). Ex Situ Plant Conservation: Supporting Species Survival in the Wild. Washington, DC: Island Press, 504 pp.Google Scholar
Guerrant, E. O. Jr., Albrecht, M. A. and Dalrymple, S. (2012). Studies used for meta-analyses. Appendix 2. In: Maschinski, J. and Haskins, K. E. (Eds), Plant Reintroduction in a Changing Climate: Promises and Perils. Washington, DC: Island Press, pp. 307317.Google Scholar
Gutierrez, L., and Vovides, A. P. (1997). An in situ study of Magnolia dealbata Zucc. in Veracruz State: an endangered endemic tree of Mexico. Biodiversity and Conservation, 6: 8997CrossRefGoogle Scholar
Haidet, M. and Olwell, P. (2015). Seeds of success: a national seed banking program working to achieve long-term conservation goals. Natural Areas Journal, 35: 165173.Google Scholar
Hardwick, K. A., Fiedler, P., Lee, L. C., Pavlik, B., Hobbs, R. et al. (2011). The role of botanic gardens in the science and practice of ecological restoration. Conservation Biology, 25: 265275.Google Scholar
Havens, K. and Vitt, P. (2016). The importance of phenological diversity in seed mixes for pollinator restoration. Natural Areas Journal, 36(4): 531537.CrossRefGoogle Scholar
Havens, K., Jolls, C. L, Marik, J. E., Vitt, P. and McEachern, A. K. (2012). Effects of a non-native biocontrol weevil, Larinus planus, and other emerging threats on populations of the federally threatened Pitcher’s thistle (Cirsium pitcheri). Biological Conservation, 155: 202211.Google Scholar
Havens, K., Vitt, P., Still, S., Kramer, A. T., Fant, J. B. and Schatz, K. (2015). Seed sourcing for restoration in an era of climate change. Natural Areas Journal, 35: 122133.Google Scholar
Hereford, J. (2009). A quantitative survey of local adaptation and fitness trade-offs. American Naturalist, 173: 579588.CrossRefGoogle ScholarPubMed
Hipp, A. L., Larkin, D. J., Barak, R. S., Bowles, M. L., Cadotte, M. W., Jacobi, S. K., Lonsdorf, E., Scharenbroch, B. C., Williams, E. and Weiher, E. (2015). Phylogeny in the Service of Ecological Restoration. American Journal of Botany, 102: 647648.Google Scholar
Hooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M., Naeem, S., Schmid, B., Setala, H., Symstad, A. J., Vandermeer, J. and Wardle, D. A. (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs, 75: 335.Google Scholar
Hunter, M. (2007). Climate change and moving species: furthering the debate on assisted colonization. Conservation Biology, 21: 13561358.Google Scholar
Jefferson, L. V., Pennacchio, M. and Havens, K. (2014). Plant-Derived Smoke and Seed Germination. Oxford: Oxford University Press, 316 pp.Google Scholar
Kennedy, K., Albrecht, M. A., Guerrant, E. O., Dalrymple, S. A., Maschinski, J. and Haskins, K. E. (2012). Synthesis and Future Directions. In: Maschinski, J. and Haskins, K. E. (Eds). Plant Reintroduction in a Changing Climate: Promises and Perils. Washington, DC: Island Press, pp. 265275.CrossRefGoogle Scholar
Kildisheva, O., Erickson, T., Merritt, D. and Dixon, K. (2016). Setting the scene for dryland recovery: an overview and key findings from a workshop targeting seed-based restoration. Restoration Ecology, 24(52): 536542.Google Scholar
Kramer, A. and Havens, K. (2009). Plant conservation genetics in a changing world. Trends in Plant Science, 14: 599607.Google Scholar
Krauss, S. L. (2016). Seed sourcing for restoration of Banksia woodlands. In: Stevens, J. C., Newton, V. J., Barrett, R. L., and Dixon, K. W. et al. (Eds), Restoring Perth’s Banksia Woodlands. Crawley, WA: The University of Western Australia Press.Google Scholar
Krauss, S. L. and Koch, K. E. (2004). Rapid genetic delineation of provenance for plant community restoration. Journal of Applied Ecology, 41: 11621173.CrossRefGoogle Scholar
Krauss, S. L., Sinclair, E. A., Bussell, J. D. and Hobbs, R. J. (2013). An ecological genetic delineation of local seed-source provenance for ecological restoration. Ecology and Evolution, 3: 21382149.Google Scholar
Larkin, D. J., Steffen, J. F., Gentile, R. M. and Zirbel, C. R. (2013). Ecosystem changes following restoration of a buckthorn-invaded woodland. Restoration Ecology, 22: 8997.Google Scholar
Leimu, R. and Fischer, M. (2008). A meta-analysis of local adaptation in plants. PLoS ONE, 3: e4010.Google Scholar
Madsen, M. D., Davies, K. W., Boyd, C. S., Kerby, J. D. and Svejcar, T. J. (2016). Emerging seed enhancement technologies for overcoming barriers to restoration. Restoration Ecology, 24(52): 577584, doi: 10.1111/rec.12332.Google Scholar
Maschinski, J. and Haskins, K. E. (Eds) (2012). Plant Reintroduction in a Changing Climate: Promises and Perils. Washington, DC: Island Press.Google Scholar
Maschinski, J., Albrecht, M. A., Monks, L. and Haskins, K. E. (2012). Center for Plant Conservation Best Reintroduction Practice Guidelines. In: Maschinski, J. and Haskins, K. E. (Eds), Plant Reintroduction in a Changing Climate: Promises and Perils. Washington, DC: Island Press, pp. 277306.Google Scholar
Maunder, M., Havens, K., Guerrant, E. O. and Falk, D. (2004a). Ex situ Methods: A Vital but Underused set of Conservation Resources. In: Guerrant, E. O., Havens, K. and Maunder, M. (Eds), Ex Situ Plant Conservation: Supporting Species Survival in the Wild. Washington, DC: Island Press, pp. 320.Google Scholar
Maunder, M., Havens, K., Guerrant, E. O. and Falk, D. (2004b). Realizing the full potential of ex situ contributions to global plant conservation. In: Guerrant, E. O., Havens, K. and Maunder, M. (Eds), Ex Situ Plant Conservation: Supporting Species Survival in the Wild, Washington, DC: Island Press, pp. 389418.Google Scholar
McEachern, A. K., Bowles, M. L. and Pavlovic, N. B. (1994). A Metapopulation Approach to Pitcher’s Thistle (Cirsium pitcheri) Recovery in Southern Lake Michigan Dunes. In: Bowles, M. L. and Whelan, C. J. (Eds), Restoration of Endangered Species: Conceptual Issues, Planning and Implementation. New York, NY: Cambridge University Press, pp. 194218.Google Scholar
McHaffie, H. (2006). A reintroduction programme for Woodsia ilvensis (L.) R. Br. in Britain. Botanical Journal of Scotland, 58: 7580.Google Scholar
McKay, J. K., Christian, C. E., Harrison, S. and Rice, K. J. (2005). ‘How local is local?’ – A review of practical and conceptual issues in the genetics of restoration. Restoration Ecology, 13: 432440.Google Scholar
Merritt, D. J. and Dixon, K. W. (2011). Restoration seed banks: a matter of scale. Science, 332: 424425.CrossRefGoogle ScholarPubMed
Merritt, D., Martyn, A., Ainsley, P., Young, R., Seed, L., Thorpe, M., Hay, F., Commander, L., Shackelford, N., Offord, C., Dixon, K. and Probert, R. (2014). A continental-scale study of seed lifespan in experimental storage examining seed, plant, and environmental traits associated with longevity. Biodiversity and Conservation, 23: 10811104.Google Scholar
Miller, J. S., Lowry, P. P., Aronson, J., Blackmore, S., Havens, K. and Maschinski, J. (2016). Conserving biodiversity through ecological restoration: the potential contributions of botanical gardens and arboreta. Candollea, 71: 9198.Google Scholar
Mounsey, C. (2014). Understanding Vegetation Patch-Gap Dynamics to Determine Restoration Success. PhD Thesis, University of Western Australia School of Plant Biology.Google Scholar
Naeem, S., Bunker, D. E., Hector, A., Loreau, M. and Perrings, C. (Eds) (2009). Biodiversity, Ecosystem Functioning and Human Wellbeing. Oxford: Oxford University Press.Google Scholar
Navarro-Cano, J. A., Ferrer-Gallego, P. P., Laguna, E., Ferrando, I., Goberna, M., Valiente-Banuet, A. and Verdu, M. (2016). Restoring phylogenetic diversity through facilitation. Restoration Ecology, 24(4): 449455, doi: 10.1111/rec.12350.CrossRefGoogle Scholar
Oldfield, S. and Newton, A. C. (2012). Integrated Conservation of Tree Species by Botanic Gardens: A Reference Manual. Richmond, UK: Botanic Gardens Conservation International, 55 pp.Google Scholar
PCA (2015). National Seed Strategy for Rehabilitation and Restoration 2015–2020. Washington, DC: Plant Conservation Alliance Federal Committee, Bureau of Land Management, 50 pp.Google Scholar
Ricciardi, A. and Simberloff, D. (2009). Assisted colonisation is not a viable conservation strategy. Trends in Ecology and Evolution, 24: 248253.Google Scholar
Ritchie, A. L. and Krauss, S. L. (2012). A genetic assessment of ecological restoration success in Banksia attenuata. Restoration Ecology, 20: 441449.Google Scholar
Rokich, D. P., Dixon, K. W., Sivasithamparam, K. and Meney, K. A. (2000). Topsoil handling and storage effects on woodland restoration in Western Australia. Restoration Ecology, 8: 196208.Google Scholar
Rokich, D. P., Meney, K. A., Dixon, K. W. and Sivasithamparam, K. (2001). The impact of soil disturbance on root development in woodland communities in Western Australia. Australian Journal of Botany, 49: 169183.Google Scholar
Rokich, D. P., Dixon, K. W., Sivasithamparam, K. and Meney, K. A. (2002). Smoke, mulch, and seed broadcasting effects on woodland restoration in Western Australia. Restoration Ecology, 10: 185194.CrossRefGoogle Scholar
SANBI (2010). Monitoring Threatened Species in South Africa: A Review of the South African National Biodiversity Institutes’ Threatened Species Programme: 2004–2009. South African National Biodiversity Institute, 37 pp. Available online at: http://www.sanbi.org/sites/default/files/documents/documents/tspreview.pdf [accessed 25 April 2016].Google Scholar
Schwartz, M. W., Brigham, C. A., Hoeksema, J. D., Lyons, K. G., Mills, M. H. and van Mantgem, P. J. (2000). Linking biodiversity to ecosystem function: implications for conservation ecology. Oecologia, 122: 297305.Google Scholar
SER (2004). The SER International Primer on Ecological Restoration. Society for Ecological Restoration International Science and Policy Working Group. Available online at: http://www.ser.org/resources/resources-detail-view/ser-international-primer-on-ecological-restoration [accessed 25 April 2016].Google Scholar
Sgro, C. M., Lowe, A. J. and Hoffmann, A. A. (2011). Building evolutionary resilience for conserving biodiversity under climate change. Evolutionary Applications, 4: 326337.Google Scholar
Sharrock, S. L. (Ed.) (2012). Global Strategy for Plant Conservation: a Guide to the GSPC. All the Targets, Objectives and Facts. Richmond, UK: Botanic Gardens Conservation International.Google Scholar
Shaw, K. and Oldfield, S. (2013). Enhancing Tree Conservation and Forest Restoration in Africa. Richmond, UK: Botanic Gardens Conservation International, 59 pp.Google Scholar
Smith, A. B., Albrecht, M. A. and Hird, A. (2014). A plan for botanical gardens to facilitate movement of plants in response to climate change. BG Journal 11: 1922.Google Scholar
Stevens, J. C., Rokich, D. P., Newton, V. J., Barrett, R. L. and Dixon, K. W. (Eds). (2016). Banksia Woodlands: A Guide to their Restoration on the Swan Coastal Plain. Crawley, WA: The University of Western Australia Press.Google Scholar
Tilman, D. (2001). Functional Diversity. In: Levin, S. A. (Ed.), Encyclopedia of Biodiversity, Vol. 3. New York: Academic Press, pp. 109120.CrossRefGoogle Scholar
Tilman, D., and Downing, J. A. (1994). Biodiversity and stability in grasslands. Nature, 367: 363365.Google Scholar
Turner, S. R., Pearce, B., Rokich, D. P., Dunn, R. R., Merritt, D. J., Majer, J. D. and Dixon, K. W. (2006). Influence of polymer seed coatings, soil raking, and time of sowing on seedling performance in post-mining restoration. Restoration Ecology, 14: 267277.Google Scholar
Turner, S. R., Steadman, K. J., Vlahos, S., Koch, J. M. and Dixon, K. W. (2013). Seed treatment optimizes benefits of seed bank storage for restoration-ready seeds: the feasibility of prestorage dormancy alleviation for mine-site revegetation. Restoration Ecology, 21: 186192.Google Scholar
Vitt, P., Havens, K. and Hoegh-Guldberg, O. (2009). Assisted migration: part of an integrated conservation strategy. Letter in response to Ricciardi and Simberloff. Trends in Ecology and Evolution, 24: 473474.Google Scholar
Wegener, M., Zedler, P., Herrick, B. and Zedler, J. (2008). Curtis Prairie: 75-year-old Restoration Research Site. Arboretum Leaflet 16. Available online at: http://www.botany.wisc.edu/zedler/images/Leaflet_16.pdf [accessed 19 April 2016].Google Scholar
Woodworth, P. (2013). Our Once and Future Planet: Restoring the World in the Climate Change Century. Chicago, IL: University of Chicago Press, 515 pp.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×