Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T16:44:24.215Z Has data issue: false hasContentIssue false

5 - The Role of Botanic Gardens in Ex Situ Conservation

Published online by Cambridge University Press:  30 August 2017

Stephen Blackmore
Affiliation:
Botanic Gardens Conservation International (BGCI)
Sara Oldfield
Affiliation:
International Union for Conservation of Nature (IUCN)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Plant Conservation Science and Practice
The Role of Botanic Gardens
, pp. 102 - 133
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araujo, M. B. and Townsend Peterson, A. (2012). Uses and misuses of bioclimatic envelope modelling. Ecology, 93(7): 15271539.Google Scholar
Ballesteros, D., Estrelles, E., Walters, C. and Ibars, A. M. (2011). Effect of storage temperature on green spore longevity for the ferns Equisetum ramosissimum and Osmunda regalis. CryoLetters, 32: 8998.Google ScholarPubMed
Ballesteros, D., Estrelles, E., Walters, C. and Ibars, A. M. (2012). Effects of temperature and desiccation on ex situ conservation of nongreen fern spores. American Journal of Botany, 99: 721729.Google Scholar
BGCI (2013a). BGANZ Collections Assessment. Available online at: http://www.bgci.org/usa/bganz2013/ [accessed March 2017].Google Scholar
BGCI (2013b) Progress Report on Target 8 of the Global Strategy for Plant Conservation in the United States. Available online at: http://www.bgci.org/files/UnitedStates/NACA/NACA_2013_Report.pdf [accessed March 2017].Google Scholar
Bjornstad, A., Tekle, S. and Goransson, M. (2013). ‘Facilitated access’ to plant genetic resources: does it work? Genetic Resources Crop Evolution, 60: 19591965, doi 10.1007/s10722-013-0029-6.Google Scholar
Bozzano, M., Jalonen, R., Thomas, E., Boshier, D., Gallo, L., Cavers, S., Bordács, S., Smith, P. and Loo, J., (Eds) (2014). Genetic Considerations in Ecosystem Restoration Using Native Tree Species. State of the World’s Forest Genetic Resources – Thematic Study. Rome: FAO and Bioversity International.Google Scholar
Brand, J. J. and Diller, K. R. (2004). Application and theory of algal cryopreservation. Nova Hedwigia, 79: 175189.CrossRefGoogle Scholar
Castañeda-Álvarez, N. P., Khoury, C. K., Achicanoy, H. A. et al. (2016). Global conservation priorities for crop wild relatives. Nature Plants, doi: 10.1038/NPLANTS.2016.22.Google Scholar
Cheyne, P. (2003). Access and Benefit-Sharing Agreements: Bridging the Gap between Scientific Partnerships and the Convention on Biological Diversity. In: Smith, R. D., Dickie, J. B., Linington, S. H., Pritchard, H. W. and Probert, R. J. (Eds), Seed Conservation: Turning Science into Practice. Richmond, UK: Royal Botanic Gardens, Kew.Google Scholar
Childs, K. H., Tessarolli, L. P. and Day, J. G. (2015). Forty years in liquid nitrogen: an investigation into cryobank management and culture viability. European Journal of Phycology, 50: 180.Google Scholar
Christiansen, M. L. (1998). A simple protocol for cryopreservation of moss. The Bryologist, 101: 3235.Google Scholar
Cogălniceanu, G. (2014). Romanian in vitro bryophyte collection and its role for conservation. Acta Horti Botanici Bucurestiensis, 41: 511.Google Scholar
Crane, P. (2013). Ginkgo: The Tree that Time Forgot. New Haven and London: Yale University Press.Google Scholar
Dalrymple, S. E., Banks, E., Stewart, G. B. and Pullin, A. S. (2012). A Meta-Analysis of Threatened Plant Reintroductions from Across the Globe. In: Maschinski, J., Haskins, K. E. (Eds), Plant Reintroduction in a Changing Climate. Washington DC: Island Press, pp. 3150.Google Scholar
Day, J. G., Benson, E. E., Harding, K. et al. (2005). Cryopreservation and conservation of microalgae: the development of a Pan-European scientific and biotechnological resource (The COBRA Project). CryoLetters, 26: 231238.Google Scholar
Dereuddre, J., Hassen, M., Blandin, S. and Kaminski, M. (1991). Resistance of alginate-coated somatic embryos of carrot (Daucus carota L.) to desiccation and freezing in liquid nitrogen: 2. Thermal analysis. CryoLetters, 12: 135148.Google Scholar
Demidov, A. S. (Ed.) (2012). Plant Gene Pool of the Red Book of the Russian Federation Conserved in Botanical Gardens and Arboretums. Moscow: KMK Scientific Press Ltd.Google Scholar
Duckett, J. G., Goode, J. A., and Stead, A. D. (1993). Studies of protonemal morphogenesis in mosses. I. Ephemerum. Journal of Bryology, 17: 397498.CrossRefGoogle Scholar
Early, R. and Sax, D. (2014). Climatic niche shifts between species’ native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Global Ecology and Biogeography, 23: 13561365.CrossRefGoogle Scholar
ENSCONET (2015). The European Seed Conservation Network. Available online at http://enscobase.maich.gr/ [accessed March 2017].Google Scholar
Fabre, J. and Dereuddre, J. (1990). Encapsulation-dehydration: A new approach to cryopreservation of Solanum shoot-tips. CryoLetters, 11: 413426.Google Scholar
FAO (2014). Genebank Standards for Plant Genetic Resources for Food and Agriculture. Revised edition. Rome: Commission on Genetic Resources for Food and Agriculture.Google Scholar
Goode, J. A., Stead, A. D. and Duckett, J. G. (1993). Redifferentiation of moss protonemata: An experimental and immunofluorescence study of brood cell formation. Canadian Journal of Botany, 71: 15101519.Google Scholar
Green, L. A. and Neefus, C. D. (2014). The effects of short- and long-term freezing on Porphyra umbilicalis Kützing (Bangiales, Rhodophyta) blade viability. Journal of Experimental Marine Biology and Ecology, 461: 499503.CrossRefGoogle Scholar
Guerrant, E. O. Jr., Fiedler, P. L., Havens, K. and Maunder, M. (2004). Revised Genetic Sampling Guidelines for Conservation Collections of Rare and Endangered Plants. In: Guerrant, E.O. Jr, Havens, K. and Maunder, M. (Eds). Ex situ Plant Conservation: Supporting Species Survival in the Wild, Washington DC: Island Press, pp. 419441.Google Scholar
Harper, G. H., Mann, D. G. and Thompson, R. (2004). Phenological monitoring at Royal Botanic Garden Edinburgh. Sibbaldia, 2: 3545.Google Scholar
Havinga, R., Kool, A., Achille, F. et al. (2016). The Index Seminum: Seeds of change for seed exchange. Taxon, 65(2): 333336, doi http://dx.doi.org/10.12705/652.9.Google Scholar
Heesch, S., Day, J. G., Yamagishi, T., Kawai, H., Műller, D. G. and Kűpper, F. C. (2012). Cryopreservation of the model alga Ectocarpus (Phaeophyceae). CryoLetters, 33: 327336.Google Scholar
Hooke, R. L., Martin-Duque, J. F. and Pedraza, J. (2012). Land transformation by humans: a review. GSA Today, 22(12), 410, doi: 10.1130/GSAT151A.1.Google Scholar
Keller, E. R. J., Senula, A., Leunufna, S. and Grübe, M. (2006). Slow growth storage and cryopreservation – tools to facilitate germplasm maintenance of vegetatively propagated crops in living plant collections. International Journal of Refrigeration, 29: 411417.Google Scholar
La Farge, C., Williams, K. H. and England, J. H. (2013). Regeneration of little ice age bryophytes emerging from a polar glacier with implications of totipotency in extreme environments. Proceedings of the National Academy of Sciences, 110: 98399844.Google Scholar
Larkin, P. J. and Scowcroft, W. R. (1981). Somaclonal variation: a novel source of variability from cell cultures for plant improvement. Theoretical and Applied Genetics, 60(4): 197214.Google Scholar
Lee, Y. N. and Nam, K. W. (2016). Cryopreservation of gametophytic thalli of Ulva prolifera (Ulvales, Chlorophyta) from Korea. Journal of Applied Phycology, 28: 12071213.Google Scholar
Li, D.-Z. and Pritchard, H. W. (2009). The science and economics of ex situ plant conservation. Trends in Plant Science, 14: 614621.Google Scholar
Li, Y. and Shi, L. (2015). Effect of maturity level and desiccation process on liquid nitrogen storage of green spores of Osmunda japonica. Plant Cell, Tissue and Organ Culture, 120: 531538.Google Scholar
Luxoro, C. and Santelice, B. (1989). Additional evidence for ecological differences among isomorphic reproductive phases of Iridaea laminarioides (Rhodophyta: Gigartinales). Journal of Phycology 25: 206212.CrossRefGoogle Scholar
Maschinski, J., Albrecht, M. A., Monks, L. and Haskins, K. E. (2012). Center for Plant Conservation Best Reintroduction Practice Guidelines, Appendix I. In: Maschinski, J. and Haskins, K.E. (Eds), Plant Reintroduction in a Changing Climate: Promises and Perils, the Science and Practice of Ecological Restoration. Washington DC, Island Press.Google Scholar
Matsumoto, T., Sakai, A., Takahashi, C., and Yamada, K. (1995). Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by encapsulation-vitrification method. CryoLetters, 16: 189196.Google Scholar
Normah, M. N. and Makeen, A. M. (2008). Cryopreservation of Excised Embryos and Embryo Axes. In: Reed, B. M. (Ed.), Plant Cryopreservation: A Practical Guide. New York: Springer, pp. 211233.Google Scholar
Oliver, M. J., Velten, J. and Mishler, B. D. (2005). Desiccation tolerance in bryophytes: A reflection of the primitive strategy for plant survival in dehydrating habitats? Integrative and Comparative Biology, 45: 788799.Google Scholar
Panis, B., Piette, B. and Swennen, R. (2005). Droplet vitrification of apical meristems: A cryopreservation protocol applicable to all Musaceae. Plant Science, 168: 4555.CrossRefGoogle Scholar
Pence, V. C. (2000a). Survival of chlorophyllous and nonchlorophyllous fern spores through exposure to liquid nitrogen. American Fern Journal, 90, 119126.Google Scholar
Pence, V.C. (2000b). Cryopreservation of in vitro grown gametophytes. American Fern Journal, 90: 1623.Google Scholar
Pence, V. C. (2011). Evaluating costs for in vitro propagation and preservation of endangered plants. In Vitro Cellular and Developmental Biology – Plant, 47: 176187.Google Scholar
Pence, V. C., Murray, S., Whitham, L., Cloward, D., Barnes, H. and Van Buren, R. (2008). Supplementation of the Autumn Buttercup Population in Utah, USA, Using In Vitro Propagated Plants. In: Soorae, P. S. (Ed.), Global Re-introduction Perspectives. Abu Dhabi, UAE: IUCN/SSC Re-introduction Specialist Group, pp. 239243.Google Scholar
Primack, R. B. and Miller-Rushing, A. J. (2009). The role of botanical gardens in climate change research. New Phytologist, 182: 303313.Google Scholar
Pritchard, H. W., Moat, J. F., Ferraz, J. B. S., Marks, T. R., Camargo, J. L. C., Nadarajan, J. and Ferraz, I. D. K. (2014). Innovative approaches to the preservation of forest trees. Forest Ecology and Management, 333: 8898.CrossRefGoogle Scholar
Probert, R. J., Daws, M. I. and Hay, F. R. (2009). Ecological correlates of ex situ seed longevity: a comparative study on 195 species. Annals of Botany 104: 5769, doi:10.1093/aob/mcp082.Google Scholar
Reed, B. M. (2008). Cryopreservation of Temperate Berry Crops. In: Reed, B. M. (Ed.), Plant Cryopreservation: A Practical Guide. New York: Springer, pp. 333364.CrossRefGoogle Scholar
Reed, B.M. and Uchendu, E. (2008) Controlled rate cooling. In: Reed, B. M. (Ed.), Plant Cryopreservation: A Practical Guide. New York: Springer, pp. 7792.Google Scholar
Reed, B. M., Engelmann, F., Dulloo, M. E., and Engels, J. M. M. (2004). Technical guidelines for the management of field and in vitro germplasm collections. IPGRI Handbooks for Genebanks No. 7, IPGRI (now Bioversity International).Google Scholar
Rowntree, J. K. and Ramsay, M. M. (2005). Ex situ conservation of bryophytes: Progress and Potential of a Pilot Project. Boletín de la Sociedad Española Briologia, 26–27: 1722.Google Scholar
Rowntree, J. K., Pressel, S., Ramsay, M. M., Sabovljevic, A. and Sabovljevic, M. (2011). In vitro conservation of European bryophytes. In Vitro Cellular and Developmental Biology – Plant, 47: 5564.Google Scholar
Sabovljević, M. S., Papp, B., Sabovljević, A. and Segarra-Moragues, J. G. (2012). In vitro micropropagation of rare and endangered moss Entosthodon hungaricus (Funariaceae). Bioscience Journal, 20: 632640.Google Scholar
Sabovljević, M., Vujičić, M., Pantović, J. and Sabovljević, A. (2014). Bryophyte conservation biology: In vitro approach to the ex situ conservation of bryophytes from Europe. Plant Biosystems, 148: 857868.Google Scholar
Sacande, M. and Berahmounni, N. (2016). Community participation and ecological criteria for selecting species and restoring natural capital with native species in the Sahel. Restoration Ecology, 24(4): 479488, doi: 10.1111/rec.12337.Google Scholar
Sakai, A. and Nishiyama, Y. (1978). Cryopreservation of winter vegetative buds of hardy fruit trees in liquid nitrogen. HortScience, 13: 225227.CrossRefGoogle Scholar
Sakai, A., Kobayashi, S. and Oiyama, I. (1990). Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. Var. Brasiliensis Tanaka) by vitrification. Plant Cell Reports, 9: 3033.Google Scholar
Sax, D. F., Early, R. and Bellemare, J. (2013). Niche syndromes, species extinction risks, and management under climate change. Trends in Ecology and Evolution, 28(9): 517–52Google Scholar
Schokman, L. (2012). Plants of the Kampong. Coconut Grove, FL: National Tropical Botanic Garden.Google Scholar
Sharrock, S., Oldfield, S. and Wilson, O. (2014). Plant Conservation Report 2014: A Review of Progress in Implementation of the Global Strategy for Plant Conservation 2011–2020. Richmond, UK: Secretariat of the Convention on Biological Diversity, Montréal, Canada and Botanic Gardens Conservation International, Technical Series No. 81, 56 pp.Google Scholar
Smith, P. P. (2008). Ex Situ Conservation of Wild Species: Services Provided by Botanic Gardens. In: Maxted, N., Ford-Lloyd, B. V., Kell, S. P., Iriondo, J. M., Dulloo, M. E. and Turok, J. (Eds), Crop Wild Relative Conservation and Use, Wallingford, UK: CABI International. pp.407412.Google Scholar
Smith, P. P. (2016). Building a Global System for the conservation of all plant diversity: a vision for botanic gardens and Botanic Gardens Conservation International. Sibbaldia, 14: 513.Google Scholar
Smith, P. P., Dickie, J., Linington, S., Probert, R. and Way, M. (2011). Making the case for plant diversity. Seed Science Research, 21, 14.Google Scholar
Smith, R. D., Dickie, J. B., Linington, S. H., Pritchard, H. W. and Probert, R. J. (Eds) (2003). Seed Conservation: Turning Science into Practice. Richmond, UK: Royal Botanic Gardens, Kew, Richmond, U.K.Google Scholar
The Plant List (2013). A working list of all known plant species, version 1.1. Available online at www.theplantlist.org/ [accessed 5 June 2016].Google Scholar
Trusty, J. L., Miller, I., Pence, V. C., Plair, B. L., Boyd, R. S. and Goertzen, L. R. (2009). Ex situ conservation of the federally endangered plant species Clematis socialis Kral (Ranunculaceae): a collaborative approach. Natural Areas Journal, 29: 376384.CrossRefGoogle Scholar
Tweddle, J. C., Dickie, J. B., Baskin, C. C. and Baskin, J. M. (2003). Ecological aspects of seed desiccation sensitivity. Journal of Ecology, 91: 294304, doi:10.1046/j.1365–2745.2003.00760.x.Google Scholar
Volk, G. M., Bonnart, R., Waddell, J. and Widrlechner, M. P. (2009). Cryopreservation of dormant buds from diverse Fraxinus species. CryoLetters, 30: 262267.Google Scholar
Vujičić, M., Sabovljević, A., Sĭnzăr-Sekulić, J., Skorić, M. and Sabovljević, M. (2012). In vitro development of the rare and endangered moss Molendoa hornschuchiana (Hook.) Lindb. Ex Limpr. (Pottiaceae, Bryophyta). HortScience, 47: 8487.Google Scholar
Wallace, S. H. (2015). Development of an Informational Resource to Inform Global Prioritization of Efforts to Conserve Threatened, Exceptional Plant Taxa. Master’s Thesis, University of Delaware-Longwood Gardens.Google Scholar
Walters, C., Wheeler, L. M. and Grotenhuis, J. M. (2005). Longevity of seeds stored in a genebank: species characteristics. Seed Science Research, 15: 120.Google Scholar
Xia, K., Hill, L. M., Li, D.-Z. and Walters, C. (2014). Factors affecting stress tolerance in recalcitrant embryonic axes from seeds of four Quercus (Fagaceae) species native to the USA or China. Annals of Botany, 114: 17471759.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×