Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T18:15:51.925Z Has data issue: false hasContentIssue false

2 - Using DNA Sequence Data to Enhance Understanding and Conservation of Plant Diversity at the Species Level

Published online by Cambridge University Press:  30 August 2017

Stephen Blackmore
Affiliation:
Botanic Gardens Conservation International (BGCI)
Sara Oldfield
Affiliation:
International Union for Conservation of Nature (IUCN)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Plant Conservation Science and Practice
The Role of Botanic Gardens
, pp. 23 - 48
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G. and Hohenlohe, P. A. (2016). Harnessing the power of RADseq for ecological and evolutionary genomics. Nature Reviews Genetics, 17: 8192.Google Scholar
Arnold, M. L. (1997). Natural Hybridization and Evolution. Oxford: Oxford University Press.CrossRefGoogle Scholar
Ashton, P. A. and Abbott, R. J. (1992). Multiple origins and genetic diversity in the newly arisen allopolyploid species, Senecio cambrensis Rosser (Compositae). Heredity, 68: 2532.CrossRefGoogle Scholar
Aubriot, X., Lowry, P. P. II, Cruaud, C., Couloux, A. and Haevermans, T. (2013). DNA barcoding in a biodiversity hot spot: potential value for the identification of Malagasy Euphorbia L. listed in CITES Appendices I and II. Molecular Ecology Resources, 13: 5765.CrossRefGoogle Scholar
Avise, J. C. (2004). Molecular Markers, Natural History and Evolution, 2nd edition. Boston, MA: Sinauer.Google Scholar
Baker, D. A., Stevenson, D. W. and Little, D. P. (2012). DNA barcode identification of Black Cohosh herbal dietary supplements. Journal of AOAC International, 95: 10231034.CrossRefGoogle ScholarPubMed
Bebber, D. P., Carine, M. A., Wood, J. R. I. et al. (2010). Herbaria are a major frontier for species discovery. Proceedings of the National Academy of Sciences, 107: 2216922171.CrossRefGoogle Scholar
Bell, D., Long, D. G., Forrest, A. D., Hollingsworth, M. L., Blom, H. H. and Hollingsworth, P. M. (2012). DNA barcoding of European Herbertus (Marchantiopsida, Herbertaceae) and the discovery and description of a new species. Molecular Ecology Resources, 12: 3647.CrossRefGoogle ScholarPubMed
Bell, K. L., Burgess, K. S., Okamoto, K. C., Aranda, R. and Brosi, B. J. (2016a). Review and future prospects for DNA barcoding methods in forensic palynology. Forensic Science International-Genetics, 21: 110116.CrossRefGoogle ScholarPubMed
Bell, K. L., de Vere, N., Keller, A., Richardson, R, Gous, A., Burgess, K. S. and Brosi, B. J. (2016b). Pollen DNA barcoding: current applications and future prospects. Genome, 59(9): 629640.CrossRefGoogle ScholarPubMed
Blaxter, M. (2016). Imagining Sisyphus happy: DNA barcoding and the unnamed majority. Philosophical Transactions of the Royal Society B: Biological Sciences 371: 20150329.Google Scholar
Bohmann, K., Evans, A., Gilbert, M. T. P. et al. (2014). Environmental DNA for wildlife biology and biodiversity monitoring. Trends in Ecology and Evolution, 29: 358367.Google Scholar
Brochmann, C., Gabrielsen, T. M, Nordal, I., Landvik, J. Y. and Elven, R. (2003). Glacial survival or tabula rasa? The history of the North Atlantic biota revisited. Taxon, 52: 417450.Google Scholar
Brochmann, C., Brysting, A. K., Alsos, I. G., Borgen, L., Grundt, H. H., Scheen, A.-C. and Elven, R. (2004). Polyploidy in Arctic plants. Biological Journal of the Linnean Society, 82: 521536.CrossRefGoogle Scholar
Chervitz, S. A., Deutsch, E. W., Field, D. et al. (2011). Data standards for omics data: the basis of data sharing and reuse. Methods in Molecular Biology, 719: 3169.Google Scholar
Coissac, E., Hollingsworth, P. M., Lavergne, S. and Taberlet, P. (2016). From barcodes to genomes: extending the concept of DNA barcoding. Molecular Ecology, 25: 14231428.CrossRefGoogle ScholarPubMed
Creer, S., Deiner, K., Frey, S. et al. (2016). The ecologist’s field guide to sequence-based identification of biodiversity. Methods in Ecology and Evolution, 7(9): 10081018, doi: 10.1111/2041-1210X.12574.CrossRefGoogle Scholar
de Boer, H. J., Ichim, M. C. and Newmaster, S. G. (2015). DNA barcoding and pharmacovigilance of herbal medicines. Drug Safety, 38: 611620.CrossRefGoogle ScholarPubMed
de Vere, N., Rich, T. C. G., Ford, C. R. et al. (2012). DNA barcoding the native flowering plants and conifers of Wales. PLoS ONE, 7: e37945.Google Scholar
Eaton, D. A. R. and Ree, R. H. (2013). Inferring phylogeny and introgression using RADseq data: an example from flowering plants (Pedicularis: Orobanchaceae). Systematic Biology, 62: 689706.Google Scholar
Ekblom, R. and Galindo, J. (2011). Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity, 107: 115.Google Scholar
Ennos, R. A., French, G. C. and Hollingsworth, P. M. (2005). Conserving taxonomic complexity. Trends in Ecology and Evolution, 20: 164168.CrossRefGoogle ScholarPubMed
Gornall, R. J. (1999). Population Genetic Structure in Agamospermous Plants. In: Hollingsworth, P. M., Bateman, R. M. and Gornall, R. J. (Eds), Molecular Systematics and Plant Evolution. London: Taylor and Francis, pp. 118138.Google Scholar
Hagelberg, E., Hofreiter, M. and Keyser, C. (2015). Ancient DNA: the first three decades. Philosophical Transactions of the Royal Society B: Biological Sciences, 370: 20130371.Google Scholar
Hajibabaei, M. (2015). Environmental DNA barcoding: from the Arctic to the tropics – and everywhere in between. Genome, 58: 224224.Google Scholar
Hajibabaei, M., Baird, D. J., Fahner, N. A., Beiko, R. and Golding, G. B. (2016). A new way to contemplate Darwin’s tangled bank: how DNA barcodes are reconnecting biodiversity science and biomonitoring. Philosophical Transactions of the Royal Society B: Biological Sciences, 371: 20150330.CrossRefGoogle ScholarPubMed
Hartvig, I., Czako, M., Kjaer, E. D., Nielsen, L. R. and Theilade, L. R. (2015). The use of DNA barcoding in identification and conservation of Rosewood (Dalbergia spp.). PLoS ONE, 10: e138231.Google Scholar
Hayden, E. C. (2015). Pint-sized DNA sequencer impresses first users. Nature, 521: 1516.Google Scholar
Hebert, P. D. N., Cywinska, A., Ball, L. R. and deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London, series B, 270: 313321.CrossRefGoogle ScholarPubMed
Hebert, P. D. N., Hollingsworth, P. M. and Hajibabaei, M. (2016a). From writing to reading the encyclopedia of life. Philosophical Transactions of the Royal Society B: Biological Sciences, 371: 20150321.Google Scholar
Hebert, P. D. N., Ratnasingham, S., Zakharov, E. V., et al. (2016b). Counting animal species with DNA barcodes: Canadian insects. Philosophical Transactions of the Royal Society B: Biological Sciences, 371: 20150333.Google Scholar
Hollingsworth, P. M. (2003). Taxonomic complexity, population genetics, and plant conservation in Scotland. Botanical Journal of Scotland, 55: 5563.CrossRefGoogle Scholar
Hollingsworth, P. M. (2011). Refining the DNA barcode for land plants. Proceedings of the National Academy of Sciences 108: 1945119452.CrossRefGoogle ScholarPubMed
Hollingsworth, P. M., Preston, C. D. and Gornall, R. J. (1995). Isozyme evidence for hybridization between Potamogeton natans and P. nodosus (Potamogetonaceae) in Britain. Botanical Journal of the Linnean Society, 117: 5969.Google Scholar
Hollingsworth, P. M., Squirrell, J., Hollingsworth, M. L., Richards, A. J. and Bateman, R. M. (2006). Taxonomic Complexity, Conservation and Recurrent Origins of Self-Pollination in Epipactis (Orchidaceae). In: Bailey, J. P. and Ellis, R. G. (Eds), Current Taxonomic Research on the British and European Flora. London: BSBI, pp. 2744.Google Scholar
Hollingsworth, P. M., Forrest, L. L., Spouge, J. L., Hajibabaei, M., Ratnasingham, S. and van der Bank, M. (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences, 106: 1279412797.Google Scholar
Hollingsworth, P. M., Graham, S. and Little, D. P. (2011). Choosing and using a plant DNA barcode. PLoS ONE, 6: e19254.Google Scholar
Hollingsworth, P. M., Li, D., VanderBank, M. and Twyford, A. D. (2016). Telling plant species apart with DNA: from barcodes to genomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 371: 20150338.Google Scholar
Jones, M. R. and Good, J. M. (2016). Targeted capture in evolutionary and ecological genomics. Molecular Ecology, 25: 185202.Google Scholar
Kartzinel, T. R., Chen, A. D., Coverdale, T. C., Erickson, D. L., Kress, W. J., Kuzmina, M. L., Rubenstein, D. I., Wang, W. and Pringle, R. M. (2015). DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. Proceedings of the National Academy of Sciences, 112: 80198024.Google Scholar
Kosakovsky Pond, S., Wadhawan, S., Chiaromonte, F., Ananda, G., Chung, W.-Y., Taylor, J., Nekrutenko, A. and Team, T. G. (2009). Windshield splatter analysis with the Galaxy metagenomic pipeline. Genome Research, 19: 21442153.Google Scholar
Kraaijeveld, K., Weger, L. A., Ventayol García, M., Buermans, H., Frank, J. and Hiemstra, P. S. (2015). Efficient and sensitive identification and quantification of airborne pollen using next-generation DNA sequencing. Molecular Ecology Resources, 15: 816.Google Scholar
Kress, W. J. and Erickson, D. L. (2007). A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS ONE, 2(6): e508. doi:10.1371/journal.pone.0000508.Google Scholar
Li, D.-Z., Gao, L.-M., Li, H.-T. et al. (2011). Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proceedings of the National Academy of Sciences, 108: 1964119646.Google ScholarPubMed
Li, X., Yang, Y., Henry, R. J., Rossetto, M., Wang, Y. and Chen, S. (2015). Plant DNA barcoding: from gene to genome. Biological Reviews, 90: 157166.CrossRefGoogle ScholarPubMed
Little, D. P. (2014). Authentication of Ginkgo biloba herbal dietary supplements using DNA barcoding. Genome 57: 513516.Google Scholar
Lowe, A. J., Harris, S. A. and Ashton, P. A. (2004). Ecological Genetics: Design Analysis and Application. Oxford: Blackwell.Google Scholar
Lowry, D. B. (2012). Ecotypes and the controversy over stages in the formation of new species. Biological Journal of the Linnean Society, 106: 241257.Google Scholar
Lu, F., Lipka, A. E., Glaubitz, J. et al. (2013). Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genetics, 9: e1003215.Google Scholar
Mahon, A. R., Jerde, C. L., Galaska, M. et al. (2013). Validation of eDNA surveillance sensitivity for detection of asian carps in controlled and field experiments. PLoS ONE, 8: e58316.CrossRefGoogle ScholarPubMed
Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. and Worm, B. (2011). How many species are there on earth and in the ocean? PLoS Biology, 9: e1001127.Google Scholar
Naciri, Y., Caetano, S. and Salamin, N. (2012). Plant DNA barcodes and the influence of gene flow. Molecular Ecology Resources, 12: 575580.CrossRefGoogle ScholarPubMed
NASA (2016). First DNA Sequencing in Space a Game Changer. Available online at https://www.nasa.gov/mission_pages/station/research/news/dna_sequencing [accessed 23 February 2017].Google Scholar
Nicholls, J. A., Pennington, R. T., Koenen, E. J. M. et al. (2015). Using targeted enrichment of nuclear genes to increase phylogenetic resolution in the neotropical rain forest genus Inga (Leguminosae: Mimosoideae). Frontiers in Plant Science, 6: 710.CrossRefGoogle ScholarPubMed
Ogden, R., McGough, H. N., Cowan, R. S., Chua, L., Groves, M. and McEwing, R. (2008). SNP-based method for the genetic identification of ramin Gonystylus spp. timber and products: applied research meeting CITES enforcement needs. Endangered Species Research, 9: 255261.Google Scholar
Page, R. D. M. (2016). DNA barcoding and taxonomy: dark taxa and dark texts. Philosophical Transactions of the Royal Society B: Biological Sciences 371: 20150334.Google Scholar
Pansu, J., Giguet-Covex, C., Ficetola, G. F. et al. (2015). Reconstructing long-term human impacts on plant communities: an ecological approach based on lake sediment DNA. Molecular Ecology, 24: 14851498.Google Scholar
Pedersen, M. W., Overballe-Petersen, S., Ermini, L. et al. (2015). Ancient and modern environmental DNA. Philosophical Transactions of the Royal Society B: Biological Sciences 370: 20130383.CrossRefGoogle ScholarPubMed
Percy, D. M., Argus, G. W., Cronk, Q. C. et al. (2014). Understanding the spectacular failure of DNA barcoding in willows (Salix): Does this result from a trans-specific selective sweep? Molecular Ecology, 23: 47374756.Google Scholar
Pimm, S. L. and Joppa, L. N. (2015). How many plant species are there, where are they, and at what rate are they going extinct? Annals of the Missouri Botanical Garden, 100: 170176.Google Scholar
Pornon, A., Escaravage, N., Burrus, M. et al.(2016). Using metabarcoding to reveal and quantify plant–pollinator interactions. Scientific Reports, 6: 27282.Google Scholar
Quick, J., Loman, N. J., Duraffour, S. et al. (2016). Real-time, portable genome sequencing for Ebola surveillance. Nature, 530: 228232.Google Scholar
Ratnasingham, S. and Hebert, P. D. N. (2013). A DNA-based registry for all animal species: the Barcode Index Number (BIN) system. PLoS ONE, 8: e66213.CrossRefGoogle ScholarPubMed
Robertson, A., Newton, A. C. and Ennos, R. A. (2004). Multiple hybrid origins, genetic diversity and population genetic structure of two endemic Sorbus taxa on the Isle of Arran, Scotland. Molecular Ecology, 13: 123134.CrossRefGoogle ScholarPubMed
Robertson, A., Rich, T. C. G., Allen, A. M. et al. (2010). Hybridization and polyploidy as drivers of continuing evolution and speciation in Sorbus. Molecular Ecology, 19: 16751690.CrossRefGoogle ScholarPubMed
Roda, F., Ambrose, L., Walter, G. M. et al. (2013a). Genomic evidence for the parallel evolution of coastal forms in the Senecio lautus complex. Molecular Ecology, 22: 29412952.CrossRefGoogle ScholarPubMed
Roda, F., Liu, H., Wilkinson, M. J. et al. (2013b). Convergence and divergence during the adaptation to similar environments by an Australian groundsel. Evolution, 67: 25152529.Google Scholar
Ruhsam, M., Hollingsworth, P. M. and Ennos, R. A. (2011). Genetic and phenotypic analysis of a hybrid swarm between Geum urbanum and G. rivale, plant taxa with contrasting mating systems. Heredity, 107: 246255.Google Scholar
Ruhsam, M., Rai, H. S., Mathews, S., Ross, T. G. et al. (2015). Does complete plastid genome sequencing improve species discrimination and phylogenetic resolution in Araucaria? Molecular Ecology Resources, 15: 10671078.Google Scholar
Schlotterer, C. (2004). The evolution of molecular markers: just a matter of fashion? Nature Reviews Genetics, 5: 6369.Google Scholar
Scriver, M., Marinich, A., Wilson, C. and Freeland, J. (2015). Development of species-specific environmental DNA (eDNA) markers for invasive aquatic plants. Aquatic Botany, 122: 2731.Google Scholar
Shapcott, A., Forster, P. I., Guymer, G. P. et al. (2015). Mapping biodiversity and setting conservation priorities for SE Queensland’s rainforests using DNA barcoding. PLoS ONE, 10(3): e0122164. doi:10.1371/journal.pone.0122164.Google Scholar
Speller, C., van den Hurk, Y., Charpentier, A. et al. (2016). Barcoding the largest animals on Earth: ongoing challenges and molecular solutions in the taxonomic identification of ancient cetaceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 371: 20150332.Google Scholar
Squirrell, J., Hollingsworth, P. M., Bateman, R. M., Tebbitt, M. C. and Hollingsworth, M. L. (2002). Taxonomic complexity and breeding system transitions: conservation genetics of the Epipactis leptochila complex (Orchidaceae). Molecular Ecology, 11: 19571964.Google Scholar
Staats, M., Arulandhu, A. J., Gravendeel, B., Holst-Jensen, A., Scholtens, I., Peelen, T., Prins, T. W. and Kok, E. (2016). Advances in DNA metabarcoding for food and wildlife forensic species identification. Analytical and Bioanalytical Chemistry 408: 46154630.Google Scholar
Starr, T. N., Gadek, K. E., Yoder, J. B., Flatz, R. and Smith, C. I. (2013). Asymmetric hybridization and gene flow between Joshua trees (Agavaceae: Yucca) reflect differences in pollinator host specificity. Molecular Ecology, 22: 437449.Google Scholar
Stull, G. W., Moore, M. J., Mandala, V. S. et al. (2013). A targeted enrichment strategy for massively parallel sequencing of angiosperm plastid genomes. Applications in Plant Sciences, 1(2): 1200497.Google Scholar
Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. and Willerslev, E. (2012). Towards next-generation biodiversity assessment using DNA metabarcoding. Molecular Ecology, 21: 20452050.Google Scholar
Thomsen, P. F. and Willerslev, E. (2015). Environmental DNA: an emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation, 183: 418.Google Scholar
Twyford, A. D. (2014). Testing evolutionary hypotheses for DNA barcoding failure in willows. Molecular Ecology, 23: 46744676.Google Scholar
Twyford, A. D. (2016). Will benchtop sequencers resolve the sequencing trade-off in plant genetics? Frontiers in Plant Science 7: 433.Google Scholar
Twyford, A. D. and Ennos, R. A. (2012). Next-generation sequencing as a tool for plant ecology and evolution. Plant Ecology and Diversity, 5: 411413.Google Scholar
Twyford, A. D. and Friedman, J. (2015). Adaptive divergence in the monkey flower Mimulus guttatus is maintained by a chromosomal inversion. Evolution, 69: 14761486.Google Scholar
Twyford, A. D., Kidner, C. A. and Ennos, R. A. (2014). Genetic differentiation and species cohesion in two widespread Central American Begonia species. Heredity, 112: 382390.CrossRefGoogle ScholarPubMed
Valentini, A., Miquel, C., Nawaz, M. A. and Bellemain, E. et al. (2009). New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnL approach. Molecular Ecology Resources, 9: 5160.Google Scholar
Vallejo-Marin, M. and Lye, G. C. (2013). Hybridisation and genetic diversity in introduced Mimulus (Phrymaceae). Heredity, 110: 111122.Google Scholar
Vallejo-Marín, M., Buggs, R. J. A, Cooley, A. M. and Puzey, J. R. (2015). Speciation by genome duplication: Repeated origins and genomic composition of the recently formed allopolyploid species Mimulus peregrinus. Evolution, 69: 14871500.CrossRefGoogle ScholarPubMed
Willerslev, E., Davison, J. and Moora, M. et al. (2014). Fifty thousand years of Arctic vegetation and megafaunal diet. Nature, 506: 4751.Google Scholar
Wong, M. M., Lim, C. L., and Wilson, J. J. (2015). DNA barcoding implicates 23 species and four orders as potential pollinators of Chinese knotweed (Persicaria chinensis) in Peninsular Malaysia. Bulletin of Entomological Research, 105: 515520.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×