Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-11T02:49:13.892Z Has data issue: false hasContentIssue false

Chapter 7 - Gravity

Surface and Borehole

from Part II - Geophysical Techniques

Published online by Cambridge University Press:  19 April 2019

Thomas L. Davis
Affiliation:
Colorado School of Mines
Martin Landrø
Affiliation:
Norwegian University of Science and Technology, Trondheim
Malcolm Wilson
Affiliation:
New World Orange BioFuels
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, S. J. (1991). Gas saturation monitoring in North Oman Reservoir using a borehole gravimeter. SPE Journal, 21414: 669678.Google Scholar
Allis, R. G., and Hunt, T. M. (1986). Analysis of exploitation-induced gravity changes at Wairakei Geothermal Field. Geophysics, 51: 16471660.CrossRefGoogle Scholar
Alnes, H. (2015). Gravity surveys over time at Sleipner. Presentation at the 10th IEAGHG Monitoring Network Meeting, June 10–12, 2015. http://ieaghg.org/docs/General_Docs/8_Mon/6_Gravity_surveys_over_time_at_SleipnerSEC.pdfGoogle Scholar
Alnes, H., Eiken, O., and Stenvold, T. (2008). Monitoring gas production and CO2 injection at the Sleipner field using time-lapse gravimetry. Geophysics, 73: WA155–WA161.CrossRefGoogle Scholar
Alnes, H., Stenvold, T., and Eiken, O. (2010). Experiences on seafloor gravimetrics and subsidence monitoring above producing reservoirs. In Extended Abstract, 72nd EAGE Conference.CrossRefGoogle Scholar
Alnes, H., Eiken, O., Nooner, S., Stenvold, T., and Zumberge, M. A. (2011). Results from Sleipner gravity monitoring: Updated density and temperature distribution of the CO2 plume. Energy Procedia, 4: 55045511 (10th International Conference on Greenhouse Gas Control Technologies).CrossRefGoogle Scholar
Ander, M. E., and Chapin, D. A. (1997). Borehole gravimetry: A review. In Extended Abstracts, 67th Annual Society of Exploration Geophysicists Meeting, 531534.CrossRefGoogle Scholar
Arts, R., Chadwick, A., Eiken, O., Thibeau, S., and Nooner, S. (2008). Ten years’ experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore Norway. First Break, 26: 6572.CrossRefGoogle Scholar
Bate, D. (2005). 4D reservoir volumetrics: A case study over the Izaute gas storage facility. First Break, 23: 6971.CrossRefGoogle Scholar
Battaglia, M., Gottsmann, J., Carbone, D., and Fernández, J. (2008). 4D volcano gravimetry. Geophysics, 73(6): WA3WA18.CrossRefGoogle Scholar
Brady, J. L., Hare, J. L., Ferguson, J. F., et al. (2008). Results of the world’s first 4D microgravity surveillance of a Waterfloor – Prudhoe Bay, Alaska. SPE Journal, 101762.Google Scholar
Calvo, M., Hinderer, J., Rosat, S., et al. (2014). Time stability of spring and superconducting gravimeters through the analysis of very long gravity records. Journal of Geodynamics, 80: 2033.CrossRefGoogle Scholar
Campos-Enriquez, J. O., Morales-Rodrigues, H. F., Domínguez-Mendez, F., and Birch, F. S. (1998). Gauss’s theorem, mass deficiency at Chicxulub crater (Yucatan, Mexico), and the extinction of the dinosaurs. Geophysics, 63(5): 15851594.CrossRefGoogle Scholar
Carbone, D., Poland, M. P., Diament, M., and Greco, F. (2017). The added value of time-variable microgravimetry to the understanding of how volcanoes work. Earth-Science Reviews, 169: 146179.CrossRefGoogle Scholar
Chadwick, R. A., Arts, R., Eiken, O., Kirby, G. A., Lindeberg, E., and Zweigel, P. (2004). 4D seismic imaging of an injected CO2 plume at the Sleipner Field, central North Sea. In Cartwright, R. J., Stewart, S. A., Lappin, M., and Underhill, J. R., (eds.), 3D seismic technology: Application to the exploration of sedimentary basins. Geological Society, London, Memoirs, 29: 311320. The Geological Society of London.Google Scholar
Chadwick, R. A., Arts, R., and Eiken, O. (2005). 4D seismic quantification of a growing CO2 plume at Sleipner, North Sea. In Doré, A. G. and Vining, B. A. (eds.), Petroleum geology: North-west Europe and global perspectives: Proceedings of the 6th Petroleum Geology Conference, 13851399.Google Scholar
Chadwick, R.A., Arts, R., Bentham, M., et al. (2009). Review of monitoring issues and technologies associated with the long-term underground storage of carbon dioxide. London: Geological Society, Special Publications, 313: 257275.Google Scholar
Chapin, D. A., and Ander, M. E. (2000). Advances in deep-penetration density logging. Society of Petroleum Engineers Conference Papers, 59698.CrossRefGoogle Scholar
Christiansen, L., Lund, S., Andersen, O. B., Binning, P. J., Rosbjerg, D., and Bauer-Gottwein, P. (2011). Measuring gravity change caused by water storage variations: Performance assessment under controlled conditions. Journal of Hydrology, 402: 6070.CrossRefGoogle Scholar
Debeglia, N., and Dupont, F. (2002). Some critical factors for engineering and environmental microgravity investigations. Journal of Applied Geophysics, 50: 435454.CrossRefGoogle Scholar
Dodds, K., Krahenbuhl, R., Reitz, A., Li, Y., and Hovorka, S. (2013). Evaluating time-lapse borehole gravity for CO2 plume detection at SECARB Cranfield. International Journal of Greenhouse Gas Control, 18: 421429.CrossRefGoogle Scholar
Eiken, O., Stenvold, T., Zumberge, M., Alnes, H., and Sasagawa, G. (2008). Gravimetric monitoring of gas production from the Troll field. Geophysics, 73: WA149WA154.CrossRefGoogle Scholar
Eiken, O., Ringrose, P., Hermanrud, C., Nazarian, B., Torp, T. A., and Høier, L. (2011). Lessons learned from 14 years of CCS Operations: Sleipner, In Salah and Snøhvit. Energy Procedia, 4: 55415548.CrossRefGoogle Scholar
Eiken, O., Glegola, M., Liu, S., and Zumberge, M. A. (2017). Four decades of gravity monitoring of the Groningen Gas Field. Extended Abstract, First EAGE Workshop on Practical Reservoir Monitoring.CrossRefGoogle Scholar
Ferguson, J. F., Klopping, F. J., Chen, T., Seibert, J. E., Hare, J. L., and Brady, J. L. (2008). The 4D microgravity method for waterflood surveillance: Part 3–4D absolute microgravity surveys at Prudhoe Bay, Alaska. Geophysics, 73(6): WA163WA171.CrossRefGoogle Scholar
Furre, A.-K., Eiken, O., Alnes, H., Vevatne, J. N., and Kiær, A. F. (2017). 20 years of monitoring CO2 injection at Sleipner. Energy Procedia, 4: 55415548.Google Scholar
Gasperikova, E., and Hoversten, G. M. (2006). A feasibility study of nonseismic geophysical methods for monitoring geologic CO2 sequestration. Leading Edge, October: 12821288.Google Scholar
Gasperikova, E., and Hoversten, G. M. (2008). Gravity monitoring of CO2 movement during sequestration: Model studies. Geophysics, 73(6): WA105WA112.CrossRefGoogle Scholar
Geertsma, J. (1973). Land subsidence above compacting oil and gas reservoirs. Journal of Petroleum Technology, 59(6): 734744.CrossRefGoogle Scholar
Gelderen, M. v, Haagmans, R., and Bilker, M. (1999). Gravity changes and natural gas extraction in Groningen. Geophysical Prospecting, 47: 979993.CrossRefGoogle Scholar
Glegola, M., Didmar, P., Hanea, R. G., et al. (2012). History matching time-lapse surface-gravity and well-pressure data with ensemble smoother for estimating gas field aquifer support: A 3D numerical study. SPE Journal, 161483.CrossRefGoogle Scholar
Goetz, J. F. (1958). A gravity investigation of a sulphide deposit. Geophysics, 23(6): 606623.CrossRefGoogle Scholar
Hare, J. L., Ferguson, J. F., and Brady, J. L. (2008). The 4D microgravity method for waterflood surveillance: Part IV – Modeling and interpretation of early epoch 4D gravity surveys at Prudhoe Bay, Alaska. Geophysics, 73(6): WA173WA180.CrossRefGoogle Scholar
Hauge, V. L., and Kobjørnsen, O. (2015). Bayesian inversion of gravimetric data and assessment of CO2 dissolution in the Utsira Formation. Interpretation, sp1sp10.CrossRefGoogle Scholar
Hunt, T. M., and Kissling, W. M. (1994). Determination of reservoir properties at Wairakei Geothermal Field using gravity change measurements. Journal of Volcanology and Geothermal Research, 63: 129143.CrossRefGoogle Scholar
Hunt, T., Sugihara, M., Sato, T., and Takemura, T. (2002). Measurement and use of the vertical gravity gradient in correcting repeat microgravity measurements for the effects of ground subsidence in geothermal systems. Geothermics, 31: 524543.CrossRefGoogle Scholar
Jacob, T., Bayer, R., Chery, J., and Le Moigne, N. (2010). Time-lapse microgravity surveys reveal water storage heterogeneity of a karst aquifer. Journal of Geophysical Research, 115: B06402.CrossRefGoogle Scholar
Jacob, T., Rohmer, J., and Manceau, J.-C. (2016). Using surface and borehole time-lapse gravity to monitor CO2 in saline aquifers: A numerical feasibility study. Greenhouse Gas Science and Technology, 6: 3454.CrossRefGoogle Scholar
Kabirzadeh, H., Kim, J. W., and Sideris, M. G. (2017). Micro-gravimetric monitoring of geological CO2 reservoirs. International Journal of Greenhouse Gas Control, 56: 187193.CrossRefGoogle Scholar
Kabirzadeh, H., Sideris, M. G., Shin, Y. J., and Kim, J. W. (2017). Gravimetric monitoring of confined and unconfined geological CO2 reservoirs. Energy Procedia, 114: 39613968.CrossRefGoogle Scholar
Kim, J. W., Neumeyer, J., Kao, R., and Kabirzadeh, H. (2015). Mass balance monitoring of geological CO2 storage with a superconducting gravimeter: A case study. Journal of Applied Geophysics, 114: 244250.CrossRefGoogle Scholar
Landrø, M., and Zumberge, M. (2017). Estimating saturation and density changes caused by CO2 injection at Sleipner: Using time-lapse seismic amplitude-variation-with-offset and time-lapse gravity. Interpretation, T243T257.CrossRefGoogle Scholar
Lien, M., Agersborg, R., Hille, L. T., Lindgård, J. E., Ruiz, H., and Vatshelle, M. (2017). How 4D gravity and subsidence monitoring provide improved decision making at a lower cost. Extended Abstract, First EAGE Workshop on Practical Reservoir Monitoring.CrossRefGoogle Scholar
Nind, C. J. M., and MacQueen, J. D. (2013). The borehole gravity meter: Development and Results: 10th Biennial International Conference & Exhibition.CrossRefGoogle Scholar
Nooner, S. L. (2005). Gravity changes associated with underground injection of CO2 at the Sleipner storage reservoir in the North Sea, and other marine geodetic studies. PhD thesis, University of California, San Diego.Google Scholar
Nooner, S. L., Eiken, O., Hermanrud, C., Sasagawa, G. S., Stenvold, T., and Zumberge, M. A. (2007). Constraints on the in situ density of CO2 within the Utsira formation from time-lapse seafloor gravity measurements. International Journal of Greenhouse Gas Control, 1: 198214.CrossRefGoogle Scholar
Nordquist, G., Protacio, J. A., and Acuna, J. A. (2004). Precision gravity monitoring of the Bulalo geothermal field, Philippines: Independent checks and constraints on numerical simulation. Geothermics, 33: 3756.CrossRefGoogle Scholar
Preuss, K. ed. (1998). Proceedings of the TOUGH Workshop ´98, Berkeley, California, May 4 –6, 1998. Lawrence Berkeley National Laboratory report LBNL-41995.Google Scholar
Pritchett, J. W., and Garg, S. K. (1995). STAR: A geothermal reservoir simulation system: Proceedings of the World Geothermal Congress 1995, Florence, Italy, May 18–31, International Geothermal Association, 29592963.Google Scholar
Ringrose, P. S., Mathieson, A. S., Wright, I. W., et al. (2013). The In Salah CO2 storage project: Lessons learned and knowledge transfer. Energy Procedia, 37: 62266236.CrossRefGoogle Scholar
Sasagawa, G., Crawford, W., Eiken, O., Nooner, S. L., Stenvold, T., and Zumberge, M. A. (2003). A new sea-floor gravimeter. Geophysics, 68(2): 544553.CrossRefGoogle Scholar
Seigel, H. O., Nind, C., Lachapelle, R., Choteau, M., and Giroux, B. (2007). Development of a borehole gravity meter for mining applications. In Milkereit, B. (ed.), Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, 2114321147.Google Scholar
Sherlock, D., Toomey, A., Hoversten, M., Gasperikova, E., and Dodds, K. (2006). Gravity monitoring of CO2 storage in a depleted gas field: A sensitivity study. Exploration Geophysics, 37: 3743.CrossRefGoogle Scholar
Singhe, A. T., Ursin, J. R., Pusch, G., and Ganzer, L. (2013). Modeling of temperature effects in CO2 injection wells. Energy Procedia, 37: 39273935.CrossRefGoogle Scholar
Sofyan, Y., Kamah, Y., Fujimitsy, Y., Ehara, S., Fukuda, Y., and Taniguchi, M. (2011). Mass variation in outcome to high productionactivity in Kamojang Geothermal Field, Indonesia: A reservoir monitoring with relative and absolute gravimetry. Earth Planets and Space, 63: 11571167.CrossRefGoogle Scholar
Stenvold, T., Eiken, O., Zumberge, M. A., Sasagawa, G. S., and Nooner, S. L. (2006). High-precision relative depth and subsidence mapping from seafloor water-pressure measurements. SPE Journal, 11(3): 380389.CrossRefGoogle Scholar
Sugihara, M., and Ishido, T. (2008). Geothermal reservoir monitoring with a combination of absolute and relative gravimetry. Geophysics, 73(6): WA37WA47.CrossRefGoogle Scholar
Sugihara, M., Nawa, K., Nishi, Y., Ishido, T., and Soma, N. (2013). Continuous gravity monitoring for CO2 geo-sequestration. Energy Procedia, 37: 43024309.CrossRefGoogle Scholar
Torge, W. (1989). Gravimetry. Berlin: Walter de Gruyter.Google Scholar
Van den Beukel, A. (2014). Integrated reservoir monitoring of the Ormen Lange field: Time lapse seismic, time lapse gravity and seafloor deformation monitoring. The Biennial Geophysical Seminar, NPF, Kristiansand.Google Scholar
Van Opstal, G. H. C. (1974). The effect of base-rock rigidity on subsidence due to reservoir compaction. In Proceedings of the 3rd Congress of the International Society for Rock Mechanics, Denver, II, Part B, 1102–1111.Google Scholar
Vevatne, J. N., Alnes, H., Eiken, O., Stenvold, T., and Vassenden, F. (2012). Use of field-wide seafloor time-lapse gravity in history matching the Mikkel gas condensate field. Extended Abstract, 74th EAGE Conference.CrossRefGoogle Scholar
Wilson, C. R., Scanlon, B., Sharp, J., Longuevergne, L., and Wu, H. (2012). Field test of the superconducting gravimeter as a hydrologic sensor. Ground Water, 50(3): 442449.CrossRefGoogle ScholarPubMed
Yin, Q., Krahenbuhl, R., Li, Y., Wagner, S., and Brady, J. (2016). Time-lapse gravity data at Prudhoe Bay: New understanding through integration with reservoir simulation models. Expanded Abstract, Society of Exploration Geophysicists Annual Meeting.CrossRefGoogle Scholar
Zumberge, M., Alnes, H., Eiken, O., Sasagawa, G., and Stenvold, T. (2008). Precision of seafloor gravity and pressure measurements for reservoir monitoring. Geophysics, 73(6): WA133WA141.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×