Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-24T10:35:23.453Z Has data issue: false hasContentIssue false

Chapter 6 - Monitoring the Deformation Associated with the Geological Storage of CO2

from Part II - Geophysical Techniques

Published online by Cambridge University Press:  19 April 2019

Thomas L. Davis
Affiliation:
Colorado School of Mines
Martin Landrø
Affiliation:
Norwegian University of Science and Technology, Trondheim
Malcolm Wilson
Affiliation:
New World Orange BioFuels
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aki, K., and Richards, P. G. (1980). Quantitative seismology. San Francisco: Freeman and Sons.Google Scholar
Bamler, R., and Hartl, P. (1998). Synthetic aperture radar interferometry. Inverse Problems, 14: R1–R54.CrossRefGoogle Scholar
Berardino, P., Fornaro, G., and Lanari, R. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40: 23752383.CrossRefGoogle Scholar
Chadwick, R. A., Williams, G. A., Williams, J. D. O., and Noy, D. J. (2012). Measuring pressure performance of a large saline aquifer during industrial-scale CO2 injection: The Utsira Sand, Nowegian North Sea. International Journal of Greenhouse Gas Control, 10: 374388.CrossRefGoogle Scholar
Czarnogorska, M., Samsonov, S., and White, D. (2016). Airborne and spaceborne remote sensing characterization for Aquistore carbon capture and storage site. Canadian Journal of Remote Sensing, 42: 274291. DOI:10.1080/07038992.2016.1171131.CrossRefGoogle Scholar
Davis, P. M. (1983). Surface deformation associated with a dipping hydrofracture. Journal of Geophysical Research, 88: 58265834.CrossRefGoogle Scholar
Dzurisin, D. (2007). Volcano deformation: Geodetic monitoring techniques. Chichester: Springer.Google Scholar
Falorni, G, Hsiao, V., Iannaconne, J., Morgan, J., and Michaud, J.-S. (2014). InSAR monitoring of ground deformation at the Illinois Basin Decatur Project. In Carbon dioxide capture for storage in deep geological formations, 4. Thatcham, Berks: CPL Press.Google Scholar
Ferretti, A. (2014). Satellite InSAR data: Reservoir monitoring from space. Houten, The Netherlands: EAGE Publications.Google Scholar
Ferretti, A., Prati, C., and Rocca, F. (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38: 22022212.CrossRefGoogle Scholar
Ferretti, A., Prati, C., and Rocca, F. (2001). Permanent scatterers in SAR inferometry. IEEE Transactions on Geoscience and Remote Sensing, 39: 820.CrossRefGoogle Scholar
Ferretti, A., Monti-Guarnieri, A., Prati, C., Rocca, F., and Massonnet, D. (2007). InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation.Noordwijk, The Netherlands: ESA Publications, TM-19.Google Scholar
Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F., and Rucci, A. (2011). A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Transactions on Geoscience and Remote Sensing, 49: 34603470.CrossRefGoogle Scholar
Finley, R. J., Greenberg, S. D., Frailey, S. M., Krapac, I. G., Leetaru, H. E., and Marsteller, S. (2011). The path to a successful one-million tonne demonstration of geological sequestration: Characterization, cooperation, and collaboration. Energy Procedia, 4: 47704776.CrossRefGoogle Scholar
Finley, R. J., Frailey, S. M., Leetaru, H. E., Senel, O., Coueslan, M. L., and Marsteller, S. (2013). Early operational experience at a one-million tonne CCS demonstration project, Decatur, Illinois. Energy Procedia, 37: 61496155.CrossRefGoogle Scholar
Fujiwara, S., Nishimura, T., Murakami, M., Nakagawa, H., Tobita, M., and Rosen, P. A. (2000). 2.5-D surface deformation of M 6.1 earthquake near Mt. Iwate detected by SAR interferometry. Geophysical Research Letters, 27: 20492052.CrossRefGoogle Scholar
Funning, G. J., Parsons, B., Wright, T. J., Jackson, J. A., and Fielding, E. J. (2005). Surface displacements and source parameters of the 2003 Bam (Iran) earthquake from Envisat advanced synthetic aperture radar imagery. Journal of Geophysical Research, 110: B09406. DOI:10.1029/2004JB003338.CrossRefGoogle Scholar
Hovorka, S. D., Meckel, T. A., and Trevino, R. H. (2013). Monitoring large-volume injection at Cranfield, Mississippi-Project design and recommendations. International Journal of Greenhouse Gas Control, 18: 345360. DOI:10.1016/j.ijggc.2013.03.021.CrossRefGoogle Scholar
Iding, M., and Ringrose, P. (2010). Evaluating the impact of fractures on the performance of the In Salah CO2 storage site. International Journal of Greenhouse Gas Control, 4: 242248. DOI:10.1016/j.ijggc.2009.10.016.CrossRefGoogle Scholar
Kaven, J. O., Hickman, S. H., McGarr, A. F., Walter, S., and Ellsworth, W. L. (2014). Seismic monitoring at the Decatur, IL, CO2 sequestration demonstration site. Energy Procedia, 63: 42644272.CrossRefGoogle Scholar
Klemm, H., Quseimi, I., Novali, F., Ferretti, A., and Tamburini, A. (2010). Monitoring horizontal and vertical surface deformation over a hydrocarbon reservoir by PSInSAR. First Break, 28: 2937.CrossRefGoogle Scholar
Lanari, R., Mora, O., Manunta, M., Mallorqui, J. J., Berardino, P., and Sanosti, E. (2004). A small-baseline approach for investigating deformation on full-resolution differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 42: 13771386.CrossRefGoogle Scholar
Massonnet, D., and Feigl, K. L. (1998). Radar interferometry and its application to changes in the Earth’s surface. Reviews of Geophysics, 36: 441500.CrossRefGoogle Scholar
Mathieson, A., Midgley, J., Dodds, K., Wright, I., Ringrose, P., and Saoul, N. (2010). CO2 sequestration monitoring and verification technologies applied at Krechba, Algeria. Leading Edge, 29(2): 216222.CrossRefGoogle Scholar
Mathieson, A. Midgley, J., Wright, I., Saoula, N., and Ringrose, P. (2011). In Salah CO2 storage JIP: CO2 sequestration monitoring and verification technologies applied at Krechba, Algeria. Energy Procedia, 4: 35963603.CrossRefGoogle Scholar
McManamon, P. (2015). Field fuide to Lidar. Bellingham, WA: SPIE Press.CrossRefGoogle Scholar
Menke, W. (1989). Geophysical data analysis: Discrete inverse theory. San Diego: Academic Press.Google Scholar
Misra, P., and Enge, P. (2001). Global positioning system: Signals, measurements, and performance. Lincoln, MA: Ganga-Jamuna Press.Google Scholar
Norford, B., Haidl, R., Bezys, F.M., Cecile, M., McCabe, H., and Paterson, D. (1994). Middle Ordovician to Lower Devonian strata of the Western Canada Sedimentary Basin. In Mossop, G. and Shetsen, I. (comp. eds.), Geological Atlas of the Western Canada Sedimentary Basin. Edmonton, Alberta: Canadian Society of Petroleum Geologists, Calgary, Alberta and Alberta Research Council, 109127.Google Scholar
Petrovski, I. G., and Tsujii, T. (2012). Digital satellite navigation and geophysics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007). Numerical recipes. Cambridge: Cambridge University Press.Google Scholar
Ramirez, A., and Foxall, W. (2014). Stochastic inversion of InSAR data to assess the probability of pressure penetration into the lower caprock at In Salah. International Journal of Greenhouse Gas Control, 27, 4258.CrossRefGoogle Scholar
Rosen, P. A., Hensley, S., Joughin, I. R., et al. (2000). Synthetic aperture radar interferometry. Proceedings of the IEEE, 88: 333382.CrossRefGoogle Scholar
Rucci, A., Vasco, D. W., and Novali, F. (2013). Monitoring the geologic storage of carbon dioxide using multicomponent SAR interferometry. Geophysical Journal International, 193(1): 197208.CrossRefGoogle Scholar
Rutqvist, J. (2011). Status of TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations. Computational Geoscience, 37: 739750.CrossRefGoogle Scholar
Samsonov, S., and d’Oreye, N. (2012). Multidimensional time series analysis of ground deformation from multiple InSAR data sets applied to Virunga Volcanic Province: Geophysical Journal International, 191: 10951108. DOI:10.1111/j.1365-246X.2012.05669.x.Google Scholar
Samsonov, S., van der Koij, M., and Tiampo, K. (2011). A simultaneous inversion for deformation rates and topographic errors of DInSAR data utilizing linear least square inversion technique. Computers and Geosciences, 37: 10831091.CrossRefGoogle Scholar
Samsonov, S., Gonzalez, P., Tiampo, K., and d’Oreye, N. (2013a). Methodology for spatio-temporal analysis of ground deformation occurring near Rice Lake (Saskatchewan) observed by RADARSAT-2 DInSAR during 2008–2011. Canadian Journal of Remote Sensing, 39: 2733.CrossRefGoogle Scholar
Samsonov, S., d’Oreye, N., and Smets, B. (2013b). Ground deformation associated with post-mining activity at the French-German border revealed by novel InSAR time series method. International Journal of Applied Earth Observation and Geoinformation, 23: 142154.CrossRefGoogle Scholar
Samsonov, S., Gonzalez, P., Tiampo, K., and d’Oreye, N. (2014a). Modeling of fast ground subsidence observed in southern Saskatchewan (Canada) during 2008–2011. Natural Hazards and Earth System Sciences, 14: 247257. DOI:doi:10.5194/nhess-14–247-2014.CrossRefGoogle Scholar
Samsonov, S., d’Oreye, N., Gonzalez, P., Tiampo, K., Ertolahti, L., and Clague, J. (2014b). Rapidly accelerating subsidence in the Greater Vancouver region from two decades of ERS-ENVISAT- RADARSAT-2 DInSAR measurements. Remote Sensing of Environment, 143: 180191. DOI:10.1016/j.rse.2013.12.017.CrossRefGoogle Scholar
Samsonov, S. V., Tiampo, K. F., Camacho, A. G., Fernandez, J., and Gonzalez, P. J. (2014c). Spatiotemporal analysis and interpretation of 1993–2013 ground deformation at Campi Flegrei, Italy, observed by advanced DInSAR. Geophysical Research Letters, 41: 61016108. DOI:10.1002/2014GL060595.CrossRefGoogle Scholar
Samsonov, S. V., Trishchenko, A. P., Tiampo, K. Tiampo, , Gonzalez, P. J., Zhang, Y., and Fernandez, J. (2014d). Removal of systematic seasonal atmospheric signal from interferometric synthetic aperture radar ground deformation time series. Geophysical Research Letters, 41: 61236130. DOI:10.1002/2014GL061307.CrossRefGoogle Scholar
Samsonov, S., Czarnogorska, M., and White, D. (2015). Satellite interferometry for high-precision detection of ground deformation at a carbon dioxide storage site. International Journal of Greenhouse Gas Control, 42: 188199. DOI:10.1016/j.ijggc.2015.07.034.CrossRefGoogle Scholar
Samsonov, S., Tiampo, K., and Feng, W. (2016a). Fast subsidence in downtown of Seattle observed with satellite radar. Remote Sensing Applications: Society and Environment, 4: 179187. DOI:10.1016/j.rsase.2016.10.001.CrossRefGoogle Scholar
Samsonov, S. V., Lantz, T. C., Kokelj, S. V., and Zhang, Y. (2016b). Growth of a young pingo in the Canadian Arctic observed by RADARSAT-2 interferometric satellite radar. The Cryosphere, 10: 799810. DOI:10.5194/tc-10–799-2016.CrossRefGoogle Scholar
Shi, J.-Q., Sinayuc, C., Durucan, S., and Korre, A. (2012). Assessment of carbon dioxide plume behavior within the storage reservoir and the lower caprock around the KB-502 injection well at In Salah. International Journal of Greenhouse Gas Control, 7: 115126.CrossRefGoogle Scholar
Smith, J. R. (1997). Introduction to geodesy: The history and concepts of modern geodesy. New York: John Wiley & Sons.Google Scholar
Tamburini, A., Bianchi, M., Chiara, G., and Novali, F. (2010). Retrieving surface deformation by PSInSAR technology: A powerful tool in reservoir monitoring. International Journal of Greenhouse Gas Control, 4: 928937.CrossRefGoogle Scholar
Teatini, P., Castelletto, N., Ferronato, M., et al. (2011). Geomechanical response to seasonal gas storage in depleted reservoirs: A case study in the Po River basin, Italy. Journal of Geophysical Research, 116: 121.CrossRefGoogle Scholar
Torge, W. and Muller, J. (2012). Geodesy. Berlin: Walter de Gruyter.CrossRefGoogle Scholar
Vasco, D. W., Ferretti, A., and Novali, F. (2008). Estimating permeability from quasi-static deformation: Temporal variations and arrival time inversion. Geophysics, 73: O37O52. DOI:10.1190/1.2978164.CrossRefGoogle Scholar
Vasco, D. W., Rucci, A., Ferretti, A., et al. (2010). Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide. Geophysical Research Letters, 37: L03303, 15. DOI:10.1029/2009GL041544.CrossRefGoogle Scholar
White, D. J., Meadows, M., Cole, S., et al. (2011). Geophysical monitoring of the Weyburn CO2 flood: Results during 10 years of injection. Energy Procedia, 4: 36283635.CrossRefGoogle Scholar
Worth, K., White, D., Chalaturnyk, R., et al. (2014). Aquistore project measurement, monitoring and verification: From concept to CO2 injection. Energy Procedia, 63: 32023208. http://dx.doi.org/10.1016/j.egypro.2014.11.345.CrossRefGoogle Scholar
Wright, C. A. (1998). Tiltmeter fracture mapping: From the surface and now downhole. Petroleum Engineer International, 71: 5063.Google Scholar
Wright, T. J., Parsons, B. E., and Lu, Z. (2004). Toward mapping surface deformation in three dimensions using InSAR. Geophysical Research Letters, 31: 15.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×