Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-04-30T11:27:40.347Z Has data issue: false hasContentIssue false

Section 2 - Special patient considerations

Published online by Cambridge University Press:  05 October 2015

Michael R. Anderson
Affiliation:
The Icahn School of Medicine, Mount Sinai, New York
Sylvia H. Wilson
Affiliation:
Medical University of South Carolina
Meg A. Rosenblatt
Affiliation:
The Icahn School of Medicine, Mount Sinai, New York
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Horlocker, T. T., Wedel, D. J., Rowlingson, J. C., et al. Regional anesthesia in the patient receiving antithrombotic or thrombolytic therapy. American Society of Regional Anesthesia and Pain Medicine evidence-based guidelines (third edition). Reg Anesth Pain Med 2010; 35: 64101.CrossRefGoogle ScholarPubMed
Benzon, H. T., Avram, M. J., Green, D., et al. New oral anticoagulants and regional anesthesia. Br J Anaesth 2013; 111 (S1): i96i113.CrossRefGoogle Scholar
Levy, J. H., Faraoni, D., Spring, J. L., et al. Managing new oral anticoagulants in the perioperative and intensive care setting. Anesthesiology 2013; 118: 14661474.CrossRefGoogle Scholar
Rosencher, N., Bonnet, M. P., and Sessler, D. I.. Selected new antithrombotic agents and neuraxial anaesthesia for major orthopedic surgery: management strategies. Anaesthesia 2007; 62: 11541160.CrossRefGoogle ScholarPubMed
Gogarten, W., Vandermeulen, E., Van Aken, H., et al.; European Society of Anaesthesiology. Regional anaesthesia and antithrombotic agents: recommendations of the European Society of Anaesthesiology. Eur J Anaesthesiol 2010; 27: 9991015.CrossRefGoogle ScholarPubMed
Douketis, J. D., Spyropoulos, A. C., Spencer, F. A., et al. Perioperative management of antithrombotic therapy. Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. CHEST 2012; 141(2) (Suppl): e326Se350S.CrossRefGoogle ScholarPubMed

References

Dubiel, L., Scott, G. A., Agaram, R., et al. Achondroplasia: anaesthetic challenges for caesarean section. Int J Obstet Anesth 2014; 23: 274278.CrossRefGoogle ScholarPubMed
Stoelting, R. K.. Skin and musculoskeletal diseases. Stoelting's Anesthesia and Co-existing Disease: Expert Consult. 5th edn. Elsevier – Health Sciences Division; 2012. pp. 460461.Google Scholar
Fleisher, L. A. and Roizen, M. F.. Achondroplasia, dwarfism. Essence of Anesthesia Practice, 3rd edn. Elsevier Health Sciences; 2011.Google Scholar
Access Anesthesiology. Syndromes: rapid recognition and perioperative implications. http://accessanesthesiology.mhmedical.com/content.aspx?bookid=852&sectionid=49517175 [Accessed 15 April, 2015].Google Scholar
Abrao, M. A., da Silveira, V. G., de Almeida Barcellos, C. F., et al. Anesthesia for bariatric surgery in an achondroplastic dwarf with morbid obesity. Rev Bras Anestesiol. 2009; 59: 7986.CrossRefGoogle Scholar
DeRenzo, J. S., Vallejo, M. C., and Ramanathan, S.. Failed regional anesthesia with reduced spinal bupivacaine dosage in a parturient with achondroplasia presenting for urgent cesarean section. Int J Obstet Anesth 2005; 14: 175178.CrossRefGoogle Scholar
Monedero, P., Garcia-Pedrajas, F., Coca, I., et al. Is management of anesthesia in achondroplastic dwarfs really a challenge? J Clin Anesth 1997; 9: 208212.CrossRefGoogle ScholarPubMed
Berkowitz, I. D., Raja, S. N., Bender, K. S., et al. Dwarfs: pathophysiology and anesthetic implications. Anesthesiology 1990; 73: 739759.CrossRefGoogle ScholarPubMed
Mayhew, J. F., Katz, J., Miner, M., et al. Anaesthesia for the achondroplastic dwarf. Can Anaesth Soc J. 1986; 33: 216221.CrossRefGoogle ScholarPubMed
Kuczkowski, K. M.. Labor analgesia for the parturient with an uncommon disorder: a common dilemma in the delivery suite. Obstet Gynecol Surv 2003; 58: 800803.CrossRefGoogle ScholarPubMed
Mitra, S., Dey, N., and Gomber, K. K.. Emergency cesarean section in a patient with achondroplasia: an anesthetic diliemma. J Anaesth Clin Pharmacol. 2007; 23: 315318.Google Scholar
Danelli, G., Zangrillo, A., Nucera, D., et al. The minimum effective dose of 0.5% hyperbaric spinal bupivacaine for cesarean section. Minerva Anestesiol 2001; 67: 573574.Google ScholarPubMed
Bakhshi, R. G. and Jagtap, S. R.. Combined spinal epidural anesthesia in achondroplastic dwarf for femur surgery. Clin Pract. 2011; 1: e120.CrossRefGoogle ScholarPubMed
Cevik, B. and Colakoglu, S.. Anesthetic management of achondroplastic dwarf undergoing cesarean section: a case report. Middle East J Anaesthesiol. 2010; 20: 907910.Google ScholarPubMed
Morrow, M. J. and Black, I. H.. Epidural anaesthesia for caesarean section in an achondroplastic dwarf. Br J Anaesth 1998; 81: 619621.CrossRefGoogle Scholar
Jacobson, M., Tu, M., Kosharskyy, B., et al. Successful adductor canal catheter and posterior tibial nerve block for a patient with achondroplastic dwarfism for total knee replacement. Reg Anesth Pain Med. Spring 2013.Google Scholar

References

Lirk, P., Birmingham, B., and Hogan, Q.. Regional anesthesia in patients with preexisting neuropathy. Int Anesthesiol Clin 2011; 49: 144165.CrossRefGoogle ScholarPubMed
Compston, A. and Coles, A.. Multiple sclerosis. Lancet 2008; 372: 15021517.CrossRefGoogle ScholarPubMed
Noseworthy, J. H., Lucchinetti, C., Rodriguez, M., and Weinshenker, B. G.. Multiple sclerosis. N Engl J Med 2000; 343: 938952.CrossRefGoogle ScholarPubMed
Turakhia, P., Barrick, B., and Berman, J.. Patients with neuromuscular disorder. Med Clin North Am 2013; 97: 10151032.CrossRefGoogle ScholarPubMed
Vercauteren, M. and Heytens, L.. Anaesthetic considerations for patients with a pre-existing neurological deficit: are neuraxial techniques safe? Acta Anaesthesiol Scand 2007; 51: 831838.CrossRefGoogle ScholarPubMed
Makris, A., Piperopoulos, A., and Karmaniolou, I.. Multiple sclerosis: basic knowledge and new insights in perioperative management. J Anesth 2014; 28: 267278.CrossRefGoogle ScholarPubMed
Kytta, J. and Rosenberg, P. H.. Anaesthesia for patients with multiple sclerosis. Ann Chir Gynaecol 1984; 73: 299303.Google ScholarPubMed
Sakurai, M., Mannen, T., Kanazawa, I., and Tanabe, H.. Lidocaine unmasks silent demyelinative lesions in multiple sclerosis. Neurology 1992; 42: 20882093.CrossRefGoogle ScholarPubMed
Confavreux, C., Hutchinson, M., Hours, M. M., Cortinovis-Tourniaire, P., and Moreau, T.. Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in Multiple Sclerosis Group. N Engl J Med 1998; 339: 285291.CrossRefGoogle ScholarPubMed
Kuczkowski, K. M.. Labor analgesia for the parturient with prior spinal surgery: what does an obstetrician need to know? Arch Gynecol Obstet 2006; 274: 373375.CrossRefGoogle ScholarPubMed
Martucci, G., Di Lorenzo, A., Polito, F., and Acampa, L.. A 12-month follow-up for neurological complication after subarachnoid anesthesia in a parturient affected by multiple sclerosis. Eur Rev Med Pharmacol Sci 2011; 15: 458460.Google Scholar
Perlas, A. and Chan, V. W.. Neuraxial anesthesia and multiple sclerosis. Can J Anaesth 2005; 52: 454458.CrossRefGoogle ScholarPubMed
Vogt, J., Paul, F., Aktas, O., Muller-Wielsch, K., Dorr, J., Dorr, S., et al. Lower motor neuron loss in multiple sclerosis and experimental autoimmune encephalomyelitis. Ann Neurol 2009; 66: 310322.CrossRefGoogle ScholarPubMed
Gartzen, K., Katzarava, Z., Diener, H. C., and Putzki, N.. Peripheral nervous system involvement in multiple sclerosis. Eur J Neurol 2011; 18: 789791.CrossRefGoogle ScholarPubMed
Poser, C. M.. The peripheral nervous system in multiple sclerosis. A review and pathogenetic hypothesis. J Neurol Sci 1987; 79: 8390.CrossRefGoogle ScholarPubMed
Koff, M. D., Cohen, J. A., McIntyre, J. J., Carr, C. F., and Sites, B. D.. Severe brachial plexopathy after an ultrasound-guided single-injection nerve block for total shoulder arthroplasty in a patient with multiple sclerosis. Anesthesiology 2008; 108: 325328.CrossRefGoogle Scholar
Finucane, B. T. and Terblanche, O. C.. Prolonged duration of anesthesia in a patient with multiple sclerosis following paravertebral block. Can J Anaesth 2005; 52: 493497.CrossRefGoogle Scholar
Sia, S.. Nerve blocks, ultrasounds, and multiple sclerosis. Anesthesiology 2008; 109: 751752.CrossRefGoogle ScholarPubMed
Borgeat, A., Aguirre, J., Neudorfer, C., and Jutzi, H.. Severe brachial plexopathy after an ultrasound-guided single-injection nerve block for total shoulder arthroplasty in a patient with multiple sclerosis: what is the likely cause of this complication? Anesthesiology 2008; 109: 750751.CrossRefGoogle Scholar
Ingrosso, M., Cirillo, V., Papasso, A., Merolla, V., and Cecere, F.. Femoral and sciatic nerves block (BiBlock) in orthopedic traumatologic lower limbs surgery in patients with multiple sclerosis. Minerva Anestesiol 2005; 71: 223226.Google ScholarPubMed
Neal, J. M., Bernards, C. M., Hadzic, A., Hebl, J. R., Hogan, Q. H., Horlocker, T. T., et al. ASRA Practice Advisory on neurologic complications in regional anesthesia and pain medicine. Reg Anesth Pain Med 2008; 33: 404415.CrossRefGoogle ScholarPubMed
Vucic, S., Kiernan, M. C., and Cornblath, D. R.. Guillain–Barré syndrome: an update. J Clin Neurosci 2009; 16: 733741.CrossRefGoogle ScholarPubMed
Gautier, P. E., Hantson, P., Vekemans, M. C., Fievez, P., Lecart, C., Sindic, C., et al. Intensive care management of Guillain–Barré syndrome during pregnancy. Intensive Care Med 1990; 16: 460462.CrossRefGoogle ScholarPubMed
McGrady, E. M.. Management of labour and delivery in a patient with Guillain–Barré syndrome. Anaesthesia 1987; 42: 899.CrossRefGoogle Scholar
Vassiliev, D. V., Nystrom, E. U., Leicht, C. H.. Combined spinal and epidural anesthesia for labor and cesarean delivery in a patient with Guillain–Barré syndrome. Reg Anesth Pain Med 2001; 26: 174176.CrossRefGoogle Scholar
Brooks, H., Christian, A. S., and May, A. E.. Pregnancy, anaesthesia and Guillain–Barré syndrome. Anaesthesia 2000; 55: 894898.CrossRefGoogle ScholarPubMed
Schmitt, H. J., Muenster, T., and Schmidt, J.. Central neural blockade in Charcot–Marie–Tooth disease. Can J Anaesth 2004; 51: 10491050.CrossRefGoogle ScholarPubMed
Dhir, S., Balasubramanian, S., and Ross, D.. Ultrasound-guided peripheral regional blockade in patients with Charcot–Marie–Tooth disease: a review of three cases. Can J Anaesth 2008; 55: 515520.CrossRefGoogle ScholarPubMed
Bui, A. H. and Marco, A. P.. Peripheral nerve blockade in a patient with Charcot–Marie–Tooth disease. Can J Anaesth 2008; 55: 718719.CrossRefGoogle Scholar
Barbary, J. B., Remerand, F., Brilhault, J., Laffon, M., and Fusciardi, J.. Ultrasound-guided nerve blocks in the Charcot–Marie–Tooth disease and Friedreich's ataxia Br J Anaesth 2012; 108: 10421043.CrossRefGoogle ScholarPubMed
Oberndorfer, U., Marhofer, P., Bosenberg, A., Willschke, H., Felfernig, M., Weintraud, M., et al. Ultrasonographic guidance for sciatic and femoral nerve blocks in children. Br J Anaesth 2007; 98: 797801.CrossRefGoogle ScholarPubMed

References

Macfarlane, A. J., Prasad, G. A., Chan, V. W., and Brull, R.. Does regional anesthesia improve outcome after total knee arthroplasty? Clin Orthop Relat Res 2009; 467: 23792402.CrossRefGoogle ScholarPubMed
Rodgers, A., Walker, N., Schug, S., et al. Reduction of postoperative mortality and morbidity with epidural or spinal anaesthesia: results from overview of randomised trials. BMJ 2000; 321: 1493.CrossRefGoogle ScholarPubMed
Saied, S. N. N., Weavind, L. M., Helwani, M. A., et al. Effect of anesthesia type on postoperative mortality and morbidities. Anesthesiology 2014; 121: 682.Google Scholar
Memtsoudis, S. G., Rasul, R., Suzuki, S., et al. Does the impact of the type of anesthesia on outcomes differ by patient age and comorbidity burden? Reg Anesth Pain Med 2014; 39: 112119.CrossRefGoogle ScholarPubMed
Arabi, Y., Venkatesh, S., Haddad, S., et al. A prospective study of prolonged stay in the intensive care unit: predictors and impact on resource utilization. Int J Qual Health Care 2002; 14: 403410.CrossRefGoogle ScholarPubMed
Moen, V., Dahlgren, N., and Irestedt, L.. Severe neurological complications after central neuraxial blockades in Sweden 1990–1999. Anesthesiology 2004; 101: 950959.CrossRefGoogle ScholarPubMed
Ilfeld, B. M.. Continuous peripheral nerve blocks: a review of the published evidence. Anesth Analg 2011; 113: 904925.CrossRefGoogle ScholarPubMed
Neuburger, M., Breitbarth, J., Reisig, F., et al. Complications and adverse events in continuous peripheral regional anesthesia: results of investigations on 3,491 catheters. Anaesthesist 2006; 55: 3340.CrossRefGoogle Scholar
Breyer, R. H., Zippe, C., Pharr, W. F., et al. Thoracotomy in patients over age seventy years: ten-year experience. J Thorac Cardiovasc Surg 1981; 81: 187193.CrossRefGoogle ScholarPubMed
Ackermann, R. J., Vogel, R. L., Johnson, L. A., et al. Surgery in nonagenarians: morbidity, mortality, and functional outcome. J Fam Pract 1995; 40: 129135.Google ScholarPubMed
Turrentine, F. E., Wang, H., Simpson, V. B., and Jones, R. S.. Surgical risk factors, morbidity, and mortality in elderly patients. J Am Coll Surg 2006; 203: 865877.CrossRefGoogle ScholarPubMed
Jin, J. F., and Chung, F.. Minimizing perioperative adverse events in the elderly. Br J Anaesth 2001; 87: 608624.CrossRefGoogle ScholarPubMed
Pedersen, T., Eliasen, K., and Henriksen, E.. A prospective study of mortality associated with anaesthesia and surgery: risk indicators of mortality in hospital. Acta Anaesthesiol Scand 1990; 34:176182.CrossRefGoogle ScholarPubMed
Kettunen, J., Paajanen, H., and Kostiainen, S.. Emergency abdominal surgery in the elderly. Hepatogastroenterology 1995; 42: 106108.Google ScholarPubMed
Fleg, J. L.. Alterations in cardiovascular structure and function with advancing age. Am J Cardiol 1986; 57: 33C44C.CrossRefGoogle ScholarPubMed
Djokovic, J. L. and Hedley-Whyte, J.. Prediction of outcome of surgery and anesthesia in patients over 80. JAMA 1979; 242: 23012306.CrossRefGoogle ScholarPubMed
Goldman, L., Caldera, D. S., Nussbaum, S. R., et al. Multifactorial index of cardiac risk in noncardiac surgical procedures. N Engl J Med 1977; 297: 845850.CrossRefGoogle ScholarPubMed
Fleisher, L. A., Fleischmann, K. E., Auerbach, A. D., et al. ACC/AHA Guideline on Perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2014; 64: e77e137.CrossRefGoogle Scholar
Deiner, S. and Silverstein, J. H.. Postoperative delirium and cognitive dysfunction. Br J Anaesth 2009; 103 Suppl 1: i41i46.CrossRefGoogle ScholarPubMed
Bickel, H., Gradinger, R., Kochs, E., and Förstl, H.. High risk of cognitive and functional decline after postoperative delirium. A three-year prospective study. Dement Geriatr Cogn Disord 2008; 26: 2631.CrossRefGoogle ScholarPubMed
Kat, M. G., Vreeswijk, R., de Jonghe, J. F., et al. Long-term cognitive outcome of delirium in elderly hip surgery patients. A prospective matched controlled study over two and a half years. Dement Geriatr Cogn Disord 2008; 26: 18.CrossRefGoogle ScholarPubMed
Marcantonio, E. R., Juarez, G., Goldman, L., et al. The relationship of postoperative delirium with psychoactive medications. JAMA 1994; 272: 15181522.CrossRefGoogle ScholarPubMed
Pratico, C., Quattrone, D., Lucanto, T., et al. Drugs of anesthesia acting on central cholinergic system may cause post-operative cognitive dysfunction and delirium. Med Hypotheses 2005; 65: 972982.CrossRefGoogle ScholarPubMed
Tejera, T. C. A., Saravay, S. M., Goldman, E., and Gluck, L.. Diphenhydramine-induced delirium in elderly hospitalized patients with mild dementia. Psychosomatics 1994; 35: 399402.CrossRefGoogle ScholarPubMed
Fong, H. K., Sands, L. P., and Leung, J. M.. The role of postoperative analgesia in delirium and cognitive decline in elderly patients: a systematic review. Anesth Analg 2006; 102: 12551266.CrossRefGoogle ScholarPubMed
Vaurio, L. E., Sands, L. P., Wang, Y., et al. Postoperative delirium: the importance of pain and pain management. Anesth Analg 2006; 102: 12671273.CrossRefGoogle ScholarPubMed
Cavallazzi, R., Saad, M., and Marik, P. E.. Delirium in the ICU: an overview. Ann Intensive Care 2012; 2: 49.CrossRefGoogle ScholarPubMed
Marcantonio, E. R., Goldman, L., Mangione, C. M., et al. A clinical prediction rule for delirium after elective noncardiac surgery. JAMA 1994; 271: 134139.CrossRefGoogle ScholarPubMed
Demeure, M. J. and Fain, M. J.. The elderly surgical patient and postoperative delirium. J Am Coll Surg 2006; 203: 752757.CrossRefGoogle ScholarPubMed
Monk, T. G., Weldon, B. C., Garvan, C. W., et al. Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology 2008; 108: 1830.CrossRefGoogle ScholarPubMed
Rudolph, J. L. and Marcantonio, E. R.. Review articles: postoperative delirium: acute change with long-term implications. Anesth Analg 2011; 112: 12021211.CrossRefGoogle ScholarPubMed
Aldemir, M., Ozen, S., Kara, I. H., Sir, A., and Baç, B.. Predisposing factors for delirium in the surgical intensive care unit. Crit Care 2001; 5: 265270.CrossRefGoogle ScholarPubMed
Nicholson, G., Pereira, A. C., and Hall, G. M.. Parkinson's disease and anaesthesia. Br J Anaesth 2002; 89: 904916.CrossRefGoogle ScholarPubMed
de Rijk, M. C., Tzourio, C., Breteler, M. M., et al. Prevalence of Parkinsonism and Parkinson's disease in Europe: the EUROPARKINSON Collaborative Study. European Community Concerted Action on the Epidemiology of Parkinson's disease. J Neurol Neurosurg Psychiatry 1997; 62: 1015.CrossRefGoogle ScholarPubMed
Schrag, A., Ben-Shlomo, Y., and Quinn, N. P.. Cross sectional prevalence survey of idiopathic Parkinson's disease and Parkinsonism in London. BMJ 2000; 321: 2122.CrossRefGoogle Scholar
Lang, A. E. and Lozano, A. M.. Parkinson's disease. First of two parts. N Engl J Med 1998; 339: 10441053.CrossRefGoogle ScholarPubMed
Lang, A. E. and Lozano, A. M.. Parkinson's disease. Second of two parts. N Engl J Med 1998; 339: 11301143.CrossRefGoogle ScholarPubMed
Golden, W. E., Lavender, R. C., and Metzer, W. S.. Acute postoperative confusion and hallucinations in Parkinson disease. Ann Intern Med 1989; 111: 218222.CrossRefGoogle ScholarPubMed
Liu, Y., Li, W., Tan, C., et al. Meta-analysis comparing deep brain stimulation of the globus pallidus and subthalamic nucleus to treat advanced Parkinson disease. J Neurosurg 2014; 121: 709718.CrossRefGoogle ScholarPubMed
Ngoga, D., Mitchell, R., Kausar, J., et al. Deep brain stimulation improves survival in severe Parkinson's disease. J Neurol Neurosurg Psychiatry 2014; 85: 1722.CrossRefGoogle ScholarPubMed
Ruggera, P. S., Witters, D. M., von Maltzhan, G., and Bassen, H. I.. In vitro assessment of tissue heating near metallic medical implants by exposure to pulsed radio frequency diathermy. Phys Med Biol 2003; 48: 29192928.CrossRefGoogle ScholarPubMed
Avorn, J., Gurwitz, J. H., Bohn, R. L., et al. Increased incidence of levodopa therapy following metoclopramide use. JAMA 1995; 274: 17801782.CrossRefGoogle ScholarPubMed
el-Maghrabi, E. A. and Eckenhoff, R. G.. Inhibition of dopamine transport in rat brain synaptosomes by volatile anesthetics. Anesthesiology 1993; 78: 750756.CrossRefGoogle ScholarPubMed
Mantz, J., Varlet, C., Lecharny, J. B., et al. Effects of volatile anesthetics, thiopental, and ketamine on spontaneous and depolarization-evoked dopamine release from striatal synaptosomes in the rat. Anesthesiology 1994; 80: 352363.CrossRefGoogle ScholarPubMed
Muzzi, D. A., Black, S., and Cucchiara, R. F.. The lack of effect of succinylcholine on serum potassium in patients with Parkinson's disease. Anesthesiology 1989; 71: 322.CrossRefGoogle ScholarPubMed
Wand, P., Kuschinsky, K., and Sontag, K. H.. Morphine-induced muscular rigidity in rats. Eur J Pharmacol 1973; 24: 189193.CrossRefGoogle ScholarPubMed
Berg, D., Becker, G., and Reiners, K.. Reduction of dyskinesia and induction of akinesia induced by morphine in two parkinsonian patients with severe sciatica. J Neural Transm 1999; 106: 725728.CrossRefGoogle ScholarPubMed
Mets, B.. Acute dystonia after alfentanil in untreated Parkinson's disease. Anesth Analg 1991; 72: 557558.CrossRefGoogle ScholarPubMed
Hofmann, A., Tangri, N., Lafontaine, A. L., and Postuma, R. B.. Myoclonus as an acute complication of low-dose hydromorphone in multiple system atrophy. J Neurol Neurosurg Psychiatry 2006; 77: 994995.CrossRefGoogle ScholarPubMed
Krauss, J. K., Akeyson, E. W., Giam, P., and Jankovic, J.. Propofol-induced dyskinesias in Parkinson's disease. Anesth Analg 1996; 83: 420422.Google ScholarPubMed
Anderson, B. J., Marks, P. V., and Futter, M. E.. Propofol: contrasting effects in movement disorders. Br J Neurosurg 1994; 8: 387388.CrossRefGoogle ScholarPubMed
Stefan, M., Iglesia Lino, L., and Fernandez, G.. Medical consultation and best practices for preoperative evaluation of elderly patients. Hosp Pract 2011; 39: 4151.CrossRefGoogle ScholarPubMed

References

World Health Organization. BMI classification. http://apps.who.int/bmi/index.jsp?introPage=intro_3.html [Accessed 15 April, 2015].Google Scholar
Bellamy, M C. and Margarson, M P.. Designing intelligent anesthesia for a changing patient demographic: a consensus statement to provide guidance for specialist and non-specialist anesthetists written by members of and endorsed by the Society for Obesity and Bariatric Anaesthesia (SOBA). Perioper Med 2013; 2: 12.CrossRefGoogle Scholar
Jones, R. L. and Nzekwu, M. M.. The effects of body mass index on lung volumes. Chest 2006; 130: 827833.CrossRefGoogle ScholarPubMed
Adams, J. P. and Murphy, P. G.. Obesity in anaesthesia and intensive care. Br J Anaesth 2000; 85: 91108.CrossRefGoogle ScholarPubMed
Zerah, F., Harf, A., Perlemuter, L., et al. Effects of obesity on respiratory resistance. Chest 1993; 103: 14701476.CrossRefGoogle ScholarPubMed
Pelosi, P. and Gregoretti, C.. Perioperative management of obese patients. Best Pract Res Clin Anaesthesiol 2010; 24: 211225.CrossRefGoogle ScholarPubMed
Alpert, M A.. Obesity cardiomyopathy; pathophysiology and evolution of the clinical syndrome. Am J Med Sci 2001; 321: 225236.CrossRefGoogle ScholarPubMed
Poirier, P., Giles, T. D., Bray, G. A., et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 2006; 113: 898918.CrossRefGoogle ScholarPubMed
Neligana, P. J.. Metabolic syndrome: anesthesia for morbid obesity. Curr Opin Anaesthesiol 2010; 23: 375383.CrossRefGoogle Scholar
Leykin, Y., Pellis, T., Del, M. E., et al. Anesthetic management of morbidly obese and super-morbidly obese patients undergoing bariatric operations: hospital course and outcomes. Obes Surg 2006; 16: 15631569.CrossRefGoogle ScholarPubMed
Salihoglu, T., Salihoglu, Z., Zengin, A. K., et al. The impacts of super obesity versus morbid obesity on respiratory mechanics and simple hemodynamic parameters during bariatric surgery. Obes Surg 2013; 23: 379383.CrossRefGoogle ScholarPubMed
Manson, J. E., Willett, W. C., Stampfer, M. J., et al. Body weight and mortality among women. N Engl J Med 1995; 333: 677685.CrossRefGoogle ScholarPubMed
Cullen, A. and Ferguson, A.. Perioperative management of the severely obese patient: a selective pathophysiological review. Can J Anaesth 2012; 59: 974996.CrossRefGoogle Scholar
Lopez, P. P., Stefan, B., Schulman, C. I., et al. Prevalence of sleep apnea in morbidly obese patients who presented for weight loss surgery evaluation: more evidence for routine screening for obstructive sleep apnea before weight loss surgery. Am Surg 2008; 74: 834838.CrossRefGoogle ScholarPubMed
Pi-Sunyer, F. X.. The obesity epidemic: pathophysiology and consequences of obesity. Obes Res 2002; 10: 97104.CrossRefGoogle ScholarPubMed
Ingrande, J. and Lemmens, H J.. Dose adjustment of anaesthetics in the morbidly obese. Br J Anaesth 2010; 105 Suppl 1: 1623.CrossRefGoogle ScholarPubMed
Cushman, M.. Epidemiology and risk factors for venous thrombosis. Semin Hematol 2007; 44: 6269.CrossRefGoogle ScholarPubMed
Borgeat, A., Schappi, B., Biasca, N., et al. Patient‐controlled analgesia after major shoulder surgery: patient‐controlled interscalene analgesia versus patient‐controlled analgesia. Anesthesiology 1997; 87: 13431347.CrossRefGoogle ScholarPubMed
McCartney, C. J., Brull, R., Chan, V. W., et al. Early but no long-term benefit of regional compared with general anesthesia for ambulatory hand surgery. Anesthesiology 2004; 101: 461467.CrossRefGoogle ScholarPubMed
Tran, Q. H., Russo, G., Muñoz, L., et al. A prospective, randomized comparison between ultrasound-guided supraclavicular, infraclavicular, and axillary brachial plexus blocks. Reg Anesth Pain Med 2009; 34: 366371.CrossRefGoogle ScholarPubMed
Perlas, A., Lobo, G., Lo, N., et al. Ultrasound-guided supraclavicular block: outcome of 510 consecutive cases. Reg Anesth Pain Med 2009; 34: 171176.CrossRefGoogle ScholarPubMed
Lirk, P., Birmingham, B., and Hogan, Q.. Regional anaesthesia in patients with preexisting neuropathy. Int Anesthesiol Clin 2011; 49: 144165.CrossRefGoogle ScholarPubMed
Wadhwa, A., Singh, P. M., and Sinha, A. C.. Airway management in patients with morbid obesity. Int Anesthesiol Clin 2013; 51: 2640.CrossRefGoogle ScholarPubMed
Cook, T. M., Woodall, N., and Frerk, C.. Major complications of airway management in the UK: results of the Fourth National Audit Project of the Royal College of Anaesthetists and the Difficult Airway Society. Br J Anaesth 2011; 106: 617631.CrossRefGoogle Scholar
Kheterpal, S., Martin, L., Shanks, A. M., et al. Prediction and outcomes of impossible mask ventilation: a review of 50,000 anesthetics. Anesthesiology 2009; 110: 891897.CrossRefGoogle Scholar
Nielson, K. C., Guller, U., Steele, S. M., et al. Influence of obesity on surgical regional anesthesia in the ambulatory setting: an analysis of 9,038 blocks. Anesthesiology 2004; 102: 12521254.Google Scholar
Chung, S. A., Yuan, H., and Chung, F.. A systemic review of obstructive sleep apnea and its implications for anesthesiologists. Anesth Analg 2008; 107: 15431563.CrossRefGoogle ScholarPubMed
Kheterpal, S., Healy, D., Aziz, M. F., et al. Incidence, predictors, and outcome of difficult mask ventilation combined with difficult laryngoscopy: a report from the multicenter perioperative outcomes group. Anaesthesiology 2013; 119: 13601369.CrossRefGoogle ScholarPubMed
ASA Task Force on Perioperative Management of Patients with OSA. Practice guidelines for the perioperative management of patients with obstructive sleep apnea. Anesthesiology 2014; 120: 268286.CrossRefGoogle Scholar
Jebaraj, B., Maitra, S., Baidya, D. K., et al. Intravenous paracetamol reduces postoperative opioid consumption after orthopedic surgery: a systematic review of clinical trials. Pain Res Treat 2013; 2013: 402510Google ScholarPubMed
Pountos, I., Georgouli, T., Calori, G. M., et al. Do nonsteroidal anti-inflammatory drugs affect bone healing? A critical analysis. Scientific World Journal 2012; 2012: 606404.CrossRefGoogle ScholarPubMed
Waldron, N. H., Jones, C. A., Gan, T. J., et al. Impact of perioperative dexamethasone on postoperative analgesia and side-effects: systematic review and meta-analysis. Br J Anaesth 2013; 10: 191200.CrossRefGoogle Scholar
De Oliveira, G. S. Jr., Castro-Alves, L. J., Khan, J. H., and McCarthy, R. J.. Perioperative systemic magnesium to minimize postoperative pain: meta-analysis of randomized controlled trials. Anesthesiology 2013; 119: 178190.CrossRefGoogle ScholarPubMed
Bell, R. F., Dahl, J. B., Moore, R. A., et al. Perioperative ketamine for acute postoperative pain. Cochrane Database Syst Rev 2006; 25: CD004603.Google Scholar
Tiippana, E. M., Hamunen, K., Kontinen, V. K., et al. Do surgical patients benefit from perioperative gabapentin/pregabalin?A systematic review of efficacy and safety. Anesth Analg 2007; 104: 15451556.CrossRefGoogle ScholarPubMed
Park, J., Forrest, J., Kolesar, R., et al. Oral clonidine reduces postoperative PCA morphine requirements. Can J Anaesth 1996; 43: 900906.CrossRefGoogle ScholarPubMed
Tufanogullari, B., White, P. F., Peixoto, M. P., et al. Dexmedetomidine infusion during laparoscopic bariatric surgery: the effect on recovery outcome variables. Anesth Analg 2008; 106: 17411748.CrossRefGoogle ScholarPubMed

References

Krane, E. J., Dalens, B. J., Murat, I., and Murrell, D.. The safety of epidurals placed during general anesthesia. Reg Anesth Pain Med 1998; 23: 433438.CrossRefGoogle ScholarPubMed
Suresh, S., Polaner, D. M., and Cote, C. J.. Regional anesthesia. In: Cote, C. J., Lerman, J., Anderson, B. J., eds. A Practice of Anesthesia for Infants and Children, 5th edn. Philadelphia, Elsevier Saunders, 2013; pp. 835880.Google Scholar
Ecoffey, C., Lacroix, F., Giaufre, E. et al.; Association des Anesthesistes Reanimateurs Pediatriques d’Expression Française (ADARPEF). Epidemiology and morbidity of regional anesthesia in children: a follow-up one-year prospective survey of the French-Language Society of Paediatric Anaesthesiologists (ADARPEF). Paediatr Anaesth 2010; 20: 10611069.CrossRefGoogle ScholarPubMed
Polaner, D. M., Taenzer, A. H., Walker, B. J., et al. Pediatric Regional Anesthesia Network (PRAN): a multi-institutional study of the use and incidence of complications of pediatric regional anesthesia. Anesth Analg 2012; 115: 13531364.CrossRefGoogle ScholarPubMed
Walker, S. M. and Yaksh, T.. Neuraxial analgesia in neonates and infants: a review of clinical and preclinical strategies for the development of safety and efficacy data. Anesth Analg 2012; 115: 638662.CrossRefGoogle ScholarPubMed
Wongprasartsuk, P. and Stevens, J.. Cerebral palsy and anaesthesia. Paediatr Anaesth 2002; 12: 296303.CrossRefGoogle ScholarPubMed
Moore, R. P., Wester, T., Sunder, R., et al. Perioperative pain management in children with cerebral palsy: comparative efficacy of epidural vs systemic analgesic protocols. Paediatr Anaesth 2013; 23: 720725.CrossRefGoogle Scholar
Muthusamy, K., Recktenwall, S. M., Friesen, R. M., et al. Effectiveness of an anesthetic continuous-infusion device in children with cerebral palsy undergoing orthopaedic surgery. J Pediatr Orthop 2010; 30: 840845.CrossRefGoogle ScholarPubMed
Neal, J. M., Bernards, C. M., Hadzic, A., et al. ASRA practice advisory on neurologic complications in regional anesthesia and pain medicine. Reg Anesth Pain Med 2008; 33: 404415.CrossRefGoogle ScholarPubMed
Bernards, C. M., Hadzic, A., Suresh, S., and Neal, J. M.. Regional anesthesia in anesthetized or heavily sedated patients. Reg Anesth Pain Med 2008; 33: 449460.CrossRefGoogle ScholarPubMed
Taenzer, A., Walker, B. J., Bosenberg, A. T., et al. Asleep vs. awake: does it matter? Pediatric regional block complications by patient state: a report from the Pediatric Regional Anesthesia Network. Reg Anesth Pain Med 2014; 39: 279283.CrossRefGoogle Scholar
Taenzer, A., Walker, B. J., Bosenberg, A. T., et al. Interscalene brachial plexus blocks under general anesthesia in children: is this safe practice? Reg Anesth Pain Med 2014; 39: 502505.CrossRefGoogle ScholarPubMed
Ecoffey, C., Oger, E., Marchand-Maillet, F., et al. SOS French regional anaesthesia hotline. Eur J Anaesthesiol 2014; 31: 606610.CrossRefGoogle Scholar
Oberndorfer, U., Marhofer, P., Bosenberg, A., et al. Ultrasound guidance for sciatic and femoral nerve blocks in children. Br J Anaesth 2007; 98: 797801.CrossRefGoogle ScholarPubMed
Mossetti, V., Vicchio, N., and Ivani, G.. Local anesthetics and adjuncts in pediatric regional anesthesia. Curr Drug Targets 2012; 13: 952960.CrossRefGoogle Scholar
Gunter, J. B.. Benefit and risk of local anaesthetics in infants and children. Paediatr Drugs 2002; 4: 649672.CrossRefGoogle ScholarPubMed
Berde, C.. Convulsions associated with pediatric regional anesthesia. Anesth Analg 1992; 75: 164166.CrossRefGoogle ScholarPubMed
Dalens, B. and Hasnaoui, A.. Caudal anesthesia in pediatric surgery: success rate and adverse effects in 750 consecutive cases. Anesth Analg 1989; 68: 8389.CrossRefGoogle Scholar
Bosenberg, A., Bland, B., Schulte-Steinberg, O., and Downing, J.. Thoracic epidural anesthesia via caudal route in infants. Anesthesiology 1988; 69: 265269.CrossRefGoogle ScholarPubMed
Tsui, B.C. and Berde, C.. Caudal analgesia and anesthesia techniques in children. Curr Opin Anaesthesiol 2005; 18: 283288.CrossRefGoogle ScholarPubMed
Suresh, S., Long, J., Birmingham, P. K., and de Oliveira, G. S. Jr. Are caudal blocks for pain control safe in children? An analysis of 18,650 caudal blocks from the Pediatric Regional Anesthesia Network (PRAN) database. Anesth Analg 2015; 120: 151156.CrossRefGoogle Scholar
Sethna, N., Clendenin, D., Athiraman, U., et al. Incidence of epidural catheter-associated infections after continuous epidural analgesia in children. Anesthesiology 2010; 113: 224232.CrossRefGoogle ScholarPubMed
Byerly, S., Tobin, J. R., Greenberg, R. S., et al. Bacterial colonization and infection rate of continuous epidural catheters in children. Anesth Analg 1998; 86: 712716.Google Scholar
Vetter, T., Carvallo, D., Johnson, J., et al. A comparison of single-dose caudal clonidine, morphine, or hydromorphone combined with ropivacaine in pediatric patients undergoing ureteral reimplantation. Anesth Analg 2007; 104: 13561363.CrossRefGoogle ScholarPubMed
Ansermino, M., Basu, R., Vandebeek, C., and Montgomery, C.. Nonopioid additives to local anaesthetics for caudal blockade in children: a systemic review. Pediatr Anesth 2003; 13: 561573.CrossRefGoogle Scholar
Constant, J., Gall, O., Gouyet, L., et al. Addition of clonidine or fentanyl to local anesthetics prolongs the duration of surgical analgesia after single shot caudal block in children. Br J Anaesth 1998; 80: 294298.CrossRefGoogle ScholarPubMed
Schnabel, A., Poepping, D. M., Kranke, P., and Poqatzki-Zahn, E. M.. Efficacy and adverse effects of ketamine as an additive for paediatric caudal anaesthesia: a quantitative systematic review of randomized controlled trials. Br J Anaesth 2011; 107: 601611.CrossRefGoogle ScholarPubMed

References

Ouzounian, J. G. and Elkayam, U.. Physiologic changes during normal pregnancy and delivery. Cardiol Clin 2012; 30: 317329.CrossRefGoogle ScholarPubMed
Capeless, E. L. and Clapp, J. F.. Cardiovascular changes in early phase of pregnancy. Am J Obstet Gynecol 1989; 161: 14491453.CrossRefGoogle ScholarPubMed
Abassi-Ghanavati, M., Greer, L. G., and Cunningham, F. G.. Pregnancy and laboratory studies: a reference table for clinicians. Obstet Gynecol 2009; 114: 13261331.CrossRefGoogle Scholar
Bobrowski, R. A.. Pulmonary physiology in pregnancy. Clin Obstet Gynecol 2010; 53: 285300.CrossRefGoogle ScholarPubMed
Templeton, A. and Kelman, G. R.. Maternal blood-gases, (PAO2–PaO2), physiological shunt and Vd/Vt in normal pregnancy. Br J Anaesth 1976; 48: 10011004.CrossRefGoogle ScholarPubMed
Fisher, R. S., Robers, G. S., Grabowski, C. J., and Cohen, S.. Altered lower esophageal sphincter function during early pregnancy. Gastroenterology 1978; 74: 12331237.CrossRefGoogle ScholarPubMed
Chiloiro, M., Darconza, G., Piccioli, E., et al. Gastric emptying and orocecal transit time in pregnancy. J Gastroenterol 2001; 36: 538543.CrossRefGoogle ScholarPubMed
Nava-Ocampo, A. A. and Koren, G.. Human teratogens and evidence-based teratogen risk counseling: the Motherisk approach. Clin Obstet Gynecol 2007; 50: 123131.CrossRefGoogle ScholarPubMed
Physicians’ Desk Reference, 64th edn. Montvale: PDR Network, LLC, 2009; p. 215.Google Scholar
Palahniuk, R. J., Shnider, S. M., and Eger, E. I. 2nd. Pregnancy decreases the requirement for inhaled anesthetic agents. Anesthesiology 1974; 41: 8283.CrossRefGoogle ScholarPubMed
Ericson, H. A. and Källén, A. J.. Hospitalization for miscarriage and delivery outcome among Swedish nurses working in operating rooms 1973–1978. Anesth Analg 1985; 64: 981988.CrossRefGoogle ScholarPubMed
Young, C., Jevtovic-Todorovic, V., Qin, Y. Q., et al. Potential of ketamine and midazolam, individually or in combination, to induce apoptotic neurodegeneration in the infant mouse brain. Br J Pharmacol 2005; 146: 189197.CrossRefGoogle ScholarPubMed
Chalon, J., Tang, C. K., Ramanathan, S., et al. Exposure to halothane and enflurane affects learning function of murine progeny. Anesth Analg 1981; 60: 794797.CrossRefGoogle ScholarPubMed
Wilder, R. T., Flick, R. P., Sprung, J., et al. Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 2009; 110: 796804.CrossRefGoogle Scholar
Kalkman, C. J., Peelen, L., Moons, K. G., et al. Behavior and development in children and age at the time of first anesthetic exposure. Anesthesiology 2009; 110: 805812.CrossRefGoogle ScholarPubMed
Safra, M. J. G. and Oakley, G. P.: Association between cleft lip with or without cleft palate and prenatal exposure to diazepam. Lancet 1975; 2: 478480.CrossRefGoogle ScholarPubMed
Chanarin, I.. Cobalamins and nitrous oxide: a review. J Clin Pathol 1980; 33: 909916.CrossRefGoogle ScholarPubMed
Popitz-Bergez, F. A., Leeson, S., Thalhammer, J. G., and Strichartz, G. R.. Intraneural lidocaine uptake compared with analgesic differences between pregnant and nonpregnant rats. Reg Anesth and Pain Med 1997; 22: 363371.CrossRefGoogle ScholarPubMed
Lee, S. W. Y., Khaw, K. S., Ngan Kee, W. D., Leung, T. Y., and Critchley, L. A. H.. Haemodynamic effects from aortocaval compression at different angles of lateral tilt in non-labouring term pregnant women. Br J Anaesth 2012; 109: 950956.CrossRefGoogle ScholarPubMed
ACOG Committee on Obstetric Practice. Nonobstetric surgery during pregnancy. Committee opinion No. 474. 2011; 117: 420421.Google Scholar
Rowe, H., Baker, T., and Hale, T. W.. Maternal medication, drug use, and breastfeeding. Pediatr Clin North Am 2013; 60: 275294.CrossRefGoogle ScholarPubMed

References

Valkenet, K., van de Port, I. G., and Dronkers, J. J.. The effects of preoperative exercise therapy on postoperative outcome: a systematic review. Clin Rehabil 2011; 25: 99111.CrossRefGoogle Scholar
Campbell, P. T., Patel, A. V., Newton, C. C., et al. Associations of recreational physical activity and leisure time spent sitting with colorectal cancer survival. J Clin Oncol 2013; 31: 876885.CrossRefGoogle ScholarPubMed
Gottschalk, A., Sharma, S., Ford, J., et al. The role of the perioperative period in recurrence after cancer surgery. Anesth Analg 2010; 110: 16361643.CrossRefGoogle ScholarPubMed
Hiller, J., Brodner, G., and Gottschalk, A.. Understanding clinical strategies that may impact tumour growth and metastatic spread at the time of cancer surgery. Best Pract Res Clin Anaesthesiol 2013; 27: 427439.CrossRefGoogle ScholarPubMed
Richman, J. M., Liu, S. S., Courpas, G., et al. Does continuous peripheral nerve block provide superior pain control to opioids? A meta-analysis. Anesth Analg 2006; 102: 248257.CrossRefGoogle ScholarPubMed
Ilfeld, B. M.. Continuous peripheral nerve blocks: a review of the published evidence. Anesth Analg 2011; 113: 904925.CrossRefGoogle ScholarPubMed
Aguirre, J., Del Moral, A., Cobo, I., et al. The role of continuous peripheral nerve blocks. Anesthesiol Res Pract 2012; 2012: 560879.Google ScholarPubMed
Webb, A. R., Leong, S., Myles, P. S., et al. The addition of a tramadol infusion to morphine patient-controlled analgesia after abdominal surgery: a double-blinded, placebo-controlled randomized trial. Anesth Analg 2002; 95: 17131718.CrossRefGoogle ScholarPubMed
Neto, J. O., Machado, M. D., de Almeida Correa, M., et al. Methadone patient-controlled analgesia for postoperative pain: a randomized, controlled, double-blind study. J Anesth 2014; 28: 505510.Google ScholarPubMed
Shaiova, L., Berger, A., Blinderman, C. D., et al. Consensus guideline on parenteral methadone use in pain and palliative care. Palliat Support Care 2008; 6: 165176.CrossRefGoogle ScholarPubMed
McDaid, C., Maund, E., Rice, S., et al. Paracetamol and selective and non-selective non-steroidal anti-inflammatory drugs (NSAIDs) for the reduction of morphine-related side effects after major surgery: a systematic review. Health Technol Assess 2010; 14: 1153, iii-iv.CrossRefGoogle ScholarPubMed
Ong, C. K., Seymour, R. A., Lirk, P., et al. Combining paracetamol (acetaminophen) with nonsteroidal antiinflammatory drugs: a qualitative systematic review of analgesic efficacy for acute postoperative pain. Anesth Analg 2010; 110: 11701179.CrossRefGoogle ScholarPubMed
Schmidt, P. C., Ruchelli, G., Mackey, S. C., et al. Perioperative gabapentinoids: choice of agent, dose, timing, and effects on chronic postsurgical pain. Anesthesiology 2013; 119: 12151221.CrossRefGoogle ScholarPubMed
Clarke, H., Bonin, R. P., Orser, B. A., et al. The prevention of chronic postsurgical pain using gabapentin and pregabalin: a combined systematic review and meta-analysis. Anesth Analg 2012; 115: 428442.CrossRefGoogle ScholarPubMed
Leung, J. M., Sands, L. P., Rico, M., et al. Pilot clinical trial of gabapentin to decrease postoperative delirium in older patients. Neurology 2006; 67: 12511253.CrossRefGoogle ScholarPubMed
Zhang, J., Ho, K. Y., and Wang, Y.. Efficacy of pregabalin in acute postoperative pain: a meta-analysis. Br J Anaesth 2011; 106: 454462.CrossRefGoogle ScholarPubMed
Subramaniam, K., Subramaniam, B., and Steinbrook, R. A.. Ketamine as adjuvant analgesic to opioids: a quantitative and qualitative systematic review. Anesth Analg 2004; 99: 482495.CrossRefGoogle ScholarPubMed
Bell, R. F., Dahl, J. B., Moore, R. A., et al. Perioperative ketamine for acute postoperative pain. Cochrane Database Syst Rev 2006; ((1): CD004603. (Updated 2009)).CrossRefGoogle ScholarPubMed
Neal, J. M., Gerancher, J. C., Hebl, J. R., et al. Upper extremity regional anesthesia: essentials of our current understanding, 2008. Reg Anesth Pain Med 2009; 34: 134170.CrossRefGoogle ScholarPubMed
Arnold, R. M. and Childers, J. W.. Management of acute pain in the patient chronically using opioids. In: UpToDate, Post TW (ed.), UpToDate, Waltham, MA. [Accessed October 29, 2014].Google Scholar
Moryl, N., Coyle, N., and Foley, K. M.. Managing an acute pain crisis in a patient with advanced cancer: “this is as much of a crisis as a code.” JAMA 2008; 299: 14571467.CrossRefGoogle Scholar
Tvedskov, T. F., Jensen, M. B., Kroman, N., et al. Iatrogenic displacement of tumor cells to the sentinel node after surgical excision in primary breast cancer. Breast Cancer Res Treat 2012; 131: 223229.CrossRefGoogle Scholar
Eschwege, P., Dumas, F., Blanchet, P., et al. Haematogenous dissemination of prostatic epithelial cells during radical prostatectomy. Lancet 1995; 346: 15281530.CrossRefGoogle ScholarPubMed
Schreiber, R. D., Old, L., and Smyth, M. J.. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011; 331: 15651570.CrossRefGoogle ScholarPubMed
Kuroda, E. and Yamashita, U.. Mechanisms of enhanced macrophage-mediated prostaglandin E2 production and its suppressive role in Th1 activation in Th2-dominant BALB/c mice. J Immunol 2003; 170: 757764.CrossRefGoogle ScholarPubMed
Amato, A. and Pescatori, M.. Perioperative blood transfusions for the recurrence of colorectal cancer. Cochrane Database Syst Rev 2006; (1): CD005033.Google ScholarPubMed
Waters, J. H., Yazer, M., Chen, Y-F, et al. Blood salvage and cancer surgery: a meta-analysis of available studies. Transfusion 2012; 52: 21672173.CrossRefGoogle ScholarPubMed
Kongsgaard, U. E., Wang, M. Y., and Kvalheim, G.. Leucocyte depletion filter removes cancer cells in human blood. Acta Anaesthesiol Scand 1996; 40: 118120.CrossRefGoogle ScholarPubMed
Tavare, A. N, Perry, N. J., Benzonana, L. L., et al. Cancer recurrence after surgery: direct and indirect effects of anesthetic agents. Int J Cancer 2012; 130: 12371250.CrossRefGoogle ScholarPubMed
Tanaka, T., Takabuchi, S., Nishi, K., et al. The intravenous anesthetic propofol inhibits lipopolysaccharide-induced hypoxia-inducible factor 1 activation and suppresses the glucose metabolism in macrophages. J Anesth 2010; 24: 5460.CrossRefGoogle ScholarPubMed
Liang, H., Gu, M.., Yang, C., et al. Sevoflurane inhibits invasion and migration of lung cancer cells by inactivating the p38 MAPK signaling pathways. J Anesth 2012; 26: 381392.CrossRefGoogle Scholar
Melamed, R., Bar-Yosef, S., Shakhar, G., et al. Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopental, and halothane, but not by propofol: mediating mechanisms and prophylactic measures. Anesth Analg 2003; 97: 13311339.CrossRefGoogle Scholar
Kushida, A., Inada, T., and Shingu, K.. Enhancement of antitumor immunity after propofol treatment in mice. Immunopharmacol Immunotoxicol 2007; 29: 477486.CrossRefGoogle ScholarPubMed
Mathew, B., Lennon, F. E., Siegler, J., et al. The novel role of the mu opioid receptor in lung cancer progression: a laboratory investigation. Anesth Analg 2011; 112: 558567.CrossRefGoogle ScholarPubMed
Ecimovic, P., Murray, D., Doran, P., et al. Direct effect of morphine on breast cancer cell function in vitro: role of the NET1 gene. Br J Anaesth 2011; 107: 916923.CrossRefGoogle ScholarPubMed
Hamra, J. G. and Yaksh, T. L.. Equianalgesic doses of subcutaneous but not intrathecal morphine alter phenotypic expression of cell surface markers and mitogen-induced proliferation in rat lymphocytes. Anesthesiology 1996; 85: 355365.CrossRefGoogle Scholar
Brackenbury, W. J.. Voltage-gated sodium channels and metastatic disease. Channels 2012; 6: 352361.CrossRefGoogle ScholarPubMed
Yoon, J. R., Whipple, R. A., Balzer, E. M., et al. Local anesthetics inhibit kinesin motility and microtentacle protrusions in human epithelial and breast tumor cells. Breast Cancer Res Treat 2011; 129: 697701.CrossRefGoogle ScholarPubMed
Piegeler, T., Votta-Velis, E. G., Liu, G., et al. Antimetastatic potential of amide-linked local anesthetics: inhibition of lung adenocarcinoma cell migration and inflammatory Src signaling independent of sodium channel blockade. Anesthesiology 2012; 117: 548559.CrossRefGoogle ScholarPubMed
Ahlers, O., Nachtigall, I., Lenze, J., et al. Intraoperative thoracic epidural anaesthesia attenuates stress-induced immunosuppression in patients undergoing major abdominal surgery. Br J Anaesth 2008; 101: 781787.CrossRefGoogle ScholarPubMed
Biki, B., Mascha, E., Moriarty, D. C., et al. Anesthetic technique for radial prostatectomy surgery affects cancer recurrence: a retrospective analysis. Anesthesiology 2008; 109: 180187.CrossRefGoogle Scholar
Wada, H., Seki, S., Takahashi, T., et al. Combined spinal and general anesthesia attenuates liver metastasis by preserving TH1/ TH2 cytokine balance. Anesthesiology 2007; 106: 499506.CrossRefGoogle ScholarPubMed

References

Cram, P., Lu, X., Kates, S. L., et al. Total knee arthroplasty volume, utilization, and outcomes among Medicare beneficiaries, 1991–2010. JAMA 2012; 308: 12271236.CrossRefGoogle ScholarPubMed
Kurtz, S., Ong, K., Lau, E., et al. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 2007; 89: 780785.CrossRefGoogle ScholarPubMed
Zaric, D., Boysen, K., Christiansen, C., et al. A comparison of epidural analgesia with combined continuous femoral-sciatic nerve blocks after total knee replacement. Anesth Analg 2006; 102: 12401246.CrossRefGoogle ScholarPubMed
Al-Zahrani, T., Doais, K. S., Aljassir, F., et al. Randomized clinical trial of continuous femoral nerve block combined with sciatic nerve block vs. epidural analgesia for unilateral total knee arthroplasty. J Arthroplasty 2015; 30: 149154.CrossRefGoogle Scholar
Schachner, S. M. and Abram, S. E.. Use of two epidural catheters to provide analgesia of unblocked segments in a patient with lumbar disc disease. Anesthesiology 1982; 56: 150151.CrossRefGoogle Scholar
Daley, M. D., Rolbin, S. H., Hew, E. M., et al. Epidural anesthesia for obstetrics after spinal surgery. Reg Anesth 1990; 15: 280284.Google ScholarPubMed
Hubbert, C. H.. Epidural anesthesia in patients with spinal fusion. Anesth Analg 1985; 64: 843.CrossRefGoogle ScholarPubMed
Feldstein, G. and Ramanathan, S.. Obstetrical lumbar epidural anesthesia in patients with previous posterior spinal fusion for kyphoscoliosis. Anesth Analg 1985; 64: 8385.CrossRefGoogle ScholarPubMed
Crosby, E. T. and Halpern, S. H.. Obstetric epidural anaesthesia in patients with Harrington instrumentation. Can J Anaesth 1989; 36: 693696.CrossRefGoogle ScholarPubMed
Ho, A. M., Ngan Kee, W. D., and Chung, D. C.. Should laboring parturients with Harrington rods receive lumbar epidural analgesia? Int J Gynaecol Obstet 1999; 67: 4143.CrossRefGoogle ScholarPubMed
Bauchat, J. R., McCarthy, R. J., Koski, T. R., et al. Prior lumbar discectomy surgery does not alter the efficacy of neuraxial labor analgesia. Anesth Analg 2012; 115: 348353.CrossRefGoogle Scholar
Berkowitz, S. and Gold, M. I.. Spinal anesthesia for surgery in patients with previous lumbar laminectomy. Anesth Analg 1980; 59: 881882.CrossRefGoogle ScholarPubMed
Hebl, J. R., Horlocker, T. T., Kopp, S. L., and Schroeder, D. R.. Neuraxial blockade in patients with preexisting spinal stenosis, lumbar disk disease, or prior spine surgery: efficacy and neurologic complications. Anesth Analg 2010; 111: 15111519.CrossRefGoogle ScholarPubMed
Yamauchi, M., Honma, E., Mimura, M., et al. Identification of the lumbar intervertebral level using ultrasound imaging in a post-laminectomy patient. J Anesth 2006; 20: 231233.CrossRefGoogle Scholar
Chin, K. J., Macfarlane, A. J., Chan, V., and Brull, R.. The use of ultrasound to facilitate spinal anesthesia in a patient with previous lumbar laminectomy and fusion: a case report. J Clin Ultrasound 2009; 37: 482485.CrossRefGoogle Scholar
Hanson, J. L. and Goodman, E. J.. Labor epidural placement in a woman with a cervical spinal cord stimulator. Int J Obstet Anesth 2006; 15: 246249.CrossRefGoogle Scholar
Ito, S., Sugiura, T., Azami, T., et al. Spinal cord stimulation for a woman with complex regional pain syndrome who wished to get pregnant. J Anesth 2013; 27: 124127.CrossRefGoogle ScholarPubMed
Patel, S., Das, S., and Stedman, R. B.. Urgent cesarean section in a patient with a spinal cord stimulator: implications for surgery and anesthesia. Ochsner J 2014; 14: 131134.Google Scholar
Ali Sakr Esa, W., Toma, I., Tetzlaff, J. E., and Barsoum, S.. Epidural analgesia in labor for a woman with an intrathecal baclofen pump. Int J Obstet Anesth 2009; 18: 6466.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×