Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-04-30T16:43:27.563Z Has data issue: false hasContentIssue false

Section 1 - General considerations in regional anesthesia

Published online by Cambridge University Press:  05 October 2015

Michael R. Anderson
Affiliation:
The Icahn School of Medicine, Mount Sinai, New York
Sylvia H. Wilson
Affiliation:
Medical University of South Carolina
Meg A. Rosenblatt
Affiliation:
The Icahn School of Medicine, Mount Sinai, New York
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

American Society of Anesthesiologists Task Force on Acute Pain Management. Practice guidelines for acute pain management in the perioperative setting: an updated report by the American Society of Anesthesiologists Task Force on Acute Pain Management. Anesthesiology 2012; 116: 248273.CrossRefGoogle Scholar
Wong, K., Phelan, R., Kalso, E., et al. Antidepressant drugs for prevention of acute and chronic postsurgical pain: early evidence and recommended future directions. Anesthesiology 2014; 121: 591608.CrossRefGoogle ScholarPubMed
Low, Y. H. and Gan, T. J.. NMDA receptor antagonists, gabapentinoids, alpha-2 agonists, and dexamethasone and other non-opioid adjuvants: do they have a role in plastic surgery? Plast Reconstr Surg 2014; 134: 69S82S.CrossRefGoogle ScholarPubMed
McCartney, C. J., Sinha, A., and Katz, J.. A qualitative systematic review of the role of N-methyl-D-aspartate receptor antagonists in preventative analgesia. Anesth Analg 2004; 98: 13851400.CrossRefGoogle Scholar
Gupta, A. and Jakobsson, J.. Acetaminophen, nonsteroidal anti-inflammatory drugs, and cyclooxygenase-2 selective inhibitors: an update. Plast Reconstr Surg 2014; 134: 24S31S.CrossRefGoogle ScholarPubMed
Remy, C., Marret, E., and Bonnet, F.. Effects of acetaminophen on morphine side-effects and consumption after major surgery: meta-analysis of randomized controlled trials. Br J Anaesth 2005; 94: 505513.CrossRefGoogle ScholarPubMed
McNicol, E. D., Tzortzopoulou, A., Cepeda, M. S., et al. Single-dose intravenous paracetamol or propacetamol for prevention or treatment of postoperative pain: a systematic review and meta-analysis. Br J Anaesth 2011; 106: 764775.CrossRefGoogle ScholarPubMed
Maund, E., McDaid, C., Rice, S., et al. Paracetamol and selective and non-selective non-steroidal anti-inflammatory drugs for the reduction in morphine-related side effects after major surgery: a systematic review. Br J Anaesth 2011; 106: 292297.CrossRefGoogle ScholarPubMed
Toms, L., McQuay, H. J., Derry, S., et al. Single dose oral paracetamol (acetaminophen) for postoperative pain in adults. Cochrane Database Syst Rev 2008; 4: CD004602.Google Scholar
Dahl, J. B., Nielsen, R. V., Wetterslev, J., et al. Post-operative analgesic effects of paracetamol, NSAIDs, glucocorticoids, gabapentinoids and their combinations: a topical review. Acta Anaesthesiol Scand 2014; 58: 11651181.CrossRefGoogle ScholarPubMed
Beaulieu, P.. Non-opioid strategies for acute pain management. Can J Anesth 2007; 54: 481485.CrossRefGoogle ScholarPubMed
Marret, E., Kurdi, O., Zufferey, P., and Bonnet, F.. Effects of nonsteroidal anti-inflammatory drugs on patient-controlled anagelsia morphine side effects: meta-analysis of randomized controlled trials. Anesthesiology 2005; 102: 12491260.CrossRefGoogle Scholar
Tiippana, E. M., Hamunen, K., Kontinen, V. K., and Kalso, E.. Do surgical patients benefit from perioperative gabapentin/pregabalin? A systematic review of efficacy and safety. Anesth Analg 2007; 104: 15451556.CrossRefGoogle ScholarPubMed
Weinbroum, A. A.. Non-opioid IV adjuvants in the perioperative period: pharmacological and clinical aspects of ketamine and gabapentinoids. Pharmacol Res 2012; 65: 411429.CrossRefGoogle ScholarPubMed
Ho, K. Y., Gan, T. J., and Habib, A. S.. Gabapentin and postoperative pain: a systemic review of randomized controlled trials. Pain 2006; 126: 91101.CrossRefGoogle Scholar
Peng, P. W., Wijeysundera, D. N., and Li, C. C.. Use of gabapentin for perioperative pain control: a meta-analysis. Pain Res Manag 2007; 12: 8592.CrossRefGoogle ScholarPubMed
Seib, R. K. and Paul, J. E.. Preoperative gabapentin for postoperative analgesia: a meta-analysis. Can J Anesth 2006; 53: 461469.CrossRefGoogle ScholarPubMed
Engelman, E. and Cateloy, F.. Efficacy and safety of perioperative pregabalin for post-operative pain: a meta-analysis of randomized-controlled trials. Acta Anaesthesiol Scand 2011; 55: 927943.CrossRefGoogle ScholarPubMed
Mishriky, B. M., Waldron, N. H., and Habib, A. S.. Impact of pregabalin on acute and persistent postoperative pain: a systematic review and meta-analysis. Br J Anaesth 2015; 114: 1031.CrossRefGoogle ScholarPubMed
Zhang, J., Ho, K. Y., and Wang, Y.. Efficacy of pregabalin in acute postoperative pain: a meta-analysis. Br J Anaesth 2011; 106: 454462.CrossRefGoogle ScholarPubMed
Bell, R. F., Dahl, J. B., Moore, R. A., et al. Perioperative ketamine for acute postoperative pain. Cochrane Database Syst Rev 2006; 1: CD004603.Google Scholar
Laskowski, K., Stirling, A., McKay, W. P., et al. A systematic review of intravenous ketamine for postoperative analgesia. Can J Anaesth 2011; 58: 911923.CrossRefGoogle ScholarPubMed
Elia, N. and Tramer, M. R.. Ketamine and postoperative pain – a quantitative systematic review of randomized trials. Pain 2005; 113: 6170.CrossRefGoogle Scholar
Blaudszun, G., Lysakowski, C., Elia, N., et al. Effect of perioperative systemic α2 agonists on postoperative morphine consumption and pain intensity: systematic review and meta-analysis of randomized controlled trials. Anesthesiology 2012; 116: 13121322.CrossRefGoogle ScholarPubMed
Schnabel, A., Meyer-Friebem, C. H., Reichl, S. U., et al. Is intraoperative dexmedetomidine a new option for postoperative pain treatment? A meta-analysis of randomized controlled trials. Pain 2013; 154: 11401149.CrossRefGoogle ScholarPubMed
De Oliveira, G. S. Jr., Almeida, M. D., Benzon, H. T., and McCarthy, R. J.. Perioperative single dose systemic dexamethasone for post-operative pain: a meta-analysis of randomized controlled trials. Anesthesiology 2011; 115: 575588.CrossRefGoogle ScholarPubMed
Waldron, N. H., Jones, C. A., Gan, T. J., et al. Impact of perioperative dexamethasone on postoperative analgesia and side-effects: systematic review and meta-analysis. Br J Anaesth 2013; 110: 191200.CrossRefGoogle ScholarPubMed
Romsing, J., Moiniche, S., and Dahl, J. B.. Rectal and parenteral paracetamol, and paracetamol in combination with NSAIDs, for postoperative analgesia. Br J Anaesth 2002; 88: 215226.CrossRefGoogle ScholarPubMed
Ong, C. K., Seymour, R. A., Lirk, P., and Merry, A. F.. Combining paracetamol (acetaminophen) with nonsteroidal anti-inflammatory drugs: a qualitative systematic review of analgesic efficacy for acute postoperative pain. Anesth Analg 2010; 110: 11701179.CrossRefGoogle ScholarPubMed

References

Urmey, W. F. and Stanton, J.. Inability to consistently elicit a motor response following sensory paresthesia during interscalene block administration. Anesthesiology 2002; 96: 552554.CrossRefGoogle ScholarPubMed
Urmey, W. F.. Using the nerve stimulator for peripheral or plexus nerve blocks. Minerva Anestesiol 2006; 72: 467471.Google ScholarPubMed
Perlas, A., Niazi, A., McCartney, C., et al. The sensitivity of motor response to nerve stimulation and paresthesia for nerve localization as evaluated by ultrasound. Reg Anesth Pain Med 2006; 31: 445450.CrossRefGoogle ScholarPubMed
Tsai, T. P., Vuckovic, I., Dilberovic, F., et al. Intensity of the stimulating current may not be a reliable indicator of intraneural needle placement. Reg Anesth Pain Med 2008; 33: 207210.CrossRefGoogle Scholar
Sauter, A. R., Dodgson, M. S., Kalvoy, H., et al. Current threshold for nerve stimulation depends on electrical impedance of the tissue: a study of ultrasound-guided electrical nerve stimulation of the median nerve. Anesth Analg 2009; 108: 13381343.CrossRefGoogle Scholar
Wiesmann, T., Borntrager, A., Vassiliou, T., et al. Minimal current intensity to elicit an evoked motor response cannot discern between needle-nerve contact and intraneural needle insertion. Anesth Analg 2014; 118: 681686.CrossRefGoogle ScholarPubMed
Munirama, S. and McLeod, G. A.. Systematic review and meta-analysis of ultrasound guided regional anaesthesia versus nerve stimulation, paresthesia, or landmark techniques. Reg Anesth Pain Med 2013; 38: E136.Google Scholar
Altermatt, F. R., Cummings, T. J., Auten, K. M., et al. Ultrasonographic appearance of intraneural injections in the porcine model. Reg Anesth Pain Med 2010; 35: 203206.CrossRefGoogle ScholarPubMed
Lupu, C. M., Kiehl, T. R., Chan, V. W., et al. Nerve expansion seen on ultrasound predicts histologic but not functional nerve injury after intraneural injection in pigs. Reg Anesth Pain Med 2010; 35: 132139.CrossRefGoogle Scholar
Liu, S. S., YaDeau, J. T., Shaw, P. M., et al. Incidence of unintentional intraneural injection and postoperative neurological complications with ultrasound-guided interscalene and supraclavicular nerve blocks. Anaesthesia 2011; 66: 168174.CrossRefGoogle ScholarPubMed
Hara, K., Sakura, S., Yokokawa, N., and Tadenuma, S.. Incidence and effects of unintentional intraneural injection during ultrasound-guided subgluteal sciatic nerve block. Reg Anesth Pain Med 2012; 37: 289293.CrossRefGoogle ScholarPubMed
Barrington, M. J., Watts, S. A., Gledhill, S. R., et al. Preliminary results of the Australasian Regional Anaesthesia Collaboration: a prospective audit of more than 7000 peripheral nerve and plexus blocks for neurologic and other complications. Reg Anesth Pain Med 2009; 34: 534541.CrossRefGoogle Scholar
Borgeat, A., Ekatodramis, G., Kalberer, F., and Benz, C.. Acute and nonacute complications associated with interscalene block and shoulder surgery: a prospective study. Anesthesiology 2001; 95: 875880.CrossRefGoogle ScholarPubMed
Brull, R., McCartney, C. J., Chan, V. W., and El-Beheiry, H.. Neurological complications after regional anesthesia: contemporary estimates of risk. Anesth Analg 2007; 104: 965974.CrossRefGoogle ScholarPubMed
Steinfeldt, T., Werner, T., Nimphius, W., et al. Histological analysis after peripheral nerve puncture with pencil-point or Tuohy needletip. Anesth Analg 2011; 112: 465470.CrossRefGoogle ScholarPubMed
Farber, S. J., Saheb-Al-Zamani, M., Zieske, L., et al. Peripheral nerve injury after local anesthetic injection. Anesth Analg 2013; 117: 731739.CrossRefGoogle ScholarPubMed
Whitlock, E. L., Brenner, M. J., Fox, I. K., et al. Ropivacaine-induced peripheral nerve injection injury in the rodent model. Anesth Analg 2010; 111: 214220.CrossRefGoogle ScholarPubMed
Kapur, E., Vuckovic, I., Dilberovic, F., et al. Neurologic and histologic outcome after intraneural injections of lidocaine in canine sciatic nerves. Acta Anaesthesiol Scand 2007; 51: 101107.CrossRefGoogle ScholarPubMed
Hadzic, A., Dilberovic, F., Shah, S., et al. Combination of intraneural injection and high injection pressure leads to fascicular injury and neurologic deficits in dogs. Reg Anesth Pain Med 2004; 29: 417423.CrossRefGoogle ScholarPubMed
Sala-Blanch, X., Lopez, A. M., Pomes, J., et al. No clinical or electrophysiologic evidence of nerve injury after intraneural injection during sciatic popliteal block. Anesthesiology 2011; 115: 589595.CrossRefGoogle ScholarPubMed
Bigeleisen, P. E.. Nerve puncture and apparent intraneural injection during ultrasound-guided axillary block does not invariably result in neurologic injury. Anesthesiology 2006; 105: 779783.CrossRefGoogle Scholar
Wong, S. W., Niazi, A. U., Chin, K. J., and Chan, V. W.. Real-time ultrasound-guided spinal anesthesia using the SonixGPS® needle tracking system: a case report. Can J Anaesth 2013; 60: 5053.CrossRefGoogle ScholarPubMed
Vuckovic, I., Hadzic, A., Dilberovic, F., et al. Detection of neurovascular structures using injection pressure in blockade of brachial plexus in rat. Bosn J Basic Med Sci 2005; 5: 7985.CrossRefGoogle ScholarPubMed
Desjardins, A. E., Hendriks, B. H., van der Voort, M., et al. Epidural needle with embedded optical fibers for spectroscopic differentiation of tissue: ex vivo feasibility study. Biomed Opt Express 2011; 2: 14521461.CrossRefGoogle ScholarPubMed
Desjardins, A. E., van der Voort, M., Roggeveen, S., et al. Needle stylet with integrated optical fibers for spectroscopic contrast during peripheral nerve blocks. J Biomed Opt 2011; 16: 077004.CrossRefGoogle ScholarPubMed
Brynolf, M., Sommer, M., Desjardins, A. E., et al. Optical detection of the brachial plexus for peripheral nerve blocks: an in vivo swine study. Reg Anesth Pain Med 2011; 36: 350357.CrossRefGoogle ScholarPubMed
Balthasar, A., Desjardins, A. E., van der Voort, M., et al. Optical detection of peripheral nerves: an in vivo human study. Reg Anesth Pain Med 2012; 37: 277282.CrossRefGoogle ScholarPubMed
Soto-Astorga, R. P., West, S., Putnis, S., et al. Epidural catheter with integrated light guides for spectroscopic tissue characterization. Biomed Opt Express 2013; 4: 26192628.CrossRefGoogle ScholarPubMed
Sinha, S. K., Abrams, J. H., and Weller, R. S.. Ultrasound-guided interscalene needle placement produces successful anesthesia regardless of motor stimulation above or below 0.5 mA. Anesth Analg 2007; 105: 848852.CrossRefGoogle ScholarPubMed

References

Pöpping, D. M., Elia, N., Marret, E., et al. Clonidine as an adjuvant to local anesthetics for peripheral nerve and plexus blocks: a meta-analysis of randomized trials. Anesthesiology 2007; 111: 406415.CrossRefGoogle Scholar
Kroin, J. S., Buvanendran, A., Beck, D. R., et al. Clonidine prolongation of lidocaine analgesia after sciatic nerve block in rats is mediated via the hyperpolarization-activated cation current, not by alpha-adrenoreceptors. Anesthesiology 2004; 101: 488494.CrossRefGoogle Scholar
Brummett, C. M., Hong, E. K., Janda, A. M., et al. Perineural dexmedetomidine added to ropivacaine for sciatic nerve block in rats prolongs the duration of analgesia by blocking the hyperpolarization-activated cation current. Anesthesiology 2011; 115: 836843.CrossRefGoogle ScholarPubMed
Rancourt, M. P., Albert, N. T., Côté, M., et al. Posterior tibial nerve sensory blockade duration prolonged by adding dexmedetomidine to ropivacaine. Anesth Analg 2012; 115: 958962.CrossRefGoogle ScholarPubMed
Esmaoglu, A., Yegenoglu, F., Akin, A., and Turk, C. Y.. Dexmedetomidine added to levobupivacaine prolongs axillary brachial plexus block. Anesth Analg 2010; 111: 15481551.CrossRefGoogle ScholarPubMed
Fritsch, G., Danninger, T., Allerberger, K., et al. Dexmedetomidine added to ropivacaine extends the duration of interscalene brachial plexus blocks for elective shoulder surgery when compared with ropivacaine alone: a single-center, prospective, triple-blind, randomized controlled trial. Reg Anesth Pain Med 2014; 39: 3747.CrossRefGoogle Scholar
Choi, S., Rodseth, R., and McCartney, C. J.. Effects of dexamethasone as a local anaesthetic adjuvant for brachial plexus block: a systematic review and meta-analysis of randomized trials. Br J Anaesth 2014; 112: 427439.CrossRefGoogle ScholarPubMed
Fredrickson Fanzca, M. J., Danesh-Clough, T. K., and White, R.. Adjuvant dexamethasone for bupivacaine sciatic and ankle blocks: results from 2 randomized placebo-controlled trials. Reg Anesth Pain Med 2013; 38: 300307.CrossRefGoogle ScholarPubMed
Desmet, M., Braems, H., Reynvoet, M., et al. I.V. and perineural dexamethasone are equivalent in increasing the analgesic duration of a single-shot interscalene block with ropivacaine for shoulder surgery: a prospective, randomized, placebo-controlled study. Br J Anaesth 2013; 111: 445452.CrossRefGoogle ScholarPubMed
Kawanishi, R., Yamamoto, K., Tobetto, Y., et al. Perineural but not systemic low-dose dexamethasone prolongs the duration of interscalene block with ropivacaine: a prospective randomized trial. Local Reg Anesth 2014; 7: 59.Google Scholar
Ibinson, J. W., Mangione, M. P., and Williams, B. A.. Local anesthetics in diabetic rats (and patients): shifting from a known slippery slope toward a potentially better multimodal perineural paradigm? Reg Anesth Pain Med 2012; 37: 574576.CrossRefGoogle Scholar
Williams, B. A., Murinson, B. B., Grable, B. R., and Orebaugh, S. L.. Future considerations for pharmacologic adjuvants in single-injection peripheral nerve blocks for patients with diabetes mellitus. Reg Anesth Pain Med 2009; 34: 445457.CrossRefGoogle ScholarPubMed
Williams, B. A., Hough, K. A., Tsui, B. Y., et al. Neurotoxicity of adjuvants used in perineural anesthesia and analgesia in comparison with ropivacaine. Reg Anesth Pain Med 2011; 36: 225230.CrossRefGoogle ScholarPubMed
Neal, J. M.. Effects of epinephrine in local anesthetics on the central and peripheral nervous systems: neurotoxicity and neural blood flow. Reg Anesth Pain Med 2003; 28: 124134.Google ScholarPubMed
Weber, A., Fournier, R., Van Gessel, E., et al. Epinephrine does not prolong the analgesia of 20 mL ropivacaine 0.5% or 0.2% in a femoral three-in-one block. Anesth Analg 2001; 93: 13271331.CrossRefGoogle Scholar
Jarbo, K., Batra, Y. K., and Panda, N. B.. Brachial plexus block with midazolam and bupivacaine improves analgesia. Can J Anaesth 2005; 52: 822826.CrossRefGoogle ScholarPubMed
Candido, K. D., Winnie, A. P., Ghaleb, A. H., et al. Buprenorphine added to the local anesthetic for axillary brachial plexus block prolongs postoperative analgesia. Reg Anesth Pain Med 2002; 27: 162167.CrossRefGoogle Scholar
Candido, K. D., Hennes, J., Gonzalez, S., et al. Buprenorphine enhances and prolongs the postoperative analgesic effect of bupivacaine in patients receiving infragluteal sciatic nerve block. Anesthesiology 2010; 113: 14191426.CrossRefGoogle ScholarPubMed

References

de Tran, Q. H., Dugani, S., Correa, J. A., et al. Minimum effective volume of lidocaine for ultrasound-guided supraclavicular block. Reg Anesth Pain Med 2011; 36: 466469.CrossRefGoogle Scholar
González, A. P., Bernucci, F., Techasuk, W., et al. A randomized comparison between 3 combinations of volume and concentration of lidocaine for ultrasound-guided infraclavicular block. Reg Anesth Pain Med 2013; 38: 206211.CrossRefGoogle ScholarPubMed
Gonzalez, A. P., Bernucci, F., Pham, K., et al. Minimum effective volume of lidocaine for double-injection ultrasound-guided axillary block. Reg Anesth Pain Med 2013; 38: 1620.CrossRefGoogle ScholarPubMed
Schoenmakers, K. P., Wegener, J. T., and Stienstra, R.. Effect of local anesthetic volume (15 vs. 40 mL) on the duration of ultrasound-guided single shot axillary brachial plexus block: a prospective randomized, observer-blinded trial. Reg Anesth Pain Med 2012; 37: 242247.CrossRefGoogle ScholarPubMed
Song, J. G., Jeon, D. G., Kang, B. J., et al. Minimum effective volume of mepivacaine for ultrasound-guided supraclavicular block. Korean J Anesthesiol 2013; 65: 3741.CrossRefGoogle ScholarPubMed
Gaultier, P., Vandepitte, C., Ramquet, C., et al. The minimum effective anesthetic volume of 0.75% ropivacaine in ultrasound-guided interscalene brachial plexus block. Anesth Analg 2011; 113: 951955.CrossRefGoogle Scholar
Vandepitte, C., Gautier, P., Xu, D., et al. Effective volume of ropivacaine 0.75% through a catheter required for interscalene brachial plexus blockade. Anesthesiology 2013; 118: 863867.CrossRefGoogle ScholarPubMed
Flohr-Madsen, S., Ytrebo, L. M., Kregnes, S., et al. Minimum effective volume of ropivacaine 7.5 mg/mL for an ultrasound-guided infraclavicular brachial plexus block. Acta Anaesthesiol Scand 2013; 57: 495501.CrossRefGoogle ScholarPubMed
Nader, A., Kendall, M. C., De Oliveira, G. S. Jr., et al. A dose-ranging study of 0.5% bupivacaine or ropivacaine on the success and duration of the ultrasound-guided, nerve-stimulator-assisted sciatic nerve block: a double-blind, randomized clinical trial. Reg Anesth Pain Med 2013; 38: 492502.CrossRefGoogle ScholarPubMed
Taha, A. M. and Abd-Elmaksoud, A. M.. Ropivacaine in ultrasound-guided femoral nerve block: what is the minimal effective anaesthetic concentration (EC90)? Anaesthesia 2014; 69: 678682.CrossRefGoogle ScholarPubMed

References

Lonner, J.. Role of liposomal bupivacaine in pain management after total joint arthroplasty. J Surg Orthop Adv 2014; 23: 3741.CrossRefGoogle ScholarPubMed
Davidson, E. M., Barenholz, Y., Cohen, R., Haroutiunian, S., Kagan, L., and Ginosar, Y.. High-dose bupivacaine remotely loaded into multivesicular liposomes demonstrates slow drug release without systemic toxic plasma concentrations after subcutaneous administration in humans. Anesth Analg 2010; 110: 10181023.CrossRefGoogle ScholarPubMed
Richard, B. M., Ott, L. R., Haan, D., et al. The safety and tolerability evaluation of DepoFoam bupivacaine (bupivacaine extended-release liposome injection) administered by incision wound infiltration in rabbits and dogs. Expert Opin Investig Drugs 2011; 20: 13271341.CrossRefGoogle ScholarPubMed
Tong, Y. C., Kaye, A. D., and Urman, R. D.. Liposomal bupivacaine and clinical outcomes. Best Pract Res Clin Anaesthesiol 2014; 28: 1527.CrossRefGoogle ScholarPubMed
Massaro, F.. Liposomal bupivacaine: a long-acting local anesthetic for postsurgical analgesia. Formulary 2012; 47: 212.Google Scholar
Golf, M., Daniels, S. E., and Onel, E.. A phase 3, randomized, placebo-controlled trial of DepoFoam(R) bupivacaine (extended-release bupivacaine local analgesic) in bunionectomy. Adv Ther 2011; 28: 776788.CrossRefGoogle Scholar
Gorfine, S. R., Onel, E., Patou, G., and Krivokapic, Z. V.. Bupivacaine extended-release liposome injection for prolonged postsurgical analgesia in patients undergoing hemorrhoidectomy: a multicenter, randomized, double-blind, placebo-controlled trial. Dis Colon Rectum 2011; 54: 15521559.CrossRefGoogle ScholarPubMed
Simone, A. Amended Clinical Review for NDA 022-496, Bupivacaine Extended-Release Liposome Injection (Exparel). Silver Spring, MD: FDA Center for Drug Evaluation and Research; 2011. 1150. Reference ID: 3026703; available at www.accessdata.fda.gov/drugsatfda_docs/nda/2011/022496Orig1s000MedR.pdf [Accessed 15 April, 2015].Google Scholar
Bergese, S. D., Ramamoorthy, S., Patou, G., Bramlett, K., Gorfine, S. R., and Candiotti, K. A.. Efficacy profile of liposome bupivacaine, a novel formulation of bupivacaine for postsurgical analgesia. J Pain Res 2012; 5: 107116.CrossRefGoogle ScholarPubMed
Bramlett, K., Onel, E., Viscusi, E. R., and Jones, K.. A randomized, double-blind, dose-ranging study comparing wound infiltration of DepoFoam bupivacaine, an extended-release liposomal bupivacaine, to bupivacaine HCl for postsurgical analgesia in total knee arthroplasty. Knee 2012; 19: 530536.CrossRefGoogle ScholarPubMed
Dasta, J., Ramamoorthy, S., Patou, G., and Sinatra, R.. Bupivacaine liposome injectable suspension compared with bupivacaine HCl for the reduction of opioid burden in the postsurgical setting. Curr Med Res Opin 2012; 28: 16091615.CrossRefGoogle ScholarPubMed
Baxter, R., Bramlett, K., Onel, E., and Daniels, S.. Impact of local administration of liposome bupivacaine for postsurgical analgesia on wound healing: a review of data from ten prospective, controlled clinical studies. Clin Ther 2013; 35: 312320. e5.CrossRefGoogle ScholarPubMed
United States Food and Drug Administration. Prescribing information for EXPAREL (bupivacaine liposome injectable suspension), reference ID 3036637. 2011. www.accessdata.fda.gov/drugsatfda_docs/label/2011/022496s000lbl.pdf [Accessed June 5, 2015].Google Scholar
Naseem, A., Harada, T., Wang, D., et al. Bupivacaine extended release liposome injection does not prolong QTc interval in a thorough QT/QTc study in healthy volunteers. J Clin Pharmacol 2012; 52: 14411447.CrossRefGoogle ScholarPubMed
Pacira Pharmaceuticals Inc. Five easy-to-spot differences between EXPAREL and propofol. 2012. www.exparel.com/pdf/EXPAREL_Propofol_comparison_comps.pdf [Accessed October 11, 2014].Google Scholar
National Alert Network. Potential for wrong route errors with Exparel (bupivacaine liposome injectable suspension). 2012. www.ismp.org/NAN/files/NAN-20120318.pdf [Accessed October 11, 2014].Google Scholar
Pacira Pharmaceuticals Inc. Storage and handling for EXPAREL® (bupivacaine liposome injectable suspension). 2011. www.exparel.com/pdf/5x8_Storage_card.pdf [Accessed October 11, 2014].Google Scholar
Buckwalter, J. A., Heckman, J. D., and Petrie, D. P.. An AOA critical issue: aging of the North American population: new challenges for orthopaedics. J Bone Joint Surg Am 2003; 85-A: 748758.CrossRefGoogle ScholarPubMed
Bagsby, D. T., Ireland, P. H., and Meneghini, R. M.. Liposomal bupivacaine versus traditional periarticular injection for pain control after total knee arthroplasty. J Arthroplasty 2014; 29: 16871690.CrossRefGoogle ScholarPubMed
Domb, B. G., Gupta, A., Hammarstedt, J. E., Stake, C. E., Sharp, K., and Redmond, J. M.. The effect of liposomal bupivacaine injection during total hip arthroplasty: a controlled cohort study. BMC Musculoskelet Disord 2014; 15: 310.CrossRefGoogle ScholarPubMed
Ilfeld, B. M., Malhotra, N., Furnish, T. J., Donohue, M. C., and Madison, S. J.. Liposomal bupivacaine as a single-injection peripheral nerve block: a dose–response study. Anesth Analg 2013; 117: 12481256.CrossRefGoogle Scholar
Viscusi, E. R., Candiotti, K. A., Onel, E., Morren, M., and Ludbrook, G. L.. The pharmacokinetics and pharmacodynamics of liposome bupivacaine administered via a single epidural injection to healthy volunteers. Reg Anesth Pain Med 2012; 37: 616622.CrossRefGoogle Scholar
McAlvin, J. B., Padera, R. F., Shankarappa, S. A., et al. Multivesicular liposomal bupivacaine at the sciatic nerve. Biomaterials 2014; 35: 45574564.CrossRefGoogle ScholarPubMed

References

Dewaele, S. and Santos, A. C.. Toxicity of local anesthetics. In Hadzic, A. (ed.) Hadzic's Peripheral Nerve Blocks and Anatomy for Ultrasound-Guided Regional Anesthesia. New York, McGraw Hill Medical, 2012; pp. 119127.Google Scholar
Di Gregorio, G., Neal, J. M., Rosenquist, R. W., and Weinberg, G. L.. Clinical presentation of local anesthetic systemic toxicity: a review of published cases, 1979 to 2009. Reg Anesth Pain Med 2010; 35: 181187.CrossRefGoogle ScholarPubMed
Stoelting, R. K. and Hillier, S. C.. Local anesthetics. In Pharmacology & Physiology in Anesthetic Practice. New York, Lippincott Williams & Wilkins, 2006; pp. 179207.Google Scholar
Chiao, F. B., Chen, J., Lesser, J. B., et al. Single-cuff forearm tourniquet in intravenous regional anaesthesia results in less pain and fewer sedation requirements than upper arm tourniquet. Br J Anaesth 2013; 111: 271275.CrossRefGoogle ScholarPubMed
Arslanian, B., Mehrzad, R., Kramer, T., and Kim, D. C.. Forearm Bier block: a new regional anesthetic technique for upper extremity surgery. Ann Plast Surg 2014; 73: 156157.CrossRefGoogle Scholar
Barrington, M. J. and Kluger, R.. Ultrasound guidance reduces the risk of local anesthetic systemic toxicity following peripheral nerve blockage. Reg Anesth Pain Med 2013; 38: 289297.CrossRefGoogle Scholar
Rosenberg, P. H., Veering, B. T., and Urmey, W. F.. Maximum recommended doses of local anesthetics: a multifactorial concept. Reg Anesth Pain Med 2004; 29: 564575.Google ScholarPubMed
Butterworth, J. F.. Models and mechanisms of local anesthetic cardiac toxicity: a review. Reg Anesth Pain Med 2010; 35: 167176.CrossRefGoogle ScholarPubMed
Zink, W. and Graf, B. M.. The toxicity of local anesthetics: the role of ropivacaine and levobupivacaine. Curr Opin Anaesthesiol 2008; 21: 645650.CrossRefGoogle Scholar
Butterworth, J., James, R. L., and Grimes, J.. Structure-affinity relationships and stereospecificity of several homologous series of local anesthetics for the beta2-adrenergic receptor. Anesth Analg 1997; 85: 336342.Google ScholarPubMed
Neal, J. M., Bernards, C. M., Butterworth, J. F., et al. ASRA practice advisory on local anesthetic systemic toxicity. Reg Anesth Pain Med 2010; 35: 152161.CrossRefGoogle ScholarPubMed
Orebaugh, S. L., Williams, B. A., Vallejo, M., and Kentor, M. L.. Adverse outcomes associated with stimulator-based peripheral nerve blocks with and without ultrasound visualization. Reg Anesth Pain Med 2009; 34: 251255.CrossRefGoogle ScholarPubMed
Zetlaoui, P. J., Labbe, J. P., and Benhamou, D.. Ultrasound guidance for axillary plexus block does not prevent intravascular injection. Anesthesiology 2008; 108: 557558.CrossRefGoogle Scholar
Weinberg, G. L.. Lipid emulsion infusion: resuscitation for local anesthetic and other drug overdose. Anesthesiology 2012; 117: 180187.CrossRefGoogle ScholarPubMed
Weinberg, G. L., VadeBoncouer, T., Ramaraju, G. A., et al. Pretreatment or resuscitation with a lipid infusion shifts the dose-response to bupivacaine-induced asystole in rats. Anesthesiology 1998; 88: 10711075.CrossRefGoogle ScholarPubMed
Weinberg, G. L., Ripper, R., Murphy, P., et al. Lipid infusion accelerates removal of bupivacaine and recovery from bupivacaine toxicity in the isolated rat heart. Reg Anesth Pain Med 2006; 31: 296303.CrossRefGoogle ScholarPubMed
Partownavid, P., Umar, S., Li, J., et al. Fatty-acid oxidation and calcium homeostasis are involved in the rescue of bupivacaine-induced cardiotoxicity by lipid emulsion in rats. Crit Care Med 2012; 40: 24312437.CrossRefGoogle ScholarPubMed
Rosenblatt, M. A., Abel, M., Fischer, G. W., et al. Successful use of a 20% lipid emulsion to resuscitate a patient after a presumed bupivacaine-related cardiac arrest. Anesthesiology 2006; 105: 217218.CrossRefGoogle ScholarPubMed
Spence, A. G.. Lipid reversal of central nervous system symptoms of bupivacaine toxicity. Anesthesiology 2007; 107: 516517.CrossRefGoogle ScholarPubMed
Weiss, E., Jolly, C., Dumoulin, J. L., et al. Convulsions in 2 patients after bilateral ultrasound-guided transversus abdominis plane blocks for cesarean analgesia. Reg Anesth Pain Med 2014; 39: 248251.CrossRefGoogle ScholarPubMed
Agarwala, R., Ahmed, S. Z., and Wiegand, T. J.. Prolonged use of intravenous lipid emulsion in a severe tricyclic antidepressant overdose. J Med Toxicol. 2014; 10: 210214.CrossRefGoogle Scholar
Bartos, M. and Knudsen, K.. Use of intravenous lipid emulsion in the resuscitation of a patient with cardiovascular collapse after a severe overdose of quetiapine. Clin Toxicol 2013; 51: 501504.CrossRefGoogle ScholarPubMed
Fettiplace, M. R., Akpa, B. S., Ripper, R., et al. Resuscitation with lipid emulsion: dose-dependent recovery from cardiac pharmacotoxicity requires a cardiotonic effect. Anesthesiology 2014; 120: 915925.CrossRefGoogle ScholarPubMed
Cave, G., Harrop-Griffiths, W., Harvey, M., et al. AAGBI Safety Guideline: Management of severe local anaesthetic toxicity. Association of Anaesthetists of Great Britain and Ireland 2010. www.aagbi.org/sites/default/files/la_toxicity_2010_0.pdf [Accessed 15 April, 2015].Google Scholar
Marwick, P. C., Levin, A. I., and Coetzee, A. R.. Recurrence of cardiotoxicity after lipid rescue from bupivacaine-induced cardiac arrest. Anesth Analg 2009; 108: 13441346.CrossRefGoogle ScholarPubMed
Weinberg, G. L.. Treatment of local anesthetic systemic toxicity (LAST). Reg Anesth Pain Med 2010; 35: 188193.CrossRefGoogle ScholarPubMed
Di Gregorio, G., Schwartz, D., Ripper, R., et al. Lipid emulsion is superior to vasopressin in a rodent model of resuscitation from toxin-induced cardiac arrest. Crit Care Med 2009; 37: 993999.CrossRefGoogle Scholar

References

Borgeat, A., Ekatodramis, G., Kalberer, F., and Benz, C.. Acute and nonacute complications associated with interscalene block and shoulder surgery: a prospective study. Anesthesiology 2001; 95: 875880.CrossRefGoogle ScholarPubMed
Borgeat, A., Dullenkopf, A., Ekatodramis, G., and Nagy, L.. Evaluation of the lateral modified approach for continuous interscalene block after shoulder surgery. Anesthesiology 2003; 99: 436442.CrossRefGoogle ScholarPubMed
Candido, K. D., Sukhani, R., Doty, R. Jr., et al. Neurologic sequelae after interscalene brachial plexus block for shoulder/upper arm surgery: the association of patient, anesthetic, and surgical factors to the incidence and clinical course. Anesth Analg 2005; 100: 14891495.CrossRefGoogle Scholar
Auroy, Y., Benhamou, D., Bargues, L., et al. Major complications of regional anesthesia in France: the SOS Regional Anesthesia Hotline Service. Anesthesiology 2002; 97: 12741280.CrossRefGoogle ScholarPubMed
Brull, R., McCartney, C. J., Chan, V. W., and El-Beheiry, H.. Neurological complications after regional anesthesia: contemporary estimates of risk. Anesth Analg 2007; 104: 965974.CrossRefGoogle ScholarPubMed
Welch, M. B., Brummett, C. M., Welch, T. D., et al. Perioperative peripheral nerve injuries: a retrospective study of 380,680 cases during a 10-year period at a single institution. Anesthesiology 2009; 111: 490497.CrossRefGoogle Scholar
Barrington, M. J., Watts, S. A., Gledhill, S. R., et al. Preliminary results of the Australasian Regional Anaesthesia Collaboration: a prospective audit of more than 7000 peripheral nerve and plexus blocks for neurologic and other complications. Reg Anesth Pain Med 2009; 34: 534541.CrossRefGoogle Scholar
Orebaugh, S. L., Kentor, M. L., and Williams, B. A.. Adverse outcomes associated with nerve stimulator-guided and ultrasound-guided peripheral nerve blocks by supervised trainees: update of a single-site database. Reg Anesth Pain Med 2012; 37: 577582.CrossRefGoogle ScholarPubMed
Sites, B. D., Taenzer, A. H., Herrick, M. D., et al. Incidence of local anesthetic systemic toxicity and postoperative neurologic symptoms associated with 12,668 ultrasound-guided nerve blocks: an analysis from a prospective clinical registry. Reg Anesth Pain Med 2012; 37: 478482.CrossRefGoogle Scholar
Ecoffey, C., Oger, E., Marchand-Maillet, F., et al. Complications associated with 27 031 ultrasound-guided axillary brachial plexus blocks: a web-based survey of 36 French centres. Eur J Anaesthesiol 2014; 31: 606610.CrossRefGoogle ScholarPubMed
Hebl, J. R.. Ultrasound-guided regional anesthesia and the prevention of neurologic injury: fact or fiction? Anesthesiology 2008; 108: 186188.CrossRefGoogle ScholarPubMed
Neal, J. M., Brull, R., Chan, V. W., et al. The ASRA evidence-based medicine assessment of ultrasound-guided regional anesthesia and pain medicine: executive summary. Reg Anesth Pain Med 2010; 35: S1S9.CrossRefGoogle ScholarPubMed
Neal, J. M.. Ultrasound-guided regional anesthesia and patient safety: an evidence-based analysis. Reg Anesth Pain Med 2010; 35: S59S67.CrossRefGoogle ScholarPubMed
Neal, J. M. and Wedel, D. J.. Ultrasound guidance and peripheral nerve injury: is our vision as sharp as we think it is? Reg Anesth Pain Med 2010; 35: 335337.CrossRefGoogle Scholar
Capdevila, X., Pirat, P., Bringuier, S., et al. Continuous peripheral nerve blocks in hospital wards after orthopedic surgery: a multicenter prospective analysis of the quality of postoperative analgesia and complications in 1,416 patients. Anesthesiology 2005; 103: 10351045.CrossRefGoogle Scholar
Lynch, N. M., Cofield, R. H., Silbert, P. L., and Hermann, R. C.. Neurologic complications after total shoulder arthroplasty. J Shoulder Elbow Surg 1996; 5: 5361.CrossRefGoogle ScholarPubMed
Sviggum, H. P., Jacob, A. K., Mantilla, C. B., et al. Perioperative nerve injury after total shoulder arthroplasty: assessment of risk after regional anesthesia. Reg Anesth Pain Med 2012; 37: 490494.CrossRefGoogle ScholarPubMed
Moayeri, N., Bigeleisen, P. E., and Groen, G. J.. Quantitative architecture of the brachial plexus and surrounding compartments, and their possible significance for plexus blocks. Anesthesiology 2008; 108: 299304.CrossRefGoogle ScholarPubMed
Albrecht, E., Kirkham, K. R., Taffe, P., et al. The maximum effective needle-to-nerve distance for ultrasound-guided interscalene block: an exploratory study. Reg Anesth Pain Med 2014; 39: 5660.CrossRefGoogle Scholar
Lambert, L. A., Lambert, D. H., and Strichartz, G. R.. Irreversible conduction block in isolated nerve by high concentrations of local anesthetics. Anesthesiology 1994; 80: 10821093.CrossRefGoogle ScholarPubMed
Yamashita, A., Matsumoto, M., Matsumoto, S., et al. A comparison of the neurotoxic effects on the spinal cord of tetracaine, lidocaine, bupivacaine, and ropivacaine administered intrathecally in rabbits. Anesth Analg 2003; 97: 512519.CrossRefGoogle ScholarPubMed
Whitlock, E. L., Brenner, M. J., Fox, I. K., et al. Ropivacaine-induced peripheral nerve injection injury in the rodent model. Anesth Analg 2010; 111: 214220.CrossRefGoogle ScholarPubMed
Williams, B. A., Hough, K. A., Tsui, B. Y., et al. Neurotoxicity of adjuvants used in perineural anesthesia and analgesia in comparison with ropivacaine. Reg Anesth Pain Med 2011; 36: 225230.CrossRefGoogle ScholarPubMed
Williams, B. A., Murinson, B. B., Grable, B. R., and Orebaugh, S. L.. Future considerations for pharmacologic adjuvants in single-injection peripheral nerve blocks for patients with diabetes mellitus. Reg Anesth Pain Med 2009; 34: 445457.CrossRefGoogle ScholarPubMed
Partridge, B. L.. The effects of local anesthetics and epinephrine on rat sciatic nerve blood flow. Anesthesiology 1991; 75: 243250.CrossRefGoogle ScholarPubMed
Desmet, M., Braems, H., Reynvoet, M., et al. I.V. and perineural dexamethasone are equivalent in increasing the analgesic duration of a single-shot interscalene block with ropivacaine for shoulder surgery: a prospective, randomized, placebo-controlled study. Br J Anaesth 2013; 111: 445452.CrossRefGoogle ScholarPubMed
Macfarlane, A. J., Bhatia, A., and Brull, R.. Needle to nerve proximity: what do the animal studies tell us? Reg Anesth Pain Med 2011; 36: 290302.CrossRefGoogle ScholarPubMed
Sala-Blanch, X., Ribalta, T., Riva, E., et al. Structural injury to the human sciatic nerve after intraneural needle insertion. Reg Anesth Pain Med 2009; 34: 201205.CrossRefGoogle Scholar
Steinfeldt, T., Poeschl, S., Nimphius, W., et al. Forced needle advancement during needle-nerve contact in a porcine model: histological outcome. Anesth Analg 2011; 113: 417420.CrossRefGoogle Scholar
Steinfeldt, T., Werner, T., Nimphius, W., et al. Histological analysis after peripheral nerve puncture with pencil-point or Tuohy needletip. Anesth Analg 2011; 112: 465470.CrossRefGoogle ScholarPubMed
Bigeleisen, P. E.. Nerve puncture and apparent intraneural injection during ultrasound-guided axillary block does not invariably result in neurologic injury. Anesthesiology 2006; 105: 779783.CrossRefGoogle Scholar
Bigeleisen, P. E., Moayeri, N., and Groen, G. J.. Extraneural versus intraneural stimulation thresholds during ultrasound-guided supraclavicular block. Anesthesiology 2009; 110: 12351243.CrossRefGoogle ScholarPubMed
Orebaugh, S. L., McFadden, K., Skorupan, H., and Bigeleisen, P. E.. Subepineurial injection in ultrasound-guided interscalene needle tip placement. Reg Anesth Pain Med 2010; 35: 450454.CrossRefGoogle ScholarPubMed
Liu, S. S., YaDeau, J. T., Shaw, P. M., et al. Incidence of unintentional intraneural injection and postoperative neurological complications with ultrasound-guided interscalene and supraclavicular nerve blocks. Anaesthesia 2011; 66: 168174.CrossRefGoogle ScholarPubMed
Hara, K., Sakura, S., Yokokawa, N., and Tadenuma, S.. Incidence and effects of unintentional intraneural injection during ultrasound-guided subgluteal sciatic nerve block. Reg Anesth Pain Med 2012; 37: 289293.CrossRefGoogle ScholarPubMed
Lupu, C. M., Kiehl, T. R., Chan, V. W., et al. Nerve expansion seen on ultrasound predicts histologic but not functional nerve injury after intraneural injection in pigs. Reg Anesth Pain Med 2010; 35: 132139.CrossRefGoogle Scholar
Selander, D., Brattsand, R., Lundborg, G., et al. Local anesthetics: importance of mode of application, concentration and adrenaline for the appearance of nerve lesions. An experimental study of axonal degeneration and barrier damage after intrafascicular injection or topical application of bupivacaine (Marcaine). Acta Anaesthesiol Scand 1979; 23: 127136.CrossRefGoogle ScholarPubMed
Farber, S. J., Saheb-Al-Zamani, M., Zieske, L., et al. Peripheral nerve injury after local anesthetic injection. Anesth Analg 2013; 117: 731739.CrossRefGoogle ScholarPubMed
Cohen, J. M. and Gray, A. T.. Functional deficits after intraneural injection during interscalene block. Reg Anesth Pain Med 2010; 35: 397399.CrossRefGoogle ScholarPubMed
Moayeri, N., Krediet, A. C., Welleweerd, J. C., et al. Early ultrasonographic detection of low-volume intraneural injection. Br J Anaesth 2012; 109: 432438.CrossRefGoogle ScholarPubMed
Krediet, A. C., Moayeri, N., Bleys, R. L., and Groen, G. J.. Intraneural or extraneural: diagnostic accuracy of ultrasound assessment for localizing low-volume injection. Reg Anesth Pain Med 2014; 39: 409413.CrossRefGoogle ScholarPubMed
Tsai, T. P., Vuckovic, I., Dilberovic, F., et al. Intensity of the stimulating current may not be a reliable indicator of intraneural needle placement. Reg Anesth Pain Med 2008; 33: 207210.CrossRefGoogle Scholar
Gadsden, J. C., Choi, J. J., Lin, E., and Robinson, A.. Opening injection pressure consistently detects needle-nerve contact during ultrasound-guided interscalene brachial plexus block. Anesthesiology 2014; 120: 12461253.CrossRefGoogle ScholarPubMed
Upton, A. R. and McComas, A. J.. The double crush in nerve entrapment syndromes. Lancet. 1973; 2: 359362.CrossRefGoogle ScholarPubMed
Koff, M. D., Cohen, J. A., McIntyre, J. J., et al. Severe brachial plexopathy after an ultrasound-guided single-injection nerve block for total shoulder arthroplasty in a patient with multiple sclerosis. Anesthesiology 2008; 108: 325328.CrossRefGoogle Scholar
Ladermann, A., Lubbeke, A., Melis, B., et al. Prevalence of neurologic lesions after total shoulder arthroplasty. J Bone Joint Surg Am 2011; 93: 12881293.CrossRefGoogle ScholarPubMed
Staff, N. P., Engelstad, J., Klein, C. J., et al. Post-surgical inflammatory neuropathy. Brain 2010; 133: 28662880.CrossRefGoogle ScholarPubMed
Wirth, M. A. and Rockwood, C. A.. Complications of total shoulder-replacement arthroplasty. J Bone Joint Surg Am 1996; 78: 603616.CrossRefGoogle ScholarPubMed
Bohsali, K. I., Wirth, M. A., and Rockwood, C. A.. Complications of total shoulder arthroplasty. J Bone Joint Surg Am 2006; 88: 22792292.Google ScholarPubMed
Aminoff, M. J.. Electrophysiologic testing for the diagnosis of peripheral nerve injuries. Anesthesiology 2004; 100: 12981303.CrossRefGoogle ScholarPubMed
Preston, D. C. and Shapiro, B. E.. Electromyography and Neuromuscular Disorders: Clinical-Electrophysiologic Correlations (Expert Consult-Online). Elsevier Health Sciences; 2012.Google Scholar
Barrington, M. J., Morrison, W., Sutherland, T., et al. Case scenario: postoperative brachial plexopathy associated with infraclavicular brachial plexus blockade: localizing postoperative nerve injury. Anesthesiology 2014; 121: 383387.CrossRefGoogle ScholarPubMed
Brown, J. M., Yee, A., Ivens, R. A., et al. Post-cervical decompression Parsonage–Turner syndrome represents a subset of C5 palsy: six cases and a review of the literature: case report. Neurosurgery 2010; 67: 18311843.CrossRefGoogle Scholar
Brown, J. M., Vivio, N., and Sheean, G. L.. The clinical practice of reconstructive neurosurgery. Clin Neurol Neurosurg 2012; 114: 506514.CrossRefGoogle ScholarPubMed

References

Møiniche, S., Kehlet, H., and Dahl, J. B.. A qualitative and quantitative review of preemptive analgesia for postoperative pain relief: the role of timing of analgesia. Anesthesiology 2002; 96: 725741.CrossRefGoogle ScholarPubMed
Woolf, C. J. and Chong, M. S.. Preemptive analgesia: treating postoperative pain by preventing the establishment of central sensitization. Anesth Analg 1993; 77: 362379.CrossRefGoogle ScholarPubMed
Liu, S., Buvanendran, A., et al. A cross-sectional survey on prevalence and risk factors for persistent postsurgical pain 1 year after total hip and knee replacement. Reg Anesth Pain Med 2012; 37: 415422.CrossRefGoogle ScholarPubMed
Woolf, C. J.. Central Mechanisms of Acute Pain. Proc 6th World Congress on Pain. 1991; Amsterdam: Elsevier, pp. 2534.Google Scholar
Dahl, J. B. and Møiniche, S.. Pre-emptive analgesia. Brit Med Bull 2004; 71: 1327.CrossRefGoogle ScholarPubMed
Woolf, C. J. and Salter, M. W.. Neuronal plasticity: increasing the gain in pain. Science 2000; 288: 17651768.CrossRefGoogle ScholarPubMed
Woolf, C. J. and Wall, P. D.. Morphine-sensitive and morphine insensitive actions of C-fiber input on the rat spinal cord. Neurosci Lett 1986; 64: 221225.CrossRefGoogle ScholarPubMed
Ong, C. K., Lirk, P., et al. The efficacy of preemptive analgesia for acute postoperative pain management: a meta-analysis. Anesth Analg 2005; 100: 757773.CrossRefGoogle ScholarPubMed
Subramaniam, K., Subramaniam, B., and Steinbrook, R. A.. Ketamine as adjuvant analgesic to opioids: a quantitative and qualitative systematic review. Anesth Analg 2004; 99: 482495.CrossRefGoogle ScholarPubMed
Dahl, J. B., Mathiesen, O., and Møinche, S.. “Protective premedication”: an option with gabapentin and related drugs? Acta Anaesthesiol Scand 2004; 48: 11301136.CrossRefGoogle ScholarPubMed
Kehlet, H. and Holte, K.. Effect of postoperative analgesia on surgical outcome. Br J Anaesth 2001; 81: 6772.Google Scholar
Memtsoudis, S., Sun, X., et al. Perioperative comparative effectiveness of anesthetic technique in orthopedic patients. Anesthesiology 2013; 118: 10461058.CrossRefGoogle ScholarPubMed
Perkins, F. M. and Kehlet, H.. Chronic pain as an outcome of surgery: a review of predictive factors. Anesthesiology 2000; 93: 11231133.CrossRefGoogle ScholarPubMed
Ilfeld, B. M. and Shuster, J.. Total knee arthroplasty with and without an extended ambulatory continuous femoral nerve block: a prospective, one-year follow-up of a multicenter, randomized, triple-masked, placebo-controlled trial. Reg Anesth Pain Med 2011; 36: 116120.CrossRefGoogle Scholar
Liu, S., Carpenter, R., and Neal, J.. Epidural anesthesia and analgesia: their role in postoperative outcome. Anesthesiology 1995; 82: 14741506.CrossRefGoogle ScholarPubMed
Salinas, F. V., Liu, S., and Mulroy, M. F.. The effect of single-injection femoral nerve block versus continuous femoral nerve block after total knee arthroplasty on hospital length of stay and longterm functional recovery within an established clinical pathway. Anesth Analg 2006; 102: 12341239.CrossRefGoogle ScholarPubMed
Rathmell, J., Pino, C., et al. Intrathecal morphine for postoperative analgesia: a randomized, controlled, dose-ranging study after hip and knee arthroplasty. Anesth Analg 2003; 97: 14521457.CrossRefGoogle ScholarPubMed
Dang, C. P., Gautheron, E., et al. The value of adding a sciatic block to continuous femoral block for analgesia after total knee replacement. Reg Anesth Pain Med 2005; 30: 128133.CrossRefGoogle Scholar
Eberhart, L., Morin, A., et al. Postoperative analgesia and functional recovery after total-knee replacement: comparison of a continuous posterior lumbar plexus (psoas compartment) block, a continuous femoral nerve block, and the combination of a continuous femoral and sciatic nerve block. Reg Anest Pain Med 2005; 30: 434445.Google Scholar
Henningsen, M., Jaeger, P., and Nielsen, J. K.. Adductor canal block versus femoral nerve block and quadriceps strength: a randomized double-blind, placebo-controlled, crossover study in healthy volunteers. Anesthesiology 2013; 118: 409415.Google Scholar
Jaeger, P., Dusanka, Z., et al. Adductor canal block versus femoral nerve block for analgesia after total knee arthroplasty: a randomized, double-blind study. Reg Anesth Pain Med 2013; 38: 526532.CrossRefGoogle ScholarPubMed
Spreng, U. J., Dahl, V., et al. High-volume local infiltration analgesia combined with intravenous or local ketorolac plus morphine compared with epidural analgesia after total knee arthroplasty. Br J Anaest 2010; 105: 675682.CrossRefGoogle ScholarPubMed
Marret, E., Kurdi, O., et al. Effects of nonsteroidal antiinflammatory drugs on patient controlled analgesia morphine side effects. Anesthesiology 2005; 102: 12491260.CrossRefGoogle ScholarPubMed
Buvanendran, A., Kroin, J., et al. Effects of perioperative administration of a selective cyclooxygenase 2 inhibitor on pain management and recovery of function after knee replacement: a randomized controlled trial. JAMA 2003; 290: 24112418.CrossRefGoogle ScholarPubMed
McNicoli, E. D., Tzortzopoulou, A., and Cepeda, M. S.. Single-dose intravenous paracetamol or propacetamol for prevention or treatment of postoperative pain: a systematic review and meta-analysis. Br J Anaesth 2011; 106: 764775.CrossRefGoogle Scholar
Sinatra, R., Jahr, J., et al. Efficacy and safety of single and repeated administration of 1 gram intravenous acetaminophen injection (paracetamol) for pain management after major orthopedic surgery. Anesthesiology 2005; 102: 822831.CrossRefGoogle ScholarPubMed
Clarke, H., Bonin, R., et al. The prevention of chronic postsurgical pain using gabapentin and pregabalin: a combined systematic review and meta-analysis. Anesth Analg 2012; 115: 428442.CrossRefGoogle ScholarPubMed
Buvanendran, A., Kroin, J., et al. Perioperative oral pregabalin reduces chronic pain after total knee arthroplasty: a prospective, randomized, controlled trial. Anesth Analg 2010; 110: 199207.CrossRefGoogle ScholarPubMed
Baillie, J. K. and Power, I. The mechanism of action of gabapentin in neuropathic pain. Curr Opin Investig Drugs 2006; 7: 3339.Google ScholarPubMed
Laskowski, K., Stirling, A., et al. A systematic review of intravenous ketamine for postoperative analgesia. Can J Anaesth 2011; 58: 911923.CrossRefGoogle ScholarPubMed
Remerand, F., Le Tendre, C., et al. The early and delayed analgesic effects of ketamine after total hip arthroplasty: a prospective, randomized, controlled double-blind study. Anesth Analg 2009; 109: 19631971.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×