Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T08:08:31.248Z Has data issue: false hasContentIssue false

Chapter 7 - Neuropathology of dementia

Published online by Cambridge University Press:  01 December 2016

Bruce L. Miller
Affiliation:
University of California, San Francisco
Bradley F. Boeve
Affiliation:
Mayo Clinic, Minnesota
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Knopman, DS, Boeve, BF, Parisi, JE, Dickson, DW, Smith, GE, Ivnik, RJ, et al. Antemortem diagnosis of frontotemporal lobar degeneration. Ann Neurol. 2005;57(4):480–8.CrossRefGoogle ScholarPubMed
Forman, MS, Farmer, J, Johnson, JK, Clark, CM, Arnold, SE, Coslett, HB, et al. Frontotemporal dementia: clinicopathological correlations. Ann Neurol. 2006;59(6):952–62.CrossRefGoogle ScholarPubMed
Seeley, W, Crawford, R, Zhou, J, Miller, B, Greicius, M. Neurodegenerative diseases target large-scale human brain networks. Neuron. 2009;62(1):4252.CrossRefGoogle ScholarPubMed
Soto, C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci. 2003;4(1):4960.CrossRefGoogle ScholarPubMed
Braak, H, Braak, E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathologica. 1991;82:239–59.CrossRefGoogle ScholarPubMed
Braak, H, Ghebremedhin, E, Rub, U, Bratzke, H, Del Tredici, K. Stages in the development of Parkinson's disease-related pathology. Cell Tissue Res. 2004;318(1):121–34.CrossRefGoogle ScholarPubMed
Greicius, MD, Srivastava, G, Reiss, AL, Menon, V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA. 2004;101(13):4637–42.CrossRefGoogle ScholarPubMed
Zhou, J, Gennatas, ED, Kramer, JH, Miller, BL, Seeley, WW. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron. 2012;73(6):1216–27.CrossRefGoogle ScholarPubMed
Sanders, DW, Kaufman, SK, DeVos, SL, Sharma, AM, Mirbaha, H, Li, A, et al. Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron. 2014;82(6):1271–88.CrossRefGoogle Scholar
Ahmed, Z, Cooper, J, Murray, TK, Garn, K, McNaughton, E, Clarke, H, et al. A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity. Acta Neuropathol. 2014;127(5):667–83.Google Scholar
de Calignon, A, Polydoro, M, Suarez-Calvet, M, William, C, Adamowicz, DH, Kopeikina, KJ, et al. Propagation of tau pathology in a model of early Alzheimer's disease. Neuron. 2012;73(4):685–97.CrossRefGoogle ScholarPubMed
Volpicelli-Daley, LA, Luk, KC, Patel, TP, Tanik, SA, Riddle, DM, Stieber, A, et al. Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron. 2011;72(1):5771.CrossRefGoogle ScholarPubMed
Clavaguera, F, Akatsu, H, Fraser, G, Crowther, RA, Frank, S, Hench, J, et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc Natl Acad Sci USA. 2013;110(23):9535–40.CrossRefGoogle ScholarPubMed
Brun, A, Gustafson, L. Limbic lobe involvement in presenile dementia. Arch Psychiatr Nervenkr. 1978;226(2):7993.CrossRefGoogle ScholarPubMed
Brun, A, Liu, X, Erikson, C. Synapse loss and gliosis in the molecular layer of the cerebral cortex in Alzheimer's disease and in frontal lobe degeneration. Neurodegeneration. 1995;4(2):171–7.Google Scholar
Weintraub, S, Mesulam, M-M. From neuronal networks to dementia: four clinical profiles. In: Foret, F, Christen, Y, Boller, F, eds. La Demence: Pourquoi? Paris: Foundation Nationale de Gerontologie; 1996. pp. 7597.CrossRefGoogle ScholarPubMed
Saper, CB, Wainer, BH, German, DC. Axonal and transneuronal transport in the transmission of neurological disease: potential role in system degenerations, including Alzheimer's disease. Neuroscience. 1987;23(2):389–98.CrossRefGoogle ScholarPubMed
Seeley, WW, Menon, V, Schatzberg, AF, Keller, J, Glover, GH, Kenna, H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27(9):2349–56.CrossRefGoogle ScholarPubMed
Ritchie, K, Lovestone, S. The dementias. Lancet. 2002;360(9347):1759–66.CrossRefGoogle ScholarPubMed
Hebert, LE, Scherr, PA, Bienias, JL, Bennett, DA, Evans, DA. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol. 2003;60(8):1119–22.CrossRefGoogle ScholarPubMed
Kukull, WA, Higdon, R, Bowen, JD, McCormick, WC, Teri, L, Schellenberg, GD, et al. Dementia and Alzheimer disease incidence: a prospective cohort study. Arch Neurol. 2002;59(11):1737–46.CrossRefGoogle ScholarPubMed
Braak, H, Braak, E. Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol Aging. 1995;16(3):271–84.Google Scholar
Hyman, BT, Damasio, AR. Hierarchical vulnerability of the entorhinal cortex and the hippocampal formation to Alzheimer neuropathological changes: a semiquantitative study. Neurology. 1990;40:403.Google Scholar
Hyman, BT, Damasio, AR, Van Hoesen, GW, Barnes, CL. Alzheimer's disease: cell-specific pathology isolates the hippocampal formation. Science. 1984;298:8395.CrossRefGoogle ScholarPubMed
Gorno-Tempini, ML, Dronkers, NF, Rankin, KP, Ogar, JM, Phengrasamy, L, Rosen, HJ, et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol. 2004;55(3):335–46.CrossRefGoogle ScholarPubMed
Galton, CJ, Patterson, K, Xuereb, JH, Hodges, JR. Atypical and typical presentations of Alzheimer's disease: a clinical, neuropsychological, neuroimaging and pathological study of 13 cases. Brain. 2000;123 (Pt 3):484–98.CrossRefGoogle ScholarPubMed
Chand, P, Grafman, J, Dickson, D, Ishizawa, K, Litvan, I. Alzheimer's disease presenting as corticobasal syndrome. Mov Disord. 2006;21(11):2018–22.CrossRefGoogle ScholarPubMed
Lee, SE, Rabinovici, GD, Mayo, MC, Wilson, SM, Seeley, WW, DeArmond, SJ, et al. Clinicopathological correlations in corticobasal degeneration. Ann Neurol. 2011;70(2):327–40.CrossRefGoogle ScholarPubMed
Zakzanis, KK, Boulos, MI. Posterior cortical atrophy. Neurologist. 2001;7(6):341–9.CrossRefGoogle ScholarPubMed
Hof, PR, Vogt, BA, Bouras, C, Morrison, JH. Atypical form of Alzheimer's disease with prominent posterior cortical atrophy: a review of lesion distribution and circuit disconnection in cortical visual pathways. Vision Res. 1997;37(24):3609–25.CrossRefGoogle ScholarPubMed
Johnson, J, Head, E, Kim, R, Starr, A, Cotman, C. Clinical and pathological evidence for a frontal variant of Alzheimer disease. Arch Neurol. 1999;56(10):1233–9.CrossRefGoogle ScholarPubMed
Lehmann, M, Madison, CM, Ghosh, PM, Seeley, WW, Mormino, E, Greicius, MD, et al. Intrinsic connectivity networks in healthy subjects explain clinical variability in Alzheimer's disease. Proc Natl Acad Sci USA. 2013;110(28):11606–11.CrossRefGoogle Scholar
Pao, WC, Dickson, DW, Crook, JE, Finch, NA, Rademakers, R, Graff-Radford, NR. Hippocampal sclerosis in the elderly: genetic and pathologic findings, some mimicking Alzheimer disease clinically. Alzheimer Dis Assoc Disord. 2011;25(4):364–8.CrossRefGoogle Scholar
Crary, JF, Trojanowski, JQ, Schneider, JA, Abisambra, JF, Abner, EL, Alafuzoff, I, et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 2014;128(6):755–66.CrossRefGoogle ScholarPubMed
Brun, A, Gustafson, L. Distribution of cerebral degeneration in Alzheimer's disease. A clinico-pathological study. Arch Psychiatr Nervenkr. 1976;223(1):1533.Google Scholar
Alzheimer, A. Uber einen eigenartigen, schweren Erkrankungsprozess der Hirnrinde. Neurol Zbl. 1906;25:1134.CrossRefGoogle ScholarPubMed
Dickson, DW. The pathogenesis of senile plaques. J Neuropathol Exp Neurol. 1997;56(4):321–39.CrossRefGoogle ScholarPubMed
Goedert, M. Tau protein and the neurofibrillary pathology of Alzheimer's disease. Trends Neurosci. 1993;16(11):460–5.CrossRefGoogle Scholar
Arnold, SE, Hyman, BT, Flory, J, Damasio, AR, Van Hoesen, GW. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients in Alzheimer's disease. Cerebral Cortex. 1991;1(1):103–16.CrossRefGoogle ScholarPubMed
Arriagada, PV, Growdon, JH, Hedley-Whyte, ET, Hyman, BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology. 1992;42(3 Pt 1):631–9.CrossRefGoogle ScholarPubMed
Ball, MJ. Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with ageing and dementia. A quantitative study. Acta Neuropathol (Berl). 1977;37(2):111–18.CrossRefGoogle ScholarPubMed
Vinters, HV. Cerebral amyloid angiopathy. A critical review. Stroke. 1987;18(2):311–24.CrossRefGoogle ScholarPubMed
Gibson, PH, Tomlinson, BE. Numbers of Hirano bodies in the hippocampus of normal and demented people with Alzheimer's disease. J Neurol Sci. 1977;33(1–2):199206.CrossRefGoogle ScholarPubMed
Itagaki, S, McGeer, PL, Akiyama, H, Zhu, S, Selkoe, D. Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol. 1989;24(3):173–82.CrossRefGoogle ScholarPubMed
McKeith, IG, Dickson, DW, Lowe, J, Emre, M, O'Brien, JT, Feldman, H, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 2005;65(12):1863–72.CrossRefGoogle ScholarPubMed
Uchikado, H, Lin, WL, DeLucia, MW, Dickson, DW. Alzheimer disease with amygdala Lewy bodies: a distinct form of alpha-synucleinopathy. J Neuropathol Exp Neurol. 2006;65(7):685–97.CrossRefGoogle ScholarPubMed
Amador-Ortiz, C, Lin, WL, Ahmed, Z, Personett, D, Davies, P, Duara, R, et al. TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer's disease. Ann Neurol. 2007;61(5):435–45.CrossRefGoogle Scholar
Mirra, S, Heyman, A, McKeel, D, Sumi, SM, Crain, BJ, Brownlee, LM, et al. The consortium to establish a registry for Alzheimer's disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology. 1991;41(4):479–86.CrossRefGoogle ScholarPubMed
Braak, H, Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.CrossRefGoogle Scholar
Hyman, BT, Trojanowski, JQ. Consensus recommendations for the postmortem diagnosis of Alzheimer disease from the National Institute on Aging and the Reagan Institute Working Group on diagnostic criteria for the neuropathological assessment of Alzheimer disease. J Neuropathol Exp Neurol. 1997;56(10):1095–7.CrossRefGoogle ScholarPubMed
Hyman, BT, Phelps, CH, Beach, TG, Bigio, EH, Cairns, NJ, Carrillo, MC, et al. National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease. Alzheimers Dement. 2012;8(1):113.CrossRefGoogle ScholarPubMed
Montine, TJ, Phelps, CH, Beach, TG, Bigio, EH, Cairns, NJ, Dickson, DW, et al. National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease: a practical approach. Acta Neuropathol. 2012;123(1):111.CrossRefGoogle ScholarPubMed
Braak, H, Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.CrossRefGoogle Scholar
Mirra, SS, Heyman, A, McKeel, D, Sumi, SM, Crain, BJ, Brownlee, LM, et al. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology. 1991;41(4):479–86.CrossRefGoogle ScholarPubMed
Thal, DR, Rüb, U, Orantes, M, Braak, H. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58(12):1791–800.CrossRefGoogle ScholarPubMed
Selkoe, DJ. Alzheimer's disease. Cold Spring Harb Perspect Biol. 2011;3(7).CrossRefGoogle ScholarPubMed
Hardy, JA, Higgins, GA. Alzheimer's disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184–5.CrossRefGoogle ScholarPubMed
Goedert, M, Spillantini, MG, Cairns, NJ, Crowther, RA. Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron. 1992;8(1):159–68.CrossRefGoogle ScholarPubMed
Grudzien, A, Shaw, P, Weintraub, S, Bigio, E, Mash, DC, Mesulam, MM. Locus coeruleus neurofibrillary degeneration in aging, mild cognitive impairment and early Alzheimer's disease. Neurobiol Aging. 2007;28(3):327–35.CrossRefGoogle ScholarPubMed
Braak, H, Thal, DR, Ghebremedhin, E, Del Tredici, K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol. 2011;70(11):960–9.CrossRefGoogle ScholarPubMed
Grinberg, LT, Rüb, U, Ferretti, RE, Nitrini, R, Farfel, JM, Polichiso, L, et al. The dorsal raphe nucleus shows phospho-tau neurofibrillary changes before the transentorhinal region in Alzheimer's disease. A precocious onset? Neuropathol Appl Neurobiol. 2009;35(4):406–16.CrossRefGoogle ScholarPubMed
Insausti, R, Amaral, DG, Cowan, WM. The entorhinal cortex of the monkey: III. Subcortical afferents. J Comp Neurol. 1987;264(3):396408.CrossRefGoogle ScholarPubMed
Farrer, LA, Myers, RH, Cupples, LA, St George-Hyslop, PH, Bird, TD, Rossor, MN, et al. Transmission and age-at-onset patterns in familial Alzheimer's disease: evidence for heterogeneity. Neurology. 1990;40(3 Pt 1):395403.CrossRefGoogle ScholarPubMed
St George-Hyslop, PH, Tanzi, RE, Polinsky, RJ. The genetic defect causing familial Alzheimer's disease maps on chromosome 21. Science. 1987;235:885–90.CrossRefGoogle ScholarPubMed
Schellenberg, GD, Bird, TD, Wijsman, EM. Genetic linkage evidence for a familial Alzheimer's disease locus on chromosome 14. Science. 1992;258:668–71.Google ScholarPubMed
Levy-Lahad, E, Wasco, W, Poorkaj, P, Romano, DM, Oshima, J, Pettingell, WH, et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science. 1995;269(5226):973–7.CrossRefGoogle ScholarPubMed
Schmitt, FA, Davis, DG, Wekstein, DR, Smith, CD, Ashford, JW, Markesbery, WR. "Preclinical" AD revisited: neuropathology of cognitively normal older adults. Neurology. 2000;55(3):370–6.CrossRefGoogle ScholarPubMed
Musiek, ES, Holtzman, DM. Origins of Alzheimer's disease: reconciling cerebrospinal fluid biomarker and neuropathology data regarding the temporal sequence of amyloid-beta and tau involvement. Curr Op Neurol. 2012;25(6):715–20.CrossRefGoogle Scholar
Polymeropoulos, M, Lavedan, C, Leroy, E. Mutation in the alpha-synuclein gene identified in families with Parkinson's diseae. Science. 1997;276:2045–8.CrossRefGoogle ScholarPubMed
Soma, H, Yabe, I, Takei, A, Fujiki, N, Yanagihara, T, Sasaki, H. Heredity in multiple system atrophy. J Neurol Sci. 2006;240(1–2):107–10.CrossRefGoogle ScholarPubMed
Hara, K, Momose, Y, Tokiguchi, S, Shimohata, M, Terajima, K, Onodera, O, et al. Multiplex families with multiple system atrophy. Arch Neurol. 2007;64(4):545–51.CrossRefGoogle Scholar
McKeith, I, Galasko, D, Kosaka, K. Consensus guidleines for the clinical and pathologic diagnosis of dementia with Lewy bodies. Neurology. 1996;47:1113–24.CrossRefGoogle ScholarPubMed
Holmes, C, Cairns, N, Lantos, P, Mann, A. Validity of current clinical criteria for Alzheimer's disease, vascular dementia, and dementia with Lewy bodies. Br J Psychiatry. 1999;174:4551.CrossRefGoogle Scholar
Lim, A, Tsuang, D, Kukull, W, Nochlin, D, Leverenz, J, McCormick, W, et al. Clinico-neuropathological correlation of Alzheimer's disease in a community-based case series. J Am Geriatr Soc. 1999;47(5):564–9.Google Scholar
Ransmayr, G. Dementia with Lewy bodies: prevalence, clinical spectrum and natural history. J Neural Transm Suppl. 2000(60):303–14.CrossRefGoogle ScholarPubMed
McKeith, IG, Dickson, DW, Lowe, J, Emre, M, O'Brien, JT, Feldman, H, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 2005;65(12):1863–72.Google ScholarPubMed
Double, KL, Halliday, GM, McRitchie, DA, Reid, WG, Hely, MA, Morris, JG. Regional brain atrophy in idiopathic parkinson's disease and diffuse Lewy body disease. Dementia. 1996;7(6):304–13.Google ScholarPubMed
Perry, RH, Irving, D, Blessed, G, Fairbairn, A, Perry, EK. Senile dementia of Lewy body type. A clinically and neuropathologically distinct form of Lewy body dementia in the elderly. J Neurol Sci. 1990;95:119–39.CrossRefGoogle ScholarPubMed
Rezaie, P, Cairns, NJ, Chadwick, A, Lantos, PL. Lewy bodies are located preferentially in limbic areas in diffuse Lewy body disease. Neurosci Lett. 1996;212(2):111–14.CrossRefGoogle ScholarPubMed
Gomez-Tortosa, E, Newell, K, Irizarry, MC, Albert, M, Growdon, JH, Hyman, BT. Clinical and quantitative pathologic correlates of dementia with Lewy bodies. Neurology. 1999;53(6):1284–91.Google Scholar
Giasson, B, M-Y Lee, V, Trojanowski, JQ. Parkinson's disease, dementia with Lewy bodies, multiple system atrophy and the spectrum of disease with alpha synuclein inclusions. Second edition. In Esiri, MM, M-Y Lee, V, Trojanowski, JQ, eds, The Neuropathology of Dementia. New York: Cambridge University Press; 2004. pp. 353–75.CrossRefGoogle ScholarPubMed
Dickson, DW, Ruan, D, Crystal, H, Mark, MH, Davies, P, Kress, Y, et al. Hippocampal degeneration differentiates diffuse Lewy body disease (DLBD) from Alzheimer's disease: light and electron microscopic immunocytochemistry of CA2-3 neurites specific to DLBD. Neurology. 1991;41(9):1402–9.CrossRefGoogle ScholarPubMed
Dickson, D, Schmidt, M, Lee, V. Immunoreactivity profile of hippocampal Ca2/3 neurites in diffuse Lewy body disease. Acta Neuropathologica. 1994;87:269–76.CrossRefGoogle ScholarPubMed
Spillantini, MG, Crowther, RA, Jakes, R, Hasegawa, M, Goedert, M. Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies. Proc Natl Acad Sci USA. 1998;95(11):6469–73.CrossRefGoogle Scholar
Zaccai, J, Brayne, C, McKeith, I, Matthews, F, Ince, PG. MRC Cognitive Function AeNS. Patterns and stages of alpha-synucleinopathy: Relevance in a population-based cohort. Neurology. 2008;70(13):1042–8.CrossRefGoogle ScholarPubMed
Braak, H, de Vos, RA, Bohl, J, Del Tredici, K. Gastric alpha-synuclein immunoreactive inclusions in Meissner's and Auerbach's plexuses in cases staged for Parkinson's disease-related brain pathology. Neurosci Lett. 2006;396(1):6772.CrossRefGoogle Scholar
Gold, A, Turkalp, ZT, Munoz, DG. Enteric alpha-synuclein expression is increased in Parkinson's disease but not Alzheimer's disease. Mov Disord. 2013;28(2):237–40.Google ScholarPubMed
Kosaka, K. Diffuse Lewy body disease. Neuropathology. 2000;20 Suppl:S73–8.CrossRefGoogle ScholarPubMed
Merdes, AR, Hansen, LA, Jeste, DV, Galasko, D, Hofstetter, CR, Ho, GJ, et al. Influence of Alzheimer pathology on clinical diagnostic accuracy in dementia with Lewy bodies. Neurology. 2003;60(10):1586–90.Google ScholarPubMed
Del Ser, T, Hachinski, V, Merskey, H, Munoz, DG. Clinical and pathologic features of two groups of patients with dementia with Lewy bodies: effect of coexisting Alzheimer-type lesion load. Alzheimer Dis Assoc Disord. 2001;15(1):3144.CrossRefGoogle ScholarPubMed
Lopez, OL, Becker, JT, Kaufer, DI, Hamilton, RL, Sweet, RA, Klunk, W, et al. Research evaluation and prospective diagnosis of dementia with Lewy bodies. Arch Neurol. 2002;59(1):43–6.CrossRefGoogle ScholarPubMed
Morra, LF, Donovick, PJ. Clinical presentation and differential diagnosis of dementia with Lewy bodies: a review. Int J Geriatr Psychiatry. 2014;29(6):569–76.CrossRefGoogle ScholarPubMed
Schrag, A, Ben-Shlomo, Y, Quinn, NP. Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. Lancet. 1999;354(9192):1771–5.CrossRefGoogle ScholarPubMed
Wenning, GK, Colosimo, C, Geser, F, Poewe, W. Multiple system atrophy. Lancet Neurol. 2004;3(2):93103.CrossRefGoogle ScholarPubMed
Wenning, GK, Tison, F, Ben Shlomo, Y, Daniel, SE, Quinn, NP. Multiple system atrophy: a review of 203 pathologically proven cases. Mov Disord. 1997;12(2):133–47.CrossRefGoogle ScholarPubMed
Gilman, S, Low, PA, Quinn, N, Albanese, A, Ben-Shlomo, Y, Fowler, CJ, et al. Consensus statement on the diagnosis of multiple system atrophy. J Neurol Sci. 1999;163(1):94–8.CrossRefGoogle ScholarPubMed
Robbins, TW, James, M, Owen, AM, Lange, KW, Lees, AJ, Leigh, PN, et al. Cognitive deficits in progressive supranuclear palsy, Parkinson's disease, and multiple system atrophy in tests sensitive to frontal lobe dysfunction. J Neurol Neurosurg Psychiatry. 1994;57(1):7988.CrossRefGoogle ScholarPubMed
Meco, G, Gasparini, M, Doricchi, F. Attentional functions in multiple system atrophy and Parkinson's disease. J Neurol Neurosurg Psychiatry. 1996;60(4):393–8.CrossRefGoogle ScholarPubMed
Burk, K, Daum, I, Rub, U. Cognitive function in multiple system atrophy of the cerebellar type. Mov Disord. 2006;21(6):772–6.CrossRefGoogle ScholarPubMed
Gilman, S, Wenning, GK, Low, PA, Brooks, DJ, Mathias, CJ, Trojanowski, JQ, et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology. 2008;71(9):670–6.CrossRefGoogle ScholarPubMed
Sato, K, Kaji, R, Matsumoto, S, Goto, S. Cell type-specific neuronal loss in the putamen of patients with multiple system atrophy. Mov Disord. 2007;22(5):738–42.Google ScholarPubMed
Wenning, GK, Tison, F, Elliott, L, Quinn, NP, Daniel, SE. Olivopontocerebellar pathology in multiple system atrophy. Mov Disord. 1996;11(2):157–62.CrossRefGoogle ScholarPubMed
Gai, WP, Power, JH, Blumbergs, PC, Blessing, WW. Multiple-system atrophy: a new alpha-synuclein disease? Lancet. 1998;352(9127):547–8.CrossRefGoogle ScholarPubMed
Tu, PH, Galvin, JE, Baba, M, Giasson, B, Tomita, T, Leight, S, et al. Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble alpha-synuclein. Ann Neurol. 1998;44(3):415–22.CrossRefGoogle ScholarPubMed
Lantos, PL. The definition of multiple system atrophy: a review of recent developments. J Neuropathol Exp Neurol. 1998;57(12):1099–111.CrossRefGoogle ScholarPubMed
Duda, JE, Giasson, BI, Gur, TL, Montine, TJ, Robertson, D, Biaggioni, I, et al. Immunohistochemical and biochemical studies demonstrate a distinct profile of alpha-synuclein permutations in multiple system atrophy. J Neuropathol Exp Neurol. 2000;59(9):830–41.CrossRefGoogle Scholar
Trojanowski, JQ, Revesz, T, MSA NWGo. Proposed neuropathological criteria for the post mortem diagnosis of multiple system atrophy. Neuropathol Appl Neurobiol. 2007;33(6):615–20.CrossRefGoogle ScholarPubMed
Lin, WL, DeLucia, MW, Dickson, DW. Alpha-synuclein immunoreactivity in neuronal nuclear inclusions and neurites in multiple system atrophy. Neurosci Lett. 2004;354(2):99102.CrossRefGoogle ScholarPubMed
Ratnavalli, E, Brayne, C, Dawson, K, Hodges, JR. The prevalence of frontotemporal dementia. Neurology. 2002;58(11):1615–21.CrossRefGoogle ScholarPubMed
Knopman, DS, Petersen, RC, Edland, SD, Cha, RH, Rocca, WA. The incidence of frontotemporal lobar degeneration in Rochester, Minnesota, 1990 through 1994. Neurology. 2004;62(3):506–8.CrossRefGoogle ScholarPubMed
Baborie, A, Griffiths, TD, Jaros, E, McKeith, IG, Burn, DJ, Richardson, A, et al. Pathological correlates of frontotemporal lobar degeneration in the elderly. Acta Neuropathol. 2011;121(3):365–71.CrossRefGoogle ScholarPubMed
Mackenzie, I, Neumann, M, Bigio, E, Cairns, N, Alafuzoff, I, Kril, J, et al. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol. 2010;119(1):14.CrossRefGoogle ScholarPubMed
Neary, D, Snowden, JS, Gustafson, L, Passant, U, Stuss, D, Black, S, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998;51(6):1546–54.CrossRefGoogle ScholarPubMed
Gorno-Tempini, ML, Hillis, AE, Weintraub, S, Kertesz, A, Mendez, M, Cappa, SF, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):1006–14.CrossRefGoogle ScholarPubMed
Rascovsky, K, Hodges, JR, Knopman, D, Mendez, MF, Kramer, JH, Neuhaus, J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(Pt 9):2456–77.Google ScholarPubMed
Schroeter, ML, Raczka, K, Neumann, J, von Cramon, DY. Neural networks in frontotemporal dementia – A meta-analysis. Neurobiol Aging. 2006;29(3):418–26.CrossRefGoogle ScholarPubMed
Perry, RJ, Graham, A, Williams, G, Rosen, H, Erzinclioglu, S, Weiner, M, et al. Patterns of frontal lobe atrophy in frontotemporal dementia: a volumetric MRI study. Dement Geriatr Cogn Disord. 2006;22(4):278–87.CrossRefGoogle ScholarPubMed
Seeley, WW, Crawford, R, Rascovsky, K, Kramer, JH, Weiner, M, Miller, BL, et al. Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. Arch Neurol. 2008;65(2):249–55.CrossRefGoogle ScholarPubMed
Broe, M, Hodges, JR, Schofield, E, Shepherd, CE, Kril, JJ, Halliday, GM. Staging disease severity in pathologically confirmed cases of frontotemporal dementia. Neurology. 2003;60(6):1005–11.CrossRefGoogle ScholarPubMed
Seeley, WW, Carlin, DA, Allman, JM, Macedo, MN, Bush, C, Miller, BL, et al. Early frontotemporal dementia targets neurons unique to apes and humans. Ann Neurol. 2006;60(6):660–7.CrossRefGoogle ScholarPubMed
Kim, EJ, Sidhu, M, Gaus, SE, Huang, EJ, Hof, PR, Miller, BL, et al. Selective frontoinsular von Economo neuron and fork cell loss in early behavioral variant frontotemporal dementia. Cereb Cortex. 2012;22(2):251–9.Google ScholarPubMed
Santillo, AF, Englund, E. Greater loss of von Economo neurons than loss of layer II and III neurons in behavioral variant frontotemporal dementia. Am J Neurodegen Dis. 2014;3(2):6471.CrossRefGoogle ScholarPubMed
Santillo, AF, Nilsson, C, Englund, E. von Economo neurones are selectively targeted in frontotemporal dementia. Neuropathol Appl Neurobiol. 2013;39(5):572–9.CrossRefGoogle ScholarPubMed
Evrard, HC, Forro, T, Logothetis, NK. Von Economo neurons in the anterior insula of the macaque monkey. Neuron. 2012;74(3):482–9.Google ScholarPubMed
Hodges, JR, Patterson, K, Oxbury, S, Funnell, E. Semantic dementia. Progressive fluent aphasia with temporal lobe atrophy. Brain. 1992;115 (Pt 6):1783–806.Google Scholar
Snowden, J. Semantic dementia. In O'Brien, J, Ames, D, Burns, A, eds, Dementia. Second edition. New York: Oxford University Press; 2000. pp. 769–78.CrossRefGoogle ScholarPubMed
Seeley, WW, Bauer, AM, Miller, BL, Gorno-Tempini, ML, Kramer, JH, Weiner, M, et al. The natural history of temporal variant frontotemporal dementia. Neurology. 2005;64(8):1384–90.CrossRefGoogle ScholarPubMed
Thompson, SA, Patterson, K, Hodges, JR. Left/right asymmetry of atrophy in semantic dementia: behavioral-cognitive implications. Neurology. 2003;61(9):1196–203.CrossRefGoogle ScholarPubMed
Guo, CC, Gorno-Tempini, ML, Gesierich, B, Henry, M, Trujillo, A, Shany-Ur, T, et al. Anterior temporal lobe degeneration produces widespread network-driven dysfunction. Brain. 2013;136(Pt 10):2979–91.CrossRefGoogle ScholarPubMed
Josephs, KA, Duffy, JR, Strand, EA, Whitwell, JL, Layton, KF, Parisi, JE, et al. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain. 2006;129(Pt 6):1385–98.CrossRefGoogle ScholarPubMed
Neary, D, Snowden, JS, Mann, DM, Northen, B, Goulding, PJ, Macdermott, N. Frontal lobe dementia and motor neuron disease. J Neurol Neurosurg Psychiatry. 1990;53(1):2332.CrossRefGoogle ScholarPubMed
Boxer, AL, Geschwind, MD, Belfor, N, Gorno-Tempini, ML, Schauer, GF, Miller, BL, et al. Patterns of brain atrophy that differentiate corticobasal degeneration syndrome from progressive supranuclear palsy. Arch Neurol. 2006;63(1):81–6.CrossRefGoogle ScholarPubMed
Steele, JC, Richardson, JC, Olszewski, J. Progressive supranuclear palsy. Arch Neurol. 1964;10(April):333–60.CrossRefGoogle ScholarPubMed
Gardner, RC, Boxer, AL, Trujillo, A, Mirsky, JB, Guo, CC, Gennatas, ED, et al. Intrinsic connectivity network disruption in progressive supranuclear palsy. Ann Neurol. 2013;73(5):603–16.CrossRefGoogle ScholarPubMed
Braak, H, Del Tredici, K, Rüb, U, de Vos, R, Jansen Steur, E, Braak, E. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging. 2003;24(2):197211.CrossRefGoogle ScholarPubMed
Miki, Y, Mori, F, Tanji, K, Kurotaki, H, Kakita, A, Takahashi, H, et al. An autopsy case of incipient Pick's disease: immunohistochemical profile of early-stage Pick body formation. Neuropathology. 2014;34(4):386–91.CrossRefGoogle ScholarPubMed
Mahoney, CJ, Beck, J, Rohrer, JD, Lashley, T, Mok, K, Shakespeare, T, et al. Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features. Brain. 2012;135(Pt 3):736–50.CrossRefGoogle ScholarPubMed
Lee, SE, Khazenzon, AM, Trujillo, AJ, Guo, CC, Yokoyama, JS, Sha, SJ, et al. Altered network connectivity in frontotemporal dementia with C9ORF72 hexanucleotide repeat expansion. Brain. 2014;137(Pt 11):3047–60.CrossRefGoogle ScholarPubMed
Munoz, DG, Dickson, DW, Bergeron, C, Mackenzie, IR, Delacourte, A, Zhukareva, V. The neuropathology and biochemistry of frontotemporal dementia. Ann Neurol. 2003;54 Suppl 5:S24–8.CrossRefGoogle ScholarPubMed
Dickson, DW. Pick's disease: a modern approach. Brain Pathol. 1998;8(2):339–54.CrossRefGoogle Scholar
Probst, A, Tolnay, M, Langui, D, Goedert, M, Spillantini, MG. Pick's disease: hyperphosphorylated tau protein segregates to the somatoaxonal compartment. Acta Neuropathol (Berl). 1996;92(6):588–96.CrossRefGoogle ScholarPubMed
Feany, MB, Mattiace, LA, Dickson, DW. Neuropathologic overlap of progressive supranuclear palsy, Pick's disease and corticobasal degeneration. J Neuropathol Exp Neurol. 1996;55(1):5367.Google ScholarPubMed
Feany, MB, Dickson, DW. Widespread cytoskeletal pathology characterizes corticobasal degeneration. Am J Pathol. 1995;146(6):1388–96.CrossRefGoogle ScholarPubMed
Lantos, PL. The neuropathology of progressive supranuclear palsy. J Neural Transm Suppl. 1994;42:137–52.CrossRefGoogle Scholar
Komori, T, Arai, N, Oda, M, Nakayama, H, Mori, H, Yagishita, S, et al. Astrocytic plaques and tufts of abnormal fibers do not coexist in corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol (Berl). 1998;96(4):401–8.CrossRefGoogle Scholar
Houlden, H, Baker, M, Morris, HR, MacDonald, N, Pickering-Brown, S, Adamson, J, et al. Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype. Neurology. 2001;56(12):1702–6.Google Scholar
Wilhelmsen, K, Lynch, T, Pavlou, E. Localization of disinhibition-dementia-parkinsonism-amyotrophy complex to 17q21-22. Am J Hum Gen. 1994;6:1159–65.Google ScholarPubMed
Foster, NL, Wilhelmsen, K, Sima, AA, Jones, MZ, D'Amato, CJ, Gilman, S. Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Conference participants. Ann Neurol. 1997;41(6):706–15.CrossRefGoogle ScholarPubMed
Bird, TD, Wijsman, EM, Nochlin, D, Leehey, M, Sumi, SM, Payami, H, et al. Chromosome 17 and hereditary dementia: linkage studies in three non-Alzheimer families and kindreds with late-onset FAD. Neurology. 1997;48(4):949–54.CrossRefGoogle ScholarPubMed
Heutink, P, Stevens, M, Rizzu, P, Bakker, E, Kros, JM, Tibben, A, et al. Hereditary frontotemporal dementia is linked to chromosome 17q21-q22: a genetic and clinicopathological study of three Dutch families. Ann Neurol. 1997;41(2):150–9.CrossRefGoogle ScholarPubMed
McKee, AC, Stern, RA, Nowinski, CJ, Stein, TD, Alvarez, VE, Daneshvar, DH, et al. The spectrum of disease in chronic traumatic encephalopathy. Brain. 2013;136(Pt 1):4364.CrossRefGoogle ScholarPubMed
Bigio, EH, Lipton, AM, Yen, SH, Hutton, ML, Baker, M, Nacharaju, P, et al. Frontal lobe dementia with novel tauopathy: sporadic multiple system tauopathy with dementia. J Neuropathol Exp Neurol. 2001;60(4):328–41.CrossRefGoogle ScholarPubMed
Ferrer, I, Santpere, G, van Leeuwen, FW. Argyrophilic grain disease. Brain. 2008;131(Pt 6):1416–32.CrossRefGoogle ScholarPubMed
Grinberg, LT, Wang, X, Wang, C, Sohn, PD, Theofilas, P, Sidhu, M, et al. Argyrophilic grain disease differs from other tauopathies by lacking tau acetylation. Acta Neuropathol. 2013;125(4):581–93.CrossRefGoogle ScholarPubMed
Ahmed, Z, Bigio, EH, Budka, H, Dickson, DW, Ferrer, I, Ghetti, B, et al. Globular glial tauopathies (GGT): consensus recommendations. Acta Neuropathol. 2013;126(4):537–44.CrossRefGoogle ScholarPubMed
Neumann, M, Sampathu, DM, Kwong, LK, Truax, AC, Micsenyi, MC, Chou, TT, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314(5796):130–3.CrossRefGoogle ScholarPubMed
Arai, T, Hasegawa, M, Akiyama, H, Ikeda, K, Nonaka, T, Mori, H, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2006;351(3):602–11.CrossRefGoogle ScholarPubMed
Davidson, Y, Kelley, T, Mackenzie, IR, Pickering-Brown, S, Du Plessis, D, Neary, D, et al. Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain the TAR DNA-binding protein, TDP-43. Acta Neuropathol (Berl). 2007;113(5):521–33.CrossRefGoogle ScholarPubMed
Mackenzie, IR, Neumann, M, Baborie, A, Sampathu, DM, Du Plessis, D, Jaros, E, et al. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol. 2011;122(1):111–13.CrossRefGoogle ScholarPubMed
Sampathu, D, Neumann, M, Kwong, L, Chou, T, Micsenyi, M, Truax, A, et al. Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. Am J Pathol. 2006;169(4):1343–52.CrossRefGoogle ScholarPubMed
Mackenzie, IR, Baborie, A, Pickering-Brown, S, Du Plessis, D, Jaros, E, Perry, RH, et al. Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype. Acta Neuropathol. 2006;112(5):539–49.CrossRefGoogle ScholarPubMed
Baker, M, Mackenzie, IR, Pickering-Brown, SM, Gass, J, Rademakers, R, Lindholm, C, et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature. 2006;442(7105):916–19.CrossRefGoogle ScholarPubMed
Cruts, M, Gijselinck, I, van der Zee, J, Engelborghs, S, Wils, H, Pirici, D, et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature. 2006;442(7105):920–4.CrossRefGoogle ScholarPubMed
Mukherjee, O, Pastor, P, Cairns, NJ, Chakraverty, S, Kauwe, JS, Shears, S, et al. HDDD2 is a familial frontotemporal lobar degeneration with ubiquitin-positive, tau-negative inclusions caused by a missense mutation in the signal peptide of progranulin. Ann Neurol. 2006;60(3):314–22.Google ScholarPubMed
Schymick, JC, Yang, Y, Andersen, PM, Vonsattel, JP, Greenway, M, Momeni, P, et al. Progranulin mutations and amyotrophic lateral sclerosis or amyotrophic lateral sclerosis-frontotemporal dementia phenotypes. J Neurol Neurosurg Psychiatry. 2007;78(7):754–6.CrossRefGoogle Scholar
Gass, J, Cannon, A, Mackenzie, IR, Boeve, B, Baker, M, Adamson, J, et al. Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. Hum Mol Genet. 2006;15(20):29883001.CrossRefGoogle ScholarPubMed
Barmada, SJ, Finkbeiner, S. Pathogenic TARDBP mutations in amyotrophic lateral sclerosis and frontotemporal dementia: disease-associated pathways. Rev Neurosci. 2010;21(4):251–72.CrossRefGoogle ScholarPubMed
Borroni, B, Bonvicini, C, Alberici, A, Buratti, E, Agosti, C, Archetti, S, et al. Mutation within TARDBP leads to frontotemporal dementia without motor neuron disease. Hum Mutat. 2009;30(11):e974–83.CrossRefGoogle Scholar
Borghero, G, Floris, G, Cannas, A, Marrosu, MG, Murru, MR, Costantino, E, et al. A patient carrying a homozygous p.A382T TARDBP missense mutation shows a syndrome including ALS, extrapyramidal symptoms, and FTD. Neurobiol Aging. 2011;32(12):2327.e1–5.CrossRefGoogle ScholarPubMed
DeJesus-Hernandez, M, Mackenzie, IR, Boeve, BF, Boxer, AL, Baker, M, Rutherford, NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245–56.CrossRefGoogle ScholarPubMed
Renton, AE, Majounie, E, Waite, A, Simón-Sánchez, J, Rollinson, S, Gibbs, JR, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72(2):257–68.CrossRefGoogle ScholarPubMed
Simón-Sánchez, J, Dopper, EG, Cohn-Hokke, PE, Hukema, RK, Nicolaou, N, Seelaar, H, et al. The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions. Brain. 2012;135(Pt 3):723–35.CrossRefGoogle Scholar
Donnelly, CJ, Zhang, PW, Pham, JT, Haeusler, AR, Mistry, NA, Vidensky, S, et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by anti-sense intervention. Neuron. 2013;80(2):415–28.CrossRefGoogle ScholarPubMed
Lee, YB, Chen, HJ, Peres, JN, Gomez-Deza, J, Attig, J, Stalekar, M, et al. Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Reports. 2013;5(5):1178–86.CrossRefGoogle ScholarPubMed
Mori, K, Lammich, S, Mackenzie, IR, Forne, I, Zilow, S, Kretzschmar, H, et al. hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9ORF72 mutations. Acta Neuropathol. 2013;125(3):413–23.CrossRefGoogle ScholarPubMed
Sareen, D, O'Rourke, JG, Meera, P, Muhammad, AK, Grant, S, Simpkinson, M, et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Science Translational Medicine. 2013;5(208):208ra149.CrossRefGoogle Scholar
Su, Z, Zhang, Y, Gendron, TF, Bauer, PO, Chew, J, Yang, WY, et al. Discovery of a biomarker and lead small molecules to target r(GGGGCC)-associated defects in c9FTD/ALS. Neuron. 2014;83(5):1043–50.CrossRefGoogle ScholarPubMed
Kwiatkowski, TJ, Bosco, DA, Leclerc, AL, Tamrazian, E, Vanderburg, CR, Russ, C, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009;323(5918):1205–8.CrossRefGoogle ScholarPubMed
Vance, C, Rogelj, B, Hortobágyi, T, De Vos, KJ, Nishimura, AL, Sreedharan, J, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009;323(5918):1208–11.CrossRefGoogle ScholarPubMed
Fujii, R, Takumi, T. TLS facilitates transport of mRNA encoding an actin-stabilizing protein to dendritic spines. J Cell Sci. 2005;118(Pt 24):5755–65.CrossRefGoogle ScholarPubMed
Neumann, M, Rademakers, R, Roeber, S, Baker, M, Kretzschmar, H, Mackenzie, I. A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain. 2009;132(Pt 11):2922–31.CrossRefGoogle ScholarPubMed
Neumann, M, Roeber, S, Kretzschmar, HA, Rademakers, R, Baker, M, Mackenzie, IR. Abundant FUS-immunoreactive pathology in neuronal intermediate filament inclusion disease. Acta Neuropathol. 2009;118(5):605–16.CrossRefGoogle ScholarPubMed
Munoz, DG, Neumann, M, Kusaka, H, Yokota, O, Ishihara, K, Terada, S, et al. FUS pathology in basophilic inclusion body disease. Acta Neuropathol. 2009;118(5):617–27.CrossRefGoogle ScholarPubMed
Roeber, S, Mackenzie, IR, Kretzschmar, HA, Neumann, M. TDP-43-negative FTLD-U is a significant new clinico-pathological subtype of FTLD. Acta Neuropathol. 2008;116(2):147–57.CrossRefGoogle ScholarPubMed
Cairns, NJ, Zhukareva, V, Uryu, K, Zhang, B, Bigio, E, Mackenzie, IR, et al. Alpha-internexin is present in the pathological inclusions of neuronal intermediate filament inclusion disease. Am J Pathol. 2004;164(6):2153–61.CrossRefGoogle ScholarPubMed
Cairns, NJ, Grossman, M, Arnold, SE, Burn, DJ, Jaros, E, Perry, RH, et al. Clinical and neuropathologic variation in neuronal intermediate filament inclusion disease. Neurology. 2004;63(8):1376–84.CrossRefGoogle ScholarPubMed
Josephs, KA, Uchikado, H, McComb, RD, Bashir, R, Wszolek, Z, Swanson, J, et al. Extending the clinicopathological spectrum of neurofilament inclusion disease. Acta Neuropathol. 2005;109(4):427–32.CrossRefGoogle ScholarPubMed
Mackenzie, IR, Neumann, M. FET proteins in frontotemporal dementia and amyotrophic lateral sclerosis. Brain Res. 2012;1462:40–3.CrossRefGoogle ScholarPubMed
Holm, IE, Englund, E, Mackenzie, IR, Johannsen, P, Isaacs, AM. A reassessment of the neuropathology of frontotemporal dementia linked to chromosome 3. J Neuropathol Exp Neurol. 2007;66(10):884–91.CrossRefGoogle ScholarPubMed
Hodges, JR, Davies, RR, Xuereb, JH, Casey, B, Broe, M, Bak, TH, et al. Clinicopathological correlates in frontotemporal dementia. Ann Neurol. 2004;56(3):399406.CrossRefGoogle ScholarPubMed
Knibb, JA, Xuereb, JH, Patterson, K, Hodges, JR. Clinical and pathological characterization of progressive aphasia. Ann Neurol. 2006;59(1):156–65.CrossRefGoogle ScholarPubMed
Davies, RR, Hodges, JR, Kril, JJ, Patterson, K, Halliday, GM, Xuereb, JH. The pathological basis of semantic dementia. Brain. 2005;128(Pt 9):1984–95.CrossRefGoogle ScholarPubMed
Gorno-Tempini, ML, Murray, RC, Rankin, KP, Weiner, MW, Miller, BL. Clinical, cognitive and anatomical evolution from nonfluent progressive aphasia to corticobasal syndrome: a case report. Neurocase. 2004;10(6):426–36.CrossRefGoogle ScholarPubMed
Caso, F, Mandelli, ML, Henry, M, Gesierich, B, Bettcher, BM, Ogar, J, et al. In vivo signatures of nonfluent/agrammatic primary progressive aphasia caused by FTLD pathology. Neurology. 2014;82(3):239–47.CrossRefGoogle ScholarPubMed
Hassan, A, Whitwell, JL, Josephs, KA. The corticobasal syndrome-Alzheimer's disease conundrum. Expert Rev Neurother. 2011;11(11):1569–78.CrossRefGoogle ScholarPubMed
Shelley, BP, Hodges, JR, Kipps, CM, Xuereb, JH, Bak, TH. Is the pathology of corticobasal syndrome predictable in life? Mov Disord. 2009;24(11):1593–9.CrossRefGoogle ScholarPubMed
Williams, DR, Holton, JL, Strand, C, Pittman, A, de Silva, R, Lees, AJ, et al. Pathological tau burden and distribution distinguishes progressive supranuclear palsy-parkinsonism from Richardson's syndrome. Brain. 2007;130(Pt 6):1566–76.Google Scholar
Folstein, S. Huntington's Disease: A Disorder of Families. Baltimore: Johns Hopkins University Press; 1989.CrossRefGoogle ScholarPubMed
Feigin, A, Kieburtz, K, Bordwell, K, Como, P, Steinberg, K, Sotack, J, et al. Functional decline in Huntington's disease. Mov Disord. 1995;10(2):211–14.CrossRefGoogle ScholarPubMed
Zakzanis, KK. The subcortical dementia of Huntington's disease. J Clin Exp Neuropsychol. 1998;20(4):565–78.CrossRefGoogle ScholarPubMed
Mendez, MF. Huntington's disease: update and review of neuropsychiatric aspects. Int J Psychiatry Med. 1994;24(3):189208.CrossRefGoogle ScholarPubMed
Berrios, GE, Wagle, AC, Markova, IS, Wagle, SA, Rosser, A, Hodges, JR. Psychiatric symptoms in neurologically asymptomatic Huntington's disease gene carriers: a comparison with gene negative at risk subjects. Acta Psychiatr Scand. 2002;105(3):224–30.CrossRefGoogle ScholarPubMed
Vonsattel, JP, DiFiglia, M. Huntington disease. J Neuropathol Exp Neurol. 1998;57(5):369–84.CrossRefGoogle ScholarPubMed
Graveland, GA, Williams, RS, DiFiglia, M. Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington's disease. Science. 1985;227(4688):770–3.CrossRefGoogle ScholarPubMed
Vonsattel, J-P, Myers, RH, Stevens, TJ, Ferrante, RJ, Bird, ED, Richardson, EP. Neuropathological classification of Huntington's disease. J Neuropath Exp Neurol. 1985;44:559–77.Google Scholar
The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell. 1993;72:971–83.CrossRefGoogle ScholarPubMed
Andrew, SE, Goldberg, YP, Kremer, B, Telenius, H, Theilmann, J, Adam, S, et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nat Genet. 1993;4(4):398403.CrossRefGoogle ScholarPubMed
Duyao, M, Ambrose, C, Myers, R, Novelletto, A, Persichetti, F, Frontali, M, et al. Trinucleotide repeat length instability and age of onset in Huntington's disease. Nat Genet. 1993;4(4):387–92.CrossRefGoogle Scholar
Rubinsztein, DC, Barton, DE, Davison, BC, Ferguson-Smith, MA. Analysis of the huntingtin gene reveals a trinucleotide-length polymorphism in the region of the gene that contains two CCG-rich stretches and a correlation between decreased age of onset of Huntington's disease and CAG repeat number. Hum Mol Genet. 1993;2(10):1713–15.CrossRefGoogle ScholarPubMed
Snell, RG, MacMillan, JC, Cheadle, JP, Fenton, I, Lazarou, LP, Davies, P, et al. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nat Genet. 1993;4(4):393–7.CrossRefGoogle ScholarPubMed
Li, SH, Schilling, G, Young, WS 3rd, Li, XJ, Margolis, RL, Stine, OC, et al. Huntington's disease gene (IT15) is widely expressed in human and rat tissues. Neuron. 1993;11(5):985–93.CrossRefGoogle ScholarPubMed
Strong, TV, Tagle, DA, Valdes, JM, Elmer, LW, Boehm, K, Swaroop, M, et al. Widespread expression of the human and rat Huntington's disease gene in brain and nonneural tissues. Nat Genet. 1993;5(3):259–65.CrossRefGoogle ScholarPubMed
Bhide, PG, Day, M, Sapp, E, Schwarz, C, Sheth, A, Kim, J, et al. Expression of normal and mutant huntingtin in the developing brain. J Neurosci. 1996;16(17):5523–35.CrossRefGoogle ScholarPubMed
Duyao, MP, Auerbach, AB, Ryan, A, Persichetti, F, Barnes, GT, McNeil, SM, et al. Inactivation of the mouse Huntington's disease gene homolog Hdh. Science. 1995;269(5222):407–10.CrossRefGoogle ScholarPubMed
Zuccato, C, Ciammola, A, Rigamonti, D, Leavitt, BR, Goffredo, D, Conti, L, et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease. Science. 2001;293(5529):493–8.CrossRefGoogle ScholarPubMed
Gauthier, LR, Charrin, BC, Borrell-Pages, M, Dompierre, JP, Rangone, H, Cordelieres, FP, et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell. 2004;118(1):127–38.CrossRefGoogle ScholarPubMed
DiFiglia, M, Sapp, E, Chase, KO, Davies, SW, Bates, GP, Vonsattel, JP, et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science. 1997;277(5334):1990–3.CrossRefGoogle ScholarPubMed
Gutekunst, CA, Li, SH, Yi, H, Mulroy, JS, Kuemmerle, S, Jones, R, et al. Nuclear and neuropil aggregates in Huntington's disease: relationship to neuropathology. J Neurosci. 1999;19(7):2522–34.CrossRefGoogle ScholarPubMed
Puoti, G, Bizzi, A, Forloni, G, Safar, JG, Tagliavini, F, Gambetti, P. Sporadic human prion diseases: molecular insights and diagnosis. Lancet Neurol. 2012;11(7):618–28.CrossRefGoogle ScholarPubMed
Cyngiser, TA. Creutzfeldt-Jakob disease: a disease overview. Am J Electroneurodiagnostic Technol. 2008;48(3):199208.CrossRefGoogle ScholarPubMed
Zerr, I, Kallenberg, K, Summers, DM, Romero, C, Taratuto, A, Heinemann, U, et al. Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Brain. 2009;132(Pt 10):2659–68.CrossRefGoogle ScholarPubMed
Vitali, P, Maccagnano, E, Caverzasi, E, Henry, RG, Haman, A, Torres-Chae, C, et al. Diffusion-weighted MRI hyperintensity patterns differentiate CJD from other rapid dementias. Neurology. 2011;76(20):1711–19.CrossRefGoogle ScholarPubMed
Johnson, RT. Prion diseases. Lancet Neurol. 2005;4(10):635–42.CrossRefGoogle ScholarPubMed
Venneti, S. Prion diseases. Clin Lab Med. 2010;30(1):293309.CrossRefGoogle ScholarPubMed
Ironside, JW. Variant Creutzfeldt-Jakob disease. Haemophilia. 2010;16 (Suppl 5):175–80.Google ScholarPubMed
Liberski, PP, Brown, P. Kuru – fifty years later. Neurol Neurochir Pol. 2007;41(6):548–56.Google ScholarPubMed
Budka, H, Aguzzi, A, Brown, P, Brucher, JM, Bugiani, O, Gullotta, F, et al. Neuropathological diagnostic criteria for Creutzfeldt-Jakob disease (CJD) and other human spongiform encephalopathies (prion diseases). Brain Pathol. 1995;5(4):459–66.CrossRefGoogle ScholarPubMed
Parchi, P, Strammiello, R, Giese, A, Kretzschmar, H. Phenotypic variability of sporadic human prion disease and its molecular basis: past, present, and future. Acta Neuropathol. 2011;121(1):91112.CrossRefGoogle ScholarPubMed
Ironside, JW, McCardle, L, Horsburgh, A, Lim, Z, Head, MW. Pathological diagnosis of variant Creutzfeldt-Jakob disease. APMIS. 2002;110(1):7987.CrossRefGoogle ScholarPubMed
Satoh, K, Muramoto, T, Tanaka, T, Kitamoto, N, Ironside, JW, Nagashima, K, et al. Association of an 11–12 kDa protease-resistant prion protein fragment with subtypes of dura graft-associated Creutzfeldt-Jakob disease and other prion diseases. J Gen Virol. 2003;84(Pt 10):2885–93.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×