Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T16:35:41.325Z Has data issue: false hasContentIssue false

Chapter 5 - Genetic approaches to neurodegenerative disease

Published online by Cambridge University Press:  01 December 2016

Bruce L. Miller
Affiliation:
University of California, San Francisco
Bradley F. Boeve
Affiliation:
Mayo Clinic, Minnesota
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Manolio, TA. Bringing genome-wide association findings into clinical use. Nature Reviews Genetics. 2013 Aug;14(8):549–58.Google ScholarPubMed
Boxer, AL, Gold, M, Huey, E, Gao, FB, Burton, EA, Chow, T, et al. Frontotemporal degeneration, the next therapeutic frontier: molecules and animal models for frontotemporal degeneration drug development. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association. 2013 Mar;9(2):176–88.CrossRefGoogle ScholarPubMed
Goldman, JS, Farmer, JM, Wood, EM, Johnson, JK, Boxer, A, Neuhaus, J, et al. Comparison of family histories in FTLD subtypes and related tauopathies. Neurology. 2005 Dec 13;65(11):1817–9.CrossRefGoogle ScholarPubMed
Cruts, M, Theuns, J, Van Broeckhoven, C. Locus-specific mutation databases for neurodegenerative brain diseases. Human Mutation. 2012 Sep;33(9):1340–4.CrossRefGoogle ScholarPubMed
Cohn-Hokke, PE, Elting, MW, Pijnenburg, YA, van Swieten, JC. Genetics of dementia: update and guidelines for the clinician. American Journal of Medical Genetics Part B, Neuropsychiatric Genetics: The Official Publication of the International Society of Psychiatric Genetics. 2012 Sep;159B(6):628–43.CrossRefGoogle ScholarPubMed
Devi, G, Ottman, R, Tang, MX, Marder, K, Stern, Y, Mayeux, R. Familial aggregation of Alzheimer disease among whites, African Americans, and Caribbean Hispanics in northern Manhattan. Archives of Neurology. 2000 Jan;57(1):72–7.CrossRefGoogle Scholar
Vardarajan, BN, Faber, KM, Bird, TD, Bennett, DA, Rosenberg, R, Boeve, BF, et al. Age-specific incidence rates for dementia and Alzheimer disease in NIA-LOAD/NCRAD and EFIGA families: National Institute on Aging Genetics Initiative for Late-Onset Alzheimer Disease/National Cell Repository for Alzheimer Disease (NIA-LOAD/NCRAD) and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA). JAMA Neurology. 2014 Mar;71(3):315–23.CrossRefGoogle ScholarPubMed
Cruchaga, C, Haller, G, Chakraverty, S, Mayo, K, Vallania, FL, Mitra, RD, et al. Rare variants in APP, PSEN1 and PSEN2 increase risk for AD in late-onset Alzheimer’s disease families. PloS One. 2012;7(2):e31039.CrossRefGoogle ScholarPubMed
Silverman, JM, Ciresi, G, Smith, CJ, Marin, DB, Schnaider-Beeri, M. Variability of familial risk of Alzheimer disease across the late life span. Archives of General Psychiatry. 2005 May;62(5):565–73.CrossRefGoogle ScholarPubMed
Hardy, J. A hundred years of Alzheimer’s disease research. Neuron. 2006 Oct 5;52(1):313.CrossRefGoogle ScholarPubMed
Corder, EH, Saunders, AM, Strittmatter, WJ, Schmechel, DE, Gaskell, PC, Small, GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late-onset families. Science. 1993 Aug 13;261(5123):921–3.Google ScholarPubMed
Owen, F, Poulter, M, Lofthouse, R, Collinge, J, Crow, TJ, Risby, D, et al. Insertion in prion protein gene in familial Creutzfeldt-Jakob disease. Lancet. 1989 Jan 7;1(8628):51–2.CrossRefGoogle Scholar
The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993 Mar 26;72(6):971–83.CrossRefGoogle ScholarPubMed
Goate, A, Chartier-Harlin, MC, Mullan, M, Brown, J, Crawford, F, Fidani, L, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature. 1991 Feb 21;349(6311):704–6.CrossRefGoogle ScholarPubMed
Ng, SB, Turner, EH, Robertson, PD, Flygare, SD, Bigham, AW, Lee, C, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009 Sep 10;461(7261):272–6.CrossRefGoogle ScholarPubMed
Venter, JC, Adams, MD, Myers, EW, Li, PW, Mural, RJ, Sutton, GG, et al. The sequence of the human genome. Science. 2001 Feb 16;291(5507):1304–51.CrossRefGoogle ScholarPubMed
Flicek, P, Amode, MR, Barrell, D, Beal, K, Billis, K, Brent, S, et al. Ensembl 2014. Nucleic Acids Research. 2014 Jan 1;42(1):D749–55.CrossRefGoogle Scholar
Consortium, EP, Bernstein, BE, Birney, E, Dunham, I, Green, ED, Gunter, C, et al. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012 Sep 6;489(7414):5774.CrossRefGoogle ScholarPubMed
Levine, M, Cattoglio, C, Tjian, R. Looping back to leap forward: transcription enters a new era. Cell. 2014 Mar 27;157(1):1325.CrossRefGoogle ScholarPubMed
Maston, GA, Evans, SK, Green, MR. Transcriptional regulatory elements in the human genome. Annual Review of Genomics and Human Genetics. 2006;7:2959.CrossRefGoogle ScholarPubMed
Sweatt, JD. The emerging field of neuroepigenetics. Neuron. 2013 Oct 30;80(3):624–32.CrossRefGoogle ScholarPubMed
Jirtle, RL, Skinner, MK. Environmental epigenomics and disease susceptibility. Nature Reviews Genetics. 2007 Apr;8(4):253–62.CrossRefGoogle ScholarPubMed
Qureshi, IA, Mehler, MF. Epigenetic mechanisms governing the process of neurodegeneration. Molecular Aspects of Medicine. 2013 Jul–Aug;34(4):875–82.CrossRefGoogle ScholarPubMed
Morris, KV, Mattick, JS. The rise of regulatory RNA. Nature Reviews Genetics. 2014 Jun;15(6):423–37.CrossRefGoogle ScholarPubMed
Cech, TR, Steitz, JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014 Mar 27;157(1):7794.CrossRefGoogle ScholarPubMed
Salta, E, De Strooper, B. Non-coding RNAs with essential roles in neurodegenerative disorders. Lancet Neurology. 2012 Feb;11(2):189200.CrossRefGoogle ScholarPubMed
Johnson, R, Noble, W, Tartaglia, GG, Buckley, NJ. Neurodegeneration as an RNA disorder. Progress in Neurobiology. 2012 Dec;99(3):293315.CrossRefGoogle ScholarPubMed
Qureshi, IA, Mehler, MF. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nature Reviews Neuroscience. 2012 Aug;13(8):528–41.CrossRefGoogle ScholarPubMed
Pastori, C, Wahlestedt, C. Involvement of long noncoding RNAs in diseases affecting the central nervous system. RNA Biology. 2012 Jun;9(6):860–70.CrossRefGoogle ScholarPubMed
Levy, S, Sutton, G, Ng, PC, Feuk, L, Halpern, AL, Walenz, BP, et al. The diploid genome sequence of an individual human. PLoS Biology. 2007 Sep 4;5(10):e254.Google Scholar
Genomes Project, C, Abecasis, GR, Auton, A, Brooks, LD, DePristo, MA, Durbin, RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012 Nov 1;491(7422):5665.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
den Dunnen, JT, Antonarakis, SE. Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Human Mutation. 2000;15(1):712.CrossRefGoogle ScholarPubMed
Mullaney, JM, Mills, RE, Pittard, WS, Devine, SE. Small insertions and deletions (INDELs) in human genomes. Human Molecular Genetics. 2010 Oct 15;19(R2):R131–6.Google Scholar
Wright, AF. Genetic Variation: Polymorphisms and Mutations. eLS: John Wiley & Sons, Ltd; 2001.CrossRefGoogle ScholarPubMed
Feuk, L, Marshall, CR, Wintle, RF, Scherer, SW. Structural variants: changing the landscape of chromosomes and design of disease studies. Human Molecular Genetics. 2006 Apr 15;15 Spec No 1:R57–66.CrossRefGoogle ScholarPubMed
Wiseman, FK, Alford, KA, Tybulewicz, VL, Fisher, EM. Down syndrome – recent progress and future prospects. Human Molecular Genetics. 2009 Apr 15;18(R1):R75–83.CrossRefGoogle ScholarPubMed
Cheung, VG, Burdick, JT, Hirschmann, D, Morley, M. Polymorphic variation in human meiotic recombination. American Journal of Human Genetics. 2007 Mar;80(3):526–30.CrossRefGoogle ScholarPubMed
Slatkin, M. Linkage disequilibrium – understanding the evolutionary past and mapping the medical future. Nature Reviews Genetics. 2008 Jun;9(6):477–85.Google Scholar
International HapMap, C, Altshuler, DM, Gibbs, RA, Peltonen, L, Altshuler, DM, Gibbs, RA, et al. Integrating common and rare genetic variation in diverse human populations. Nature. 2010 Sep 2;467(7311):52–8.CrossRefGoogle ScholarPubMed
Bush, WS, Moore, JH. Chapter 11: Genome-wide association studies. PLoS Computational Biology. 2012;8(12):e1002822.Google Scholar
Gibson, G. Rare and common variants: twenty arguments. Nature Reviews Genetics. 2011 Feb;13(2):135–45.CrossRefGoogle ScholarPubMed
Pedersen, NL, Gatz, M, Berg, S, Johansson, B. How heritable is Alzheimer’s disease late in life? Findings from Swedish twins. Annals of Neurology. 2004 Feb;55(2):180–5.CrossRefGoogle ScholarPubMed
Sherrington, R, Rogaev, EI, Liang, Y, Rogaeva, EA, Levesque, G, Ikeda, M, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature. 1995 Jun 29;375(6534):754–60.Google ScholarPubMed
Shen, J, Kelleher, RJ, 3rd. The presenilin hypothesis of Alzheimer’s disease: evidence for a loss-of-function pathogenic mechanism. Proceedings of the National Academy of Sciences of the USA. 2007 Jan 9;104(2):403–9.Google ScholarPubMed
Levy, E, Carman, MD, Fernandez-Madrid, IJ, Power, MD, Lieberburg, I, van Duinen, SG, et al. Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science. 1990 Jun 1;248(4959):1124–6.CrossRefGoogle ScholarPubMed
Hutton, M, Lendon, CL, Rizzu, P, Baker, M, Froelich, S, Houlden, H, et al. Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 1998 Jun 18;393(6686):702–5.CrossRefGoogle ScholarPubMed
Baker, M, Mackenzie, IR, Pickering-Brown, SM, Gass, J, Rademakers, R, Lindholm, C, et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature. 2006 Aug 24;442(7105):916–9.CrossRefGoogle ScholarPubMed
DeJesus-Hernandez, M, Mackenzie, IR, Boeve, BF, Boxer, AL, Baker, M, Rutherford, NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011 Oct 20;72(2):245–56.CrossRefGoogle ScholarPubMed
Abel, O, Powell, JF, Andersen, PM, Al-Chalabi, A. ALSoD: A user-friendly online bioinformatics tool for amyotrophic lateral sclerosis genetics. Human Mutation. 2012 Sep;33(9):1345–51.CrossRefGoogle ScholarPubMed
Rosen, DR, Siddique, T, Patterson, D, Figlewicz, DA, Sapp, P, Hentati, A, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993 Mar 4;362(6415):5962.CrossRefGoogle ScholarPubMed
Deng, HX, Hentati, A, Tainer, JA, Iqbal, Z, Cayabyab, A, Hung, WY, et al. Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science. 1993 Aug 20;261(5124):1047–51.CrossRefGoogle ScholarPubMed
Saccon, RA, Bunton-Stasyshyn, RK, Fisher, EM, Fratta, P. Is SOD1 loss of function involved in amyotrophic lateral sclerosis? Brain: A Journal of Neurology. 2013 Aug;136(Pt 8):2342–58.CrossRefGoogle ScholarPubMed
Nelson, DL, Orr, HT, Warren, ST. The unstable repeats–three evolving faces of neurological disease. Neuron. 2013 Mar 6;77(5):825–43.CrossRefGoogle Scholar
Cooper, DN, Krawczak, M, Polychronakos, C, Tyler-Smith, C, Kehrer-Sawatzki, H. Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Human Genetics. 2013 Oct;132(10):1077–130.CrossRefGoogle ScholarPubMed
Boeve, BF, Hutton, M. Refining frontotemporal dementia with parkinsonism linked to chromosome 17: introducing FTDP-17 (MAPT) and FTDP-17 (PGRN). Archives of Neurology. 2008 Apr;65(4):460–4.Google Scholar
Strachan, T, Read, AP, Strachan, T. Human Molecular Genetics. 4th edn. New York: Garland Science; 2011.CrossRefGoogle ScholarPubMed
Kleinberger, G, Capell, A, Haass, C, Van Broeckhoven, C. Mechanisms of granulin deficiency: lessons from cellular and animal models. Molecular Neurobiology. 2013 Feb;47(1):337–60.CrossRefGoogle ScholarPubMed
Haraksingh, RR, Snyder, MP. Impacts of variation in the human genome on gene regulation. Journal of Molecular Biology. 2013 Nov 1;425(21):3970–7.CrossRefGoogle ScholarPubMed
Spillantini, MG, Goedert, M. Tau pathology and neurodegeneration. Lancet Neurology. 2013 Jun;12(6):609–22.CrossRefGoogle ScholarPubMed
Sleegers, K, Brouwers, N, Gijselinck, I, Theuns, J, Goossens, D, Wauters, J, et al. APP duplication is sufficient to cause early onset Alzheimer’s dementia with cerebral amyloid angiopathy. Brain: a Journal of Neurology. 2006 Nov;129(Pt 11):2977–83.CrossRefGoogle Scholar
Swaminathan, S, Huentelman, MJ, Corneveaux, JJ, Myers, AJ, Faber, KM, Foroud, T, et al. Analysis of copy number variation in Alzheimer’s disease in a cohort of clinically characterized and neuropathologically verified individuals. PloS One. 2012;7(12):e50640.CrossRefGoogle ScholarPubMed
Renton, AE, Majounie, E, Waite, A, Simon-Sanchez, J, Rollinson, S, Gibbs, JR, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011 Oct 20;72(2):257–68.Google ScholarPubMed
Zu, T, Gibbens, B, Doty, NS, Gomes-Pereira, M, Huguet, A, Stone, MD, et al. Non-ATG-initiated translation directed by microsatellite expansions. Proceedings of the National Academy of Sciences of the USA. 2011 Jan 4;108(1):260–5.CrossRefGoogle ScholarPubMed
Ash, PE, Bieniek, KF, Gendron, TF, Caulfield, T, Lin, WL, Dejesus-Hernandez, M, et al. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron. 2013 Feb 20;77(4):639–46.CrossRefGoogle ScholarPubMed
Mori, K, Weng, SM, Arzberger, T, May, S, Rentzsch, K, Kremmer, E, et al. The C9ORF72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science. 2013 Mar 15;339(6125):1335–8.CrossRefGoogle ScholarPubMed
Gitcho, MA, Baloh, RH, Chakraverty, S, Mayo, K, Norton, JB, Levitch, D, et al. TDP-43 A315T mutation in familial motor neuron disease. Annals of Neurology. 2008 Apr;63(4):535–8.CrossRefGoogle ScholarPubMed
Kabashi, E, Valdmanis, PN, Dion, P, Spiegelman, D, McConkey, BJ, Vande Velde, C, et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nature Genetics. 2008 May;40(5):572–4.CrossRefGoogle ScholarPubMed
Sreedharan, J, Blair, IP, Tripathi, VB, Hu, X, Vance, C, Rogelj, B, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science. 2008 Mar 21;319(5870):1668–72.CrossRefGoogle ScholarPubMed
Neale, BM, Sham, PC. The future of association studies: gene-based analysis and replication. American Journal of Human Genetics. 2004 Sep;75(3):353–62.CrossRefGoogle ScholarPubMed
Pulst, SM. Genetic linkage analysis. Archives of Neurology. 1999 Jun;56(6):667–72.CrossRefGoogle ScholarPubMed
Brunham, LR, Hayden, MR. Hunting human disease genes: lessons from the past, challenges for the future. Human Genetics. 2013 Jun;132(6):603–17.CrossRefGoogle ScholarPubMed
Bras, J, Guerreiro, R, Hardy, J. Use of next-generation sequencing and other whole-genome strategies to dissect neurological disease. Nature Reviews Neuroscience. 2012 Jul;13(7):453–64.Google ScholarPubMed
Liu, CC, Kanekiyo, T, Xu, H, Bu, G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nature Reviews Neurology. 2013 Feb;9(2):106–18.CrossRefGoogle Scholar
Genin, E, Hannequin, D, Wallon, D, Sleegers, K, Hiltunen, M, Combarros, O, et al. APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Molecular Psychiatry. 2011 Sep;16(9):903–7.CrossRefGoogle ScholarPubMed
Dewan, A, Liu, M, Hartman, S, Zhang, SS, Liu, DT, Zhao, C, et al. HTRA1 promoter polymorphism in wet age-related macular degeneration. Science. 2006 Nov 10;314(5801):989–92.CrossRefGoogle ScholarPubMed
Sham, PC, Purcell, SM. Statistical power and significance testing in large-scale genetic studies. Nature Reviews Genetics. 2014 May;15(5):335–46.CrossRefGoogle ScholarPubMed
Raychaudhuri, S. Mapping rare and common causal alleles for complex human diseases. Cell. 2011 Sep 30;147(1):5769.CrossRefGoogle ScholarPubMed
McCarthy, MI, Abecasis, GR, Cardon, LR, Goldstein, DB, Little, J, Ioannidis, JP, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nature Reviews Genetics. 2008 May;9(5):356–69.CrossRefGoogle ScholarPubMed
Bettens, K, Sleegers, K, Van Broeckhoven, C. Genetic insights in Alzheimer’s disease. Lancet Neurology. 2013 Jan;12(1):92104.CrossRefGoogle ScholarPubMed
Manolio, TA, Collins, FS, Cox, NJ, Goldstein, DB, Hindorff, LA, Hunter, DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009 Oct 8;461(7265):747–53.CrossRefGoogle ScholarPubMed
Ridge, PG, Mukherjee, S, Crane, PK, Kauwe, JS; Alzheimer’s Disease Genetics Consortium. Alzheimer’s disease: analyzing the missing heritability. PloS One. 2013;8(11):e79771.CrossRefGoogle Scholar
Wang, L, Jia, P, Wolfinger, RD, Chen, X, Zhao, Z. Gene set analysis of genome-wide association studies: methodological issues and perspectives. Genomics. 2011 Jul;98(1):18.CrossRefGoogle ScholarPubMed
Hollingworth, P, Sweet, R, Sims, R, Harold, D, Russo, G, Abraham, R, et al. Genome-wide association study of Alzheimer’s disease with psychotic symptoms. Molecular Psychiatry. 2012 Dec;17(12):1316–27.CrossRefGoogle ScholarPubMed
Martinelli-Boneschi, F, Giacalone, G, Magnani, G, Biella, G, Coppi, E, Santangelo, R, et al. Pharmacogenomics in Alzheimer’s disease: a genome-wide association study of response to cholinesterase inhibitors. Neurobiology of Aging. 2013 Jun;34(6):1711 e7–13.CrossRefGoogle ScholarPubMed
Do, R, Kathiresan, S, Abecasis, GR. Exome sequencing and complex disease: practical aspects of rare variant association studies. Human Molecular Genetics. 2012 Oct 15;21(R1):R1–9.CrossRefGoogle ScholarPubMed
Tanzi, RE. The genetics of Alzheimer disease. Cold Spring Harbor Perspectives in Medicine. 2012 Oct;2(10):a006296.CrossRefGoogle ScholarPubMed
Bertram, L, McQueen, MB, Mullin, K, Blacker, D, Tanzi, RE. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nature Genetics. 2007 Jan;39(1):1723.CrossRefGoogle ScholarPubMed
Lambert, JC, Ibrahim-Verbaas, CA, Harold, D, Naj, AC, Sims, R, Bellenguez, C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nature Genetics. 2013 Dec;45(12):1452–8.CrossRefGoogle ScholarPubMed
Escott-Price, V, Bellenguez, C, Wang, LS, Choi, SH, Harold, D, Jones, L, et al. Gene-wide analysis detects two new susceptibility genes for Alzheimer’s disease. PloS One. 2014;9(6):e94661.CrossRefGoogle ScholarPubMed
Miyashita, A, Koike, A, Jun, G, Wang, LS, Takahashi, S, Matsubara, E, et al. SORL1 is genetically associated with late-onset Alzheimer’s disease in Japanese, Koreans and Caucasians. PloS One. 2013;8(4):e58618.CrossRefGoogle ScholarPubMed
Cruchaga, C, Kauwe, JS, Harari, O, Jin, SC, Cai, Y, Karch, CM, et al. GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer’s disease. Neuron. 2013 Apr 24;78(2):256–68.CrossRefGoogle ScholarPubMed
Morey, M, Fernandez-Marmiesse, A, Castineiras, D, Fraga, JM, Couce, ML, Cocho, JA. A glimpse into past, present, and future DNA sequencing. Molecular Genetics and Metabolism. 2013 Sep-Oct;110(1–2):324.Google Scholar
Wetterstrand, KA. DNA sequencing costs: data from the NHGRI Genome Sequencing Program (GSP) www.genome.gov/sequencingcosts [cited 2014 02–09–2014].CrossRefGoogle ScholarPubMed
Liu, L, Li, Y, Li, S, Hu, N, He, Y, Pong, R, et al. Comparison of next-generation sequencing systems. Journal of Biomedicine & Biotechnology. 2012;2012:251364.CrossRefGoogle ScholarPubMed
Bamshad, MJ, Ng, SB, Bigham, AW, Tabor, HK, Emond, MJ, Nickerson, DA, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nature Reviews Genetics. 2011 Nov;12(11):745–55.CrossRefGoogle ScholarPubMed
Keogh, MJ, Chinnery, PF. Next-generation sequencing for neurological diseases: new hope or new hype? Clinical Neurology and Neurosurgery. 2013 Jul;115(7):948–53.CrossRefGoogle ScholarPubMed
MacArthur, DG, Manolio, TA, Dimmock, DP, Rehm, HL, Shendure, J, Abecasis, GR, et al. Guidelines for investigating causality of sequence variants in human disease. Nature. 2014 Apr 24;508(7497):469–76.CrossRefGoogle ScholarPubMed
Kilpinen, H, Barrett, JC. How next-generation sequencing is transforming complex disease genetics. Trends in Genetics: TIG. 2013 Jan;29(1):2330.CrossRefGoogle ScholarPubMed
Yang, Y, Muzny, DM, Reid, JG, Bainbridge, MN, Willis, A, Ward, PA, et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. The New England Journal of Medicine. 2013 Oct 17;369(16):1502–11.Google ScholarPubMed
Ng, SB, Buckingham, KJ, Lee, C, Bigham, AW, Tabor, HK, Dent, KM, et al. Exome sequencing identifies the cause of a Mendelian disorder. Nature Genetics. 2010 Jan;42(1):30–5.CrossRefGoogle ScholarPubMed
Beck, J, Pittman, A, Adamson, G, Campbell, T, Kenny, J, Houlden, H, et al. Validation of next-generation sequencing technologies in genetic diagnosis of dementia. Neurobiology of Aging. 2014 Jan;35(1):261–5.CrossRefGoogle ScholarPubMed
Zimprich, A, Benet-Pages, A, Struhal, W, Graf, E, Eck, SH, Offman, MN, et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. American Journal of Human Genetics. 2011 Jul 15;89(1):168–75.CrossRefGoogle ScholarPubMed
Guerreiro, R, Bras, J, Wojtas, A, Rademakers, R, Hardy, J, Graff-Radford, N. A nonsense mutation in PRNP associated with clinical Alzheimer’s disease. Neurobiology of Aging. 2014 May 27;35(11):e13–2656, e16.CrossRefGoogle Scholar
Carney, RM, Kohli, MA, Kunkle, BW, Naj, AC, Gilbert, JR, Zuchner, S, et al. Parkinsonism and distinct dementia patterns in a family with the MAPT R406W mutation. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association. 2014 May;10(3):360–5.CrossRefGoogle Scholar
Guerreiro, R, Bilgic, B, Guven, G, Bras, J, Rohrer, J, Lohmann, E, et al. Novel compound heterozygous mutation in TREM2 found in a Turkish frontotemporal dementia-like family. Neurobiology of Aging. 2013 Dec;34(12):2890 e1–5.CrossRefGoogle ScholarPubMed
Sharma, M, Kruger, R, Gasser, T. From genome-wide association studies to next-generation sequencing: lessons from the past and planning for the future. JAMA Neurology. 2014 Jan;71(1):56.CrossRefGoogle ScholarPubMed
Liu, YW, He, YH, Zhang, YX, Cai, WW, Yang, LQ, Xu, LY, et al. Absence of A673T variant in APP gene indicates an alternative protective mechanism contributing to longevity in Chinese individuals. Neurobiology of Aging. 2014 Apr;35(4):935 e11–2.CrossRefGoogle Scholar
Bamne, MN, Demirci, FY, Berman, S, Snitz, BE, Rosenthal, SL, Wang, X, et al. Investigation of an amyloid precursor protein protective mutation (A673T) in a North American case-control sample of late-onset Alzheimer’s disease. Neurobiology of Aging. 2014 Jul;35(7):1779 e15–6.CrossRefGoogle ScholarPubMed
Jonsson, T, Stefansson, H, Steinberg, S, Jonsdottir, I, Jonsson, PV, Snaedal, J, et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. The New England Journal of Medicine. 2013 Jan 10;368(2):107–16.CrossRefGoogle ScholarPubMed
Guerreiro, R, Wojtas, A, Bras, J, Carrasquillo, M, Rogaeva, E, Majounie, E, et al. TREM2 variants in Alzheimer’s disease. The New England Journal of Medicine. 2013 Jan 10;368(2):117–27.Google ScholarPubMed
Guerreiro, R, Hardy, J. TREM2 and neurodegenerative disease. The New England Journal of Medicine. 2013 Oct 17;369(16):1569–70.CrossRefGoogle ScholarPubMed
Cruchaga, C, Karch, CM, Jin, SC, Benitez, BA, Cai, Y, Guerreiro, R, et al. Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer’s disease. Nature. 2014 Jan 23;505(7484):550–4.CrossRefGoogle ScholarPubMed
Benitez, BA, Jin, SC, Guerreiro, R, Graham, R, Lord, J, Harold, D, et al. Missense variant in TREML2 protects against Alzheimer’s disease. Neurobiology of Aging. 2014 Jun;35(6):1510 e19–26.CrossRefGoogle ScholarPubMed
MacArthur, DG, Balasubramanian, S, Frankish, A, Huang, N, Morris, J, Walter, K, et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science. 2012 Feb 17;335(6070):823–8.CrossRefGoogle ScholarPubMed
Green, RC, Berg, JS, Grody, WW, Kalia, SS, Korf, BR, Martin, CL, et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genetics in Medicine: Official Journal of the American College of Medical Genetics. 2013 Jul;15(7):565–74.CrossRefGoogle ScholarPubMed
Nakamura, K, Jeong, SY, Uchihara, T, Anno, M, Nagashima, K, Nagashima, T, et al. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Human Molecular Genetics. 2001 Jul 1;10(14):1441–8.CrossRefGoogle ScholarPubMed
Ling, SC, Polymenidou, M, Cleveland, DW. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron. 2013 Aug 7;79(3):416–38.CrossRefGoogle ScholarPubMed
Klein, CJ, Bird, T, Ertekin-Taner, N, Lincoln, S, Hjorth, R, Wu, Y, et al. DNMT1 mutation hot spot causes varied phenotypes of HSAN1 with dementia and hearing loss. Neurology. 2013 Feb 26;80(9):824–8.CrossRefGoogle ScholarPubMed
Stranger, BE, Forrest, MS, Clark, AG, Minichiello, MJ, Deutsch, S, Lyle, R, et al. Genome-wide associations of gene expression variation in humans. PLoS Genetics. 2005 Dec;1(6):e78.CrossRefGoogle ScholarPubMed
Allen, M, Zou, F, Chai, HS, Younkin, CS, Crook, J, Pankratz, VS, et al. Novel late-onset Alzheimer disease loci variants associate with brain gene expression. Neurology. 2012 Jul 17;79(3):221–8.CrossRefGoogle ScholarPubMed
Veerappan, CS, Sleiman, S, Coppola, G. Epigenetics of Alzheimer’s disease and frontotemporal dementia. Neurotherapeutics: The Journal of the American Society for Experimental Neurotherapeutics. 2013 Oct;10(4):709–21.CrossRefGoogle ScholarPubMed
Bennett, DA, Yu, L, Yang, J, Srivastava, GP, Aubin, C, De Jager, PL. Epigenomics of Alzheimer’s disease. Translational Research: The Journal of Laboratory and Clinical Medicine. 2015 Jan;165(1):200–20.CrossRefGoogle ScholarPubMed
Mastroeni, D, McKee, A, Grover, A, Rogers, J, Coleman, PD. Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer’s disease. PloS One. 2009;4(8):e6617.CrossRefGoogle Scholar
Gijselinck, I, Van Langenhove, T, van der Zee, J, Sleegers, K, Philtjens, S, Kleinberger, G, et al. A C9ORF72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurology. 2012 Jan;11(1):5465.CrossRefGoogle ScholarPubMed
Campion, D, Dumanchin, C, Hannequin, D, Dubois, B, Belliard, S, Puel, M, et al. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. American Journal of Human Genetics. 1999 Sep;65(3):664–70.CrossRefGoogle ScholarPubMed
Mackay, TF. Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nature Reviews Genetics. 2014 Jan;15(1):2233.CrossRefGoogle ScholarPubMed
Loomis, EW, Eid, JS, Peluso, P, Yin, J, Hickey, L, Rank, D, et al. Sequencing the unsequenceable: expanded CGG-repeat alleles of the fragile X gene. Genome Research. 2013 Jan;23(1):121–8.CrossRefGoogle Scholar
Maurano, MT, Humbert, R, Rynes, E, Thurman, RE, Haugen, E, Wang, H, et al. Science. 2012 Sep 7;337(6099):1190–5.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×