Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-04-30T11:55:26.042Z Has data issue: false hasContentIssue false

2 - Fibres and Particulate Reinforcements

Published online by Cambridge University Press:  14 April 2022

Frank R. Jones
Affiliation:
University of Sheffield
Get access

Summary

This chapter describes the synthesis of the principal fibres and provides the range of acicular reinforcing particles, nanofibres, nanotubes, and nanosheets. The properties of the most common fibres – carbon, glass, ceramics, and natural and advanced polymers – are considered. The differing grades and their structural property relationships are also discussed. Surface treatments for adhesion and compatibility are described.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jones, F. R., ed. Handbook of polymer–fibre composites (Harlow: Longman, 1994).Google Scholar
Jones, F. R., Serendipity in carbon fibres: interfaces and interphases in composites. In The structural integrity of carbon fiber composites, ed. Beaumont, P., Soutis, C., Hodzic, A. (Cham: Springer, 2017), pp. 7197.CrossRefGoogle Scholar
Morgan, P., Carbon fibres and their composites (Boca Raton, FL: Taylor & Francis, 2005).CrossRefGoogle Scholar
Watt, W., Chemistry and physics of the conversion of polyacrylonitrile fibres into high modulus carbon fibres. In Strong fibres, ed. Watt, W., Perov, B.V. (Amsterdam: Elsevier, 1985), pp. 327388.Google Scholar
Reynolds, W. N. and Moreton, R., Some factors affecting the strengths of carbon fibres. Phil. Trans. R. Soc. London A294 (1980), 451.Google Scholar
Reynolds, W. N. and Sharp, J. V., Crystal shear limit to carbon fibre strength. Carbon 12 (1974), 103.CrossRefGoogle Scholar
Moreton, R., The tensile strengths of PAN based carbon fibres. In Strong fibres, ed. Watt, W. and Perov, B.V. (Amsterdam: Elsevier, 1985), pp. 445474.Google Scholar
Jones, F. R., A review of interphase formation and design in fibre-reinforced composites. J. Adhes. Sci. Technol. 24 (2010), 171202.CrossRefGoogle Scholar
Goodhew, P. J., Clarke, A. J., and Bailey, J. E., A review of the fabrication and properties of carbon fibres. Mater. Sci. Eng. 17 (1975), 330.Google Scholar
Jones, F. R., Reinforced plastics composites. In Modern aluminium alloys, ed. Doherty, R. and Vasudevan, A. (New York: Academic Press, 1989), pp. 605469.Google Scholar
Bennett, S. C., Johnson, D. J., and Johnson, W., Strength–structure relationships in PAN-based carbon fibres. J. Mater. Sci. 18 (1983), 33373347.Google Scholar
Denison, P., Jones, F. R., and Watts, J. F., Surf. Interface Anal. 9 (1986), 43435.Google Scholar
Jones, F. R., Fibre-matrix adhesion-carbon fibres. In Handbook of adhesion, ed. Packham, D. E., 2nd ed. (Chichester: Wiley, 2004), pp. 177181.Google Scholar
Alexander, M. R. and Jones, F. R., Effect of electrolytic oxidation upon the surface chemistry of type A carbon fibres: III. Chemical state, source and location of surface nitrogen. Carbon 34 (1996), 10931102.CrossRefGoogle Scholar
Jones, C. and Sammann, E., The effect of low power plasmas on carbon fibre surfaces. Carbon 28 (1990), 509519.Google Scholar
Kettle, A. P., Beck, A. J., O’Toole, L., Jones, F. R., and Short, R. D., Plasma polymerisation for molecular engineering of carbon-fibre surfaces for optimised composites. Compos. Sci. Technol. 57 (1997), 10231032.CrossRefGoogle Scholar
Rand, B. and Turpin, M., Carbon fibres from pitch. In Jones, F. R., ed. Handbook of polymer–fibre composites (Harlow: Longman, 1994), pp. 3438.Google Scholar
Newcomb, B. A. and Chae, H. G., The properties of carbon fibers. In Handbook of properties of textile and technical fibres, ed. Bunsell, A. R., 2nd ed. (Duxford: Woodhead-Elsevier, 2018), pp. 841863.Google Scholar
Suzuki, T. and Umehara, H., Pitch-based carbon fiber microstructure and texture and compatibility with aluminum coated using chemical vapor deposition. Carbon 37 (1999), 4759.CrossRefGoogle Scholar
Marsh, H. and Menendez, R.. In Introduction to carbon Science, ed. Marsh, H. (London: Butterworth, 1989), p. 37.Google Scholar
Dunford, D.V., Harvey, J., Hutchings, J., and Judge, C. H., The effect of surface treatment of type 2 carbon fibre on CFRP properties, RAE Technical Report TR81096 (London: HMSO, 1981).Google Scholar
Yumitori, S., Wang, D., and Jones, F. R., The role of sizing resins in carbon fibre-reinforced polyethersulfone (PES). Composites 25 (1994), 698705.Google Scholar
Jones, F. R., Interphase in fiber-reinforced composites. In Wiley encyclopedia of composites, ed. Nicolais, L. and Borzacchiello, A., 2nd ed. (New York: Wiley, 2012).Google Scholar
Hexcel Corporation. Home page. www.hexcel.com.Google Scholar
Toray Industries Inc. Home page. www.toray.com.Google Scholar
Nippon Graphite Fiber Corporation. Home page. www.ngfworld.com.Google Scholar
Jones, F. R. and Huff, N. T., The structure and properties of glass fibres. In Handbook of textile fibre structure, vol. 2, ed. Eichhorn, S. J., Hearle, J. W. S., Jaffe, M., and Kikutani, T. (Oxford: Woodhead, 2009), pp. 307352.CrossRefGoogle Scholar
Jones, F. R. and Huff, N. T., The structure and properties of glass fibers. In Handbook of properties of textile and technical fibres, ed. Bunsell, A. R., 2nd ed. (Duxford: Woodhead-Elsevier, 2018), pp. 577803.Google Scholar
Loewenstein, K., The manufacturing technology of continuous glass fibres, 3rd ed. (Amsterdam: Elsevier, 1993).Google Scholar
Majumdar, A. J., Br. Pat. GB 1,243,972/ GB 1,243,973 (1971).Google Scholar
Mohr, J. G. and Rowe, W. P., Fibreglass (New York: van Nostrand, 1978).Google Scholar
Jones, F. R., Glass fibres. In High-performance fibres, ed. Hearle, J. W. (Cambridge: Woodhead, 2001), pp. 191238.CrossRefGoogle Scholar
Simmons, J. H., What is so exciting about non-linear viscous flow in glass, molecular dynamics simulations of brittle fracture and semiconductor-glass quantum composites. J. Non-Cryst. Sol. 239 (1998), 115.CrossRefGoogle Scholar
Griffith, A. A., The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. Lond. A 221 (1920), 163.Google Scholar
Kelly, A. and MacMillan, N. H., Strong solids, 3rd ed. (Oxford: Clarendon, 1990).Google Scholar
Metcalfe, A. G. and Schmitz, G. K., Mechanism of stress corrosion in E-glass filaments. Glass Tech. 13 (1972), 5.Google Scholar
Bartenev, G. M., The structure and mechanical properties of inorganic glasses (Groningen: Walters-Noordhoff, 1970).Google Scholar
McCrum, N.G., Review of the science of fibre reinforced plastics (London: HMSO, 1971).Google Scholar
Thomas, W. F., An investigation of the factors likely to affect the strength and properties of glass fibres. Phys. Chem. Glass 1 (1960), 418.Google Scholar
Khazanov, V. E., Kolesov, Y. I. and Trofimov, N. N., Glass fibres. In Fibre science and technology, ed. Kostikov, V. I. (London: Chapman & Hall, 1995), pp. 15230.CrossRefGoogle Scholar
Otto, W. H., Relationship of tensile strength of glass fibers to diameter. J. American Ceramic Soc. 38 (1955), 122124.CrossRefGoogle Scholar
Weibull, W. A statistical theory of the strength of materials (Stockholm: Royal Technical University, 1939).Google Scholar
Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 18 (1951), 293297.Google Scholar
Thomason, J. L., On the application of Weibull analysis to experimentally determined single fibre strength distributions. Comp. Sci. Tech. 77 (2013), 7480.Google Scholar
Aveston, J., Kelly, A., Sillwood, J. M., Long-term strength of glass reinforced plastics in wet environments. In Advances in composite materials, ed. Bunsell, A. R. (Paris: Pergamon, 1980), pp. 556568.CrossRefGoogle Scholar
Jones, F. R., The effects of aggressive environments on fatigue in composites. In Fatigue of composite materials, ed. Harris, B. (Cambridge: Woodhead, 2003), pp. 117146.CrossRefGoogle Scholar
Charles, R. J., Static fatigue of glass I and II. J. Appl. Phys. 29 (1958), 1549.Google Scholar
Ghosh, S. B., Jones, F. R., and Hand, R. J., A novel indentation based method to determine the threshold stress intensity factor for subcritical crack growth in Glass. Eur. J. Glass Sci. Technol. A 51 (2010), 156160.Google Scholar
Jones, F. R., Rock, J. W., and Bailey, J. E., The environment stress corrosion cracking of glass fibre reinforced laminates and single E-glass filaments. J. Mater. Sci. 18 (1983), 10591071.CrossRefGoogle Scholar
Cockram, D. R., Strength of E glass in solutions of different pH. Glass Tech. 22 (1981), 211214.Google Scholar
Sheard, P. A., Transverse and environmental cracking of glass fibre reinforced plastics, PhD thesis, Surrey University, 1986.Google Scholar
Jones, F. R., Rock, J. W., and Wheatley, A. R., Stress corrosion cracking and its implications for the long-term durability of E-glass fibre composites. Composites 14 (1983), 262.CrossRefGoogle Scholar
Thomason, J. L., Glass fibre sizings: a review of the scientific literature (Glasgow: James L. Thomason, 2012).Google Scholar
Thomason, J. L., Glass fibre sizing: a review of size formulation patents (Glasgow: James L. Thomason, 2015).Google Scholar
Thomason, J. L. and Adzima, L. J., Sizing-up the interphase: an insider’s guide to the science of sizing. Composites A 32 (2001), 313321.CrossRefGoogle Scholar
Plueddemann, E., Silane coupling agents, 2nd ed. (New York: Plenum 1991).CrossRefGoogle Scholar
Liu, X. M., Thomason, J. L., and Jones, F. R., XPS and AFM study of interaction of organosilanes and sizing with E-glass fibre surface. J. Adhesion 84 (2008), 322.Google Scholar
Wang, D., Jones, F. R., and Denison, P., A surface analytical study of the interaction between γ-amino propyltriethoxysilane and E-glass surface, Part 1: time-of-flight secondary ion mass spectrometry (ToF SIMS). J. Mater. Sci. 27 (1992), 3648.CrossRefGoogle Scholar
Pantano, C. G., Fry, R. A., and Mueller, K. T., Effect of boron oxide on surface hydroxyl coverage of aluminoborosilicate glass fibres: a 19F solid state NMR study. Phys. Chem. Glasses 44 (2003), 6468.Google Scholar
Liu, X. M., Thomason, J. L., and Jones, F. R., The concentration of hydroxyl groups glass surfaces and their effect on the structure on E-glass surfaces. In Silanes and other coupling agents, vol. 5, ed. Mittal, K. L. (Boston, MA: Brill Academic Publishers, 2009), pp. 2538.CrossRefGoogle Scholar
Rebouillat, S., Aramids. In High-performance fibres, ed. Hearle, J. W. (Cambridge: Woodhead, 2001), pp. 2361.CrossRefGoogle Scholar
van der Zwaag, S., The structure and properties of aramid fibres. In Handbook of textile fibre structure, vol.1, ed. Eichhorn, S. J., Hearle, J. W. S., Jaffe, M., and Kikutani, T. (Oxford: Woodhead, 2009), pp. 394412.Google Scholar
Pegoretti, A. and Traina, M., Liquid crystalline organic fibers and their mechanical behaviour. In Handbook of properties of textile and technical fibres, ed. Bunsell, A. R. (Duxford: Woodhead-Elsevier, 2018), pp. 354436.Google Scholar
Dobb, M. G., Johnson, D. J., and Saville, B. P., Supramolecular structure of a high modulus polyaromatic fibre. J. Polymer Sci., Polym. Physics 15 (1977), 22012011.CrossRefGoogle Scholar
Eichhorn, S. J., Hearle, J. W. S., Jaffe, M., and Kikutani, T., eds. Handbook of textile fibre structure, vol. 1 (Oxford: Woodhead, 2009).Google Scholar
Kitagawa, T., The structure of high-modulus, high tenacity poly-p-phenylenebenzobisoxazole fibres. In Handbook of textile fibre structure, vol. 1 ed. Eichhorn, S. J., Hearle, J. W. S., Jaffe, M., and Kikutani, T. (Oxford: Woodhead, 2009), pp. 429454.CrossRefGoogle Scholar
Beers, D., Young, R. J., So, C. L., et al. Other high modulus-high tenacity (HM-HT) fibres from linear polymers. In High-performance fibres, ed. Hearle, J. W. (Cambridge: Woodhead, 2001), pp. 93155.Google Scholar
Hearle, J. W. S., The structure of high-modulus, high tenacity PIPD ‘M5’ fibre. In Handbook of textile fibre structure, vol.1, ed. Eichhorn, S. J., Hearle, J. W. S., Jaffe, M., and Kikutani, T. (Oxford: Woodhead, 2009), pp. 455459.Google Scholar
Eichhorn, S. J., Hearle, J. W. S., Jaffe, M., and Kikutani, T., eds., Handbook of textile fibre structure, vol. 2 (Oxford: Woodhead, 2009).Google Scholar
Ward, I. M. and Lemstra, P. J., Production and properties of high-modulus and high strength polyethylene fibres. In Handbook of textile fibre structure, vol. 1, ed. Eichhorn, S. J., Hearle, J. W. S., Jaffe, M., and Kikutani, T. (Oxford; Woodhead, 2009), pp. 352393.Google Scholar
van Dingenen, J. L. J., Gel-spun high-performance polyethylene fibres. In High-performance fibres, ed. Hearle, J. W. (Cambridge: Woodhead, 2001), pp. 6292.Google Scholar
Young, R. J., Fracture of polymer crystals. In Developments in polymer fracture, vol. 1, ed. Andrews, E. H. (London: Applied Science, 1979), p. 223.Google Scholar
Ward, I. M., Mechanical properties of solid polymers, 2nd ed. (London: Wiley-Interscience, 1983).Google Scholar
Lemstra, P. J., Kirschbaum, R., Ohta, T., and Yasuda, H., High-strength/high-modulus structures based on flexible macromolecules: gel-spinning and related processes. In Developments in oriented polymers, vol. 2, ed. Ward, I. M. (London: Elsevier Applied Science, 1987), pp. 3978.CrossRefGoogle Scholar
Zacharides, A. E., Mead, W. T., Porter, R. S., Recent developments in ultraorientation of polyethylene by solid-state extrusion. Chem. Rev. 80 (1980), 351360.CrossRefGoogle Scholar
Shishoo, R., ed. Plasma technologies for textiles (Cambridge: Woodhead, 2007).Google Scholar
Richaud, E., Fayolle, B., and Davies, P., Tensile properties of polypropylene fibers. In Handbook of properties of textile and technical fibres, 2nd ed., ed. Bunsell, A. R., (Duxford: Woodhead-Elsevier, 2018), pp. 515544.CrossRefGoogle Scholar
Alcock, B. and Peijs, T., Technology and development of self-reinforced polymer composites. In Polymer composites – polyolefin fractionation – polymeric peptidomimetics – collagens (Berlin: Springer-Verlag, 2013), pp. 176.Google Scholar
Hannant, D. J., Zonsveld, J. J., and Hughes, D. C., Polypropylene in cement based materials. Composites 9 (2) (1978), 217226.Google Scholar
Hannant, D. J., Fibre cements and fibre concretes (Chichester: Wiley-Interscience, 1978), pp 8198.Google Scholar
Mobasher, B., Mechanics of fiber and textile reinforced cement composites (Boca Raton, FL: CRC Press, 2011).CrossRefGoogle Scholar
Zhang, D., Lightweight materials from biofibers and biopolymers. In Light weight materials, ed. Yang, Y., Xu, H., and Yu, X. (Washington, DC: American Chemical Society, 2014), pp. 120.Google Scholar
Ko, F. K., Engineering properties of spider silk fibres. In Natural fibres, plastics and composites, ed Wallenberg, F. T. and Weston, N. E. (Boston, MA: Springer, 2004), pp. 2749.Google Scholar
Colomban, P. and Jauzein, V., Silk: fibers, films, and composites – types, processing, structure, and mechanics. In Handbook of properties of textile and technical fibres, ed. Bunsell, A. R., 2nd ed. (Duxford: Woodhead-Elsevier, 2018), pp. 137183.CrossRefGoogle Scholar
Ko, F. K. and Wan, L. Y., Engineering properties of spider silk. In Handbook of properties of textile and technical fibres, ed Bunsell, A. R., 2nd ed. (Duxford: Woodhead-Elsevier, 2018), pp. 185220.Google Scholar
Luo, X. and Jin, N., Fibers made by chemical vapor deposition. In Handbook of properties of textile and technical fibres, ed. Bunsell, A. R., 2nd ed. (Duxford: Woodhead-Elsevier, 2018), pp. 929992.Google Scholar
Bunsell, A. R., Small-diameter silicon carbide fibers. In Handbook of properties of textile and technical fibres, ed. Bunsell, A. R., 2nd ed. (Duxford: Woodhead-Elsevier, 2018), pp. 873902.Google Scholar
Yuan, M., Zhou, T., He, J., and Chen, L., Formation of boron nitride coatings on silicon carbide fibers using trimethylborate vapour. Appl. Surf. Sci. 382 (2016), 2733.Google Scholar
Cooke, T. F., Inorganic fibers: a literature review. J. Am. Ceram. Soc. 74 (1991), 29592978.Google Scholar
Wilson, D., Continuous oxide fibers. In Handbook of properties of textile and technical fibres, ed Bunsell, A. R., 2nd ed. (Duxford: Woodhead-Elsevier, 2018), pp. 903–927.Google Scholar
Birchall, J. D., Bradbury, J. A. A., and Dinwoodie, J., Alumina fibers. In Handbook of composites, eds. Watt, W. and Perov, B. V. (Amsterdam: North-Holland, 1985), pp. 115155.Google Scholar
Yogo, T. and Iwahara, H., Synthesis of α-alumina fibre from modified aluminum alkoxide precursor. J. Mater. Sci. 27 (1992), 14991504.Google Scholar
Milewski, J. V.. In Handbook of reinforcements for plastics, ed. Milewski, J. V. and Katz, H. S. (New York: Reinhold van Nostrand, 1987).Google Scholar
Rothon, R., Acicular particulate reinforcement. In Handbook of Polymer–Fibre composites, ed. Jones, F. R. (Harlow: Longman, 1994), pp. 47.Google Scholar
De Volder, M. F. L., Tawfick, S. H., Baughman, R. H., and Hart, A. J., Carbon nanotubes: present and future commercial application. Science 339 (2013), pp. 535539.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×