Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T21:16:34.725Z Has data issue: false hasContentIssue false

Chapter 23 - DNA Damage: Fluorescent In-Situ Hybridization

Published online by Cambridge University Press:  05 April 2021

Ashok Agarwal
Affiliation:
The Cleveland Clinic Foundation, Cleveland, OH
Ralf Henkel
Affiliation:
University of the Western Cape, South Africa
Ahmad Majzoub
Affiliation:
Hamad Medical Corporation, Doha
Get access

Summary

Several sperm DNA integrity and chromatin quality assays have been developed and used for the detection of sperm DNA fragmentation and chromosomal aberrations [1, 2]. The Comet assay is one of the most commonly used single cell gel electrophoresis methods first developed by Östling and Johanson [3]. Damaged or fragmented sperm DNA is separated from undamaged DNA by electrophoresis. Fluorescent in situ hybridization (FISH) is a hybridization method that provides specific identification of selected DNA sequences and is frequently used for cytogenetic analysis of spermatozoa. These two methods were combined as the Comet-FISH technique first by Santos and colleagues in 1997 [4]. The Comet-FISH technique is a combination of two well-known methods, the Comet assay and FISH, and is a useful detection tool for screening of whole and region-specific DNA damage [5, 6]. In addition, the analysis of labeled DNA sequences and whole chromosomes of interest and identification of region-specific DNA and overall damage and repair in single cells is possible [7, 8]. Therefore, the modification of these assays interpolates hybridization with specific fluorescent-labeled probes to selected DNA sequences of interest after unwinding and electrophoresis [6] and developed a standardized Comet assay for human sperm with additional information for telomeres or special DNA sequences of interest. Thus, specific gene sequences can be detected using the Comet-FISH technique [9].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shamsi, MB, Imam, SN, Dada, R. Sperm DNA integrity assays: diagnostic and prognostic challenges and implications in management of infertility. J Assist Reprod Genet 2011; 28(11): 1073–85. doi:10.1007/s10815-011-9631-8CrossRefGoogle ScholarPubMed
Simon, L, Liu, L, Murphy, K, Ge, S, Hotaling, J, Aston, KI, … Carrell, DT. Comparative analysis of three sperm DNA damage assays and sperm nuclear protein content in couples undergoing assisted reproduction treatment. Hum Reprod 2014; 29(5): 904–17. doi:10.1093/humrep/deu040CrossRefGoogle ScholarPubMed
Ostling, O, Johanson, KJ. Bleomycin, in contrast to gamma irradiation, induces extreme variation of DNA strand breakage from cell to cell. Int J Radiat Biol Relat Stud Phys Chem Med 1987; 52(5): 683–91. doi:10.1080/09553008714552201Google ScholarPubMed
Santos, SJ, Singh, NP, Natarajan, AT. Fluorescence in situ hybridization with comets. Exp Cell Res 1997; 232(2): 407–11. doi:10.1006/excr.1997.3555CrossRefGoogle ScholarPubMed
Glei, M, Hovhannisyan, G, Pool-Zobel, BL. Use of Comet-FISH in the study of DNA damage and repair: review. Mutat Res 2009; 681(1): 3343. doi:10.1016/j.mrrev.2008.01.006CrossRefGoogle Scholar
Mondal, M, Guo, J. Comet-FISH for ultrasensitive strand-specific detection of DNA damage in single cells. Methods Enzymol 2017; 591: 8395. doi:10.1016/bs.mie.2017.03.023CrossRefGoogle ScholarPubMed
Glei, M, Schlormann, W. Analysis of DNA damage and repair by comet fluorescence in situ hybridization (Comet-FISH). Methods Mol Biol 2014; 1094: 3948. doi:10.1007/978-1-62703-706-8_4Google Scholar
Horvathova, E, Dusinska, M, Shaposhnikov, S, Collins, AR. DNA damage and repair measured in different genomic regions using the comet assay with fluorescent in situ hybridization. Mutagenesis 2004; 19(4): 269–76. doi:10.1093/mutage/geh030CrossRefGoogle ScholarPubMed
Shaposhnikov, S, El Yamani, N, Collins, AR. Fluorescent in situ hybridization on comets: FISH comet. Methods Mol Biol 2015; 1288: 363–73. doi:10.1007/978-1-4939-2474-5_21CrossRefGoogle ScholarPubMed
Hassold, T, Hunt, P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2001; 2(4): 280–91. doi:10.1038/35066065Google Scholar
Kohn, TP, Kohn, JR, Darilek, S, Ramasamy, R, Lipshultz, L. Genetic counseling for men with recurrent pregnancy loss or recurrent implantation failure due to abnormal sperm chromosomal aneuploidy. J Assist Reprod Genet 2016; 33(5): 571–6. doi:10.1007/s10815-016-0702-8Google Scholar
Bernardini, L, Martini, E, Geraedts, JP, Hopman, AH, Lanteri, S, Conte, N, Capitanio, GL. Comparison of gonosomal aneuploidy in spermatozoa of normal fertile men and those with severe male factor detected by in-situ hybridization. Mol Hum Reprod 1997; 3(5): 431–8. doi:10.1093/molehr/3.5.431Google Scholar
Templado, C, Uroz, L, Estop, A. New insights on the origin and relevance of aneuploidy in human spermatozoa. Mol Hum Reprod 2013; 19(10): 634–43. doi:10.1093/molehr/gat039CrossRefGoogle ScholarPubMed
Colaco, S, Sakkas, D. Paternal factors contributing to embryo quality. J Assist Reprod Genet 2018; 35(11): 1953–68. doi:10.1007/s10815-018-1304-4CrossRefGoogle ScholarPubMed
Sarrate, Z, Anton, E. Fluorescence in situ hybridization (FISH) protocol in human sperm. J Vis Exp 2009; 31: 1405. doi:10.3791/1405Google Scholar
Blanco, J, Gabau, E, Gomez, D, Baena, N, Guitart, M, Egozcue, J, Vidal, F. Chromosome 21 disomy in the spermatozoa of the fathers of children with trisomy 21, in a population with a high prevalence of Down syndrome: increased incidence in cases of paternal origin. Am J Hum Genet 1998; 63(4): 1067–72. doi:10.1086/302058Google Scholar
Garcia-Mengual, E, Trivino, JC, Saez-Cuevas, A, Bataller, J, Ruiz-Jorro, M, Vendrell, X. Male infertility: establishing sperm aneuploidy thresholds in the laboratory. J Assist Reprod Genet 2019; 36(3): 371–81. doi:10.1007/s10815-018-1385-0Google Scholar
Sanchez-Castro, M, Jimenez-Macedo, AR, Sandalinas, M, Blanco, J. Prognostic value of sperm fluorescence in situ hybridization analysis over PGD. Hum Reprod 2009; 24(6): 1516–21. doi:10.1093/humrep/dep037Google Scholar
Ramasamy, R, Besada, S, Lamb, DJ. Fluorescent in situ hybridization of human sperm: diagnostics, indications, and therapeutic implications. Fertil Steril 2014; 102(6): 1534–9. doi:10.1016/j.fertnstert.2014.09.013Google Scholar
Rubio, C, Gil-Salom, M, Simon, C, Vidal, F, Rodrigo, L, Minguez, Y, … Pellicer, A. Incidence of sperm chromosomal abnormalities in a risk population: relationship with sperm quality and ICSI outcome. Hum Reprod 2001; 16(10): 2084–92. doi:10.1093/humrep/16.10.2084CrossRefGoogle Scholar
World Health Organization. (1999), WHO Laboratory Manual for the Examination of Human Semen and Sperm-Cervical Mucus Interaction, 4th ed. Cambridge: Cambridge University Press.Google Scholar
Pang, MG, Hoegerman, SF, Cuticchia, AJ, Moon, SY, Doncel, GF, Acosta, AA, Kearns, WG. Detection of aneuploidy for chromosomes 4, 6, 7, 8, 9, 10, 11, 12, 13, 17, 18, 21, X and Y by fluorescence in-situ hybridization in spermatozoa from nine patients with oligoasthenoteratozoospermia undergoing intracytoplasmic sperm injection. Hum Reprod 1999; 14(5): 1266–73. doi:10.1093/humrep/14.5.1266Google Scholar
Caseiro, AL, Regalo, A, Pereira, E, Esteves, T, Fernandes, F, Carvalho, J. Implication of sperm chromosomal abnormalities in recurrent abortion and multiple implantation failure. Reprod Biomed Online 2015; 31(4): 481–5. doi:10.1016/j.rbmo.2015.07.001CrossRefGoogle ScholarPubMed
Bernardini, L, Gianaroli, L, Fortini, D, Conte, N, Magli, C, Cavani, S, … Venturini, PL. Frequency of hyper-, hypohaploidy and diploidy in ejaculate, epididymal and testicular germ cells of infertile patients. Hum Reprod 2000; 15(10): 2165–72. doi:10.1093/humrep/15.10.2165CrossRefGoogle ScholarPubMed
Burrello, N, Calogero, AE, De Palma, A, Grazioso, C, Torrisi, C, Barone, N, … Vicari, E. Chromosome analysis of epididymal and testicular spermatozoa in patients with azoospermia. Eur J Hum Genet 2002; 10(6): 362–6. doi:10.1038/sj.ejhg.5200814Google Scholar
Mateizel, I, Verheyen, G, Van Assche, E, Tournaye, H, Liebaers, I, Van Steirteghem, A. FISH analysis of chromosome X, Y and 18 abnormalities in testicular sperm from azoospermic patients. Hum Reprod 2002; 17(9): 2249–57. doi:10.1093/humrep/17.9.2249Google Scholar
Palermo, GD, Colombero, LT, Hariprashad, JJ, Schlegel, PN, Rosenwaks, Z. Chromosome analysis of epididymal and testicular sperm in azoospermic patients undergoing ICSI. Hum Reprod 2002; 17(3): 570–5. doi:10.1093/humrep/17.3.570CrossRefGoogle ScholarPubMed
Rodrigo, L, Rubio, C, Mateu, E, Simon, C, Remohi, J, Pellicer, A, Gil-Salom, M. Analysis of chromosomal abnormalities in testicular and epididymal spermatozoa from azoospermic ICSI patients by fluorescence in-situ hybridization. Hum Reprod 2004; 19(1): 118–23. doi:10.1093/humrep/deh012CrossRefGoogle ScholarPubMed
Gunes, S, Hekim, GN, Arslan, MA, Asci, R. Effects of aging on the male reproductive system. J Assist Reprod Genet 2016; 33(4): 441–54. doi:10.1007/s10815-016-0663-yCrossRefGoogle ScholarPubMed
Garcia-Ferreyra, J, Hilario, R, Luna, D, Villegas, L, Romero, R, Zavala, P, Duenas-Chacon, J. In vivo culture system using the INVOcell device shows similar pregnancy and implantation rates to those obtained from in vivo culture system in ICSI procedures. Clin Med Insights Reprod Health 2015; 9: 711. doi:10.4137/CMRH.S25494CrossRefGoogle ScholarPubMed
Garcia-Ferreyra, J, Luna, D, Villegas, L, Romero, R, Zavala, P, Hilario, R, Duenas-Chacon, J. High aneuploidy rates observed in embryos derived from donated oocytes are related to male aging and high percentages of sperm DNA fragmentation. Clin Med Insights Reprod Health 2015; 9: 21–7. doi:10.4137/CMRH.S32769CrossRefGoogle ScholarPubMed
Collodel, G, Moretti, E. Morphology and meiotic segregation in spermatozoa from men of proven fertility. J Androl 2008; 29(1): 106–14. doi:10.2164/jandrol.107.002998CrossRefGoogle ScholarPubMed
Mehdi, M, Gmidene, A, Brahem, S, Guerin, JF, Elghezal, H, Saad, A. Aneuploidy rate in spermatozoa of selected men with severe teratozoospermia. Andrologia 2012; 44(Suppl. 1): 139–43. doi:10.1111/j.1439-0272.2010.01152.xCrossRefGoogle ScholarPubMed
Calogero, AE, De Palma, A, Grazioso, C, Barone, N, Romeo, R, Rappazzo, G, D’Agata, R. Aneuploidy rate in spermatozoa of selected men with abnormal semen parameters. Hum Reprod 2001; 16(6): 1172–9. doi:10.1093/humrep/16.6.1172CrossRefGoogle ScholarPubMed
Lewis-Jones, I, Aziz, N, Seshadri, S, Douglas, A, Howard, P. Sperm chromosomal abnormalities are linked to sperm morphologic deformities. Fertil Steril 2003; 79(1): 212–15. doi:10.1016/s0015-0282(02)04411-4CrossRefGoogle ScholarPubMed
Tempest, HG, Griffin, DK. The relationship between male infertility and increased levels of sperm disomy. Cytogenet Genome Res 2004; 107(1–2): 8394. doi:10.1159/000079575Google Scholar
Keymolen, K, Staessen, C, Verpoest, W, Liebaers, I, Bonduelle, M. Preimplantation genetic diagnosis in female and male carriers of reciprocal translocations: clinical outcome until delivery of 312 cycles. Eur J Hum Genet 2012; 20(4): 376–80. doi:10.1038/ejhg.2011.208Google Scholar
Munne, S, Sandalinas, M, Escudero, T, Fung, J, Gianaroli, L, Cohen, J. Outcome of preimplantation genetic diagnosis of translocations. Fertil Steril 2000; 73(6): 1209–18. doi:10.1016/s0015-0282(00)00495-7CrossRefGoogle ScholarPubMed
Tempest, HG. Meiotic recombination errors, the origin of sperm aneuploidy and clinical recommendations. Syst Biol Reprod Med 2011; 57(1–2): 93101. doi:10.3109/19396368.2010.504879CrossRefGoogle ScholarPubMed
O’Flynn O’Brien, KL, Varghese, AC, Agarwal, A. The genetic causes of male factor infertility: a review. Fertil Steril 2010; 93(1): 112. doi:10.1016/j.fertnstert.2009.10.045CrossRefGoogle ScholarPubMed
Chatziparasidou, A, Christoforidis, N, Samolada, G, Nijs, M. Sperm aneuploidy in infertile male patients: a systematic review of the literature. Andrologia 2015; 47(8): 847–60. doi:10.1111/and.12362Google Scholar
Nicopoullos, JD, Gilling-Smith, C, Almeida, PA, Homa, S, Nice, L, Tempest, H, Ramsay, JW. The role of sperm aneuploidy as a predictor of the success of intracytoplasmic sperm injection? Hum Reprod 2008; 23(2): 240–50.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×