Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T05:49:16.635Z Has data issue: false hasContentIssue false

Chapter 3 - Surgical Placement of Deep Brain Stimulation Leads for Movement Disorders

Published online by Cambridge University Press:  09 June 2022

William J. Marks
Affiliation:
Stanford University, California
Jill L. Ostrem
Affiliation:
University of California, San Francisco
Get access

Summary

Deep brain stimulation (DBS) for movement disorders consists of chronic high-frequency electrical stimulation of certain targets in the basal ganglia, the deep grey matter of the brain. In 1997, DBS received Food and Drug Administration (FDA) approval for treatment of motor symptoms of movement disorders, and it is now used to treat essential tremor, Parkinson’s disease (PD), and primary dystonia.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Feger, J, Hassani, O, Mouroux, M. The subthalamic nucleus and its connections. New electrophysiological and pharmacological data. Adv Neurol 1997;74:3143.Google Scholar
DeLong, M. Primate models of movement disorders of basal ganglia origin. Trends in Neurosciences 1990;13:281285.Google Scholar
Wichmann, T, Bergman, H, DeLong, M. The primate subthalamic nucleus. I. Functional properties in intact animals. J Neurophysiology 1994;72(2):494506.CrossRefGoogle ScholarPubMed
Robledo, P, Feger, J. Excitatory influence of rat subthalamic nucleus to substantia nigra pars reticulata and the pallidal complex: Electrophysiological data. Brain Research 1990;51(8):4754.Google Scholar
Kita, H, Kitai, S. Intracellular study of rat globus pallidus neurons: Membrane properties and responses to neostriatal, subthalamic and nigral stimulation. Brain Research 1991;564:296305.CrossRefGoogle ScholarPubMed
Hammond, C, Deniau, J, Rizk, A, Feger, J. Electrophysiological demonstration of an excitatory subthalamonigral pathway in the rat. Brain Research 1978;151:235244.Google Scholar
Monakow, KH, Akert, K, Kunzle, H. Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Exp Brain Res 1978;33:395403.Google Scholar
Nambu, A, Takada, M, Inase, M, Tokuno, H. Dual somatotopical representations in the primate subthalamic nucleus: Evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J Neurosci 1996;16:26712683.CrossRefGoogle ScholarPubMed
Romanelli, P, Heit, G, Hill, BC, Kraus, A, Hastie, T, Brontë-Stewart, HM. Microelectrode recording revealing a somatotopic body map in the subthalamic nucleus in humans with Parkinson disease. J Neurosurg 2004;100:611618.CrossRefGoogle ScholarPubMed
Miller, W, DeLong, M. Altered tonic activity of neurons in the globus pallidus and subthalamic nucleus in the primate MPTP model of parkinsonism. New York: Plenum Press, 1987.Google Scholar
Filion, M, Tremblay, L. Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Research 1991;547:142151.Google ScholarPubMed
Bergman, H, Wichmann, T, Karmon, B, DeLong, M. The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism.J Neurophysiology 1994;72:507520.CrossRefGoogle ScholarPubMed
Bergman, H, Wichmann, T, DeLong, M. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 1990;249:14361438.Google Scholar
Lozano, A, Hutchison, W, Kiss, Z, Tasker, R, Davis, K, Dostrovsky, J. Methods for microelectrode-guided posteroventral pallidotomy [see comments]. J Neurosurg 1996;84:192202.Google Scholar
Vitek, J, Bakay, RTH, Kaneoke, Y, Mewes, K, Zhang, J, Rye, D. Microelectrode-guided pallidotomy: Technical approach and its application in medically intractable Parkinson’s disease [see comments]. J Neurosurg 1998;88:10271043.Google Scholar
Bezard, E, Boraud, T, Bioulae, B, Gross, C. Presymptomatic revelation of experimental Parkinsonism. Neuro Report 1997;8:435438.Google Scholar
Bergman, H, Wichmann, T, Karmon, B, DeLong, MR. The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 1994;72(2):507520.Google Scholar
Brown, P. Oscillatory nature of human basal ganglia activity: Relationship to the pathophysiology of parkinson’s disease. Mov Disord 2003. doi:10.1002/mds.10358CrossRefGoogle Scholar
Kühn, AA, Kupsch, A, Schneider, GH, Brown, P. Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur J Neurosci 2006. doi:10.1111/j.1460-9568.2006.04717.xCrossRefGoogle Scholar
Hammond, C, Bergman, H, Brown, P. Pathological synchronization in Parkinson’s disease: Networks, models and treatments. Trends Neurosci 2007;30(7):357364.Google Scholar
Kühn, AA, Kempf, F, Brücke, C, Doyle Gaynor, L, Martinez-Torres, I, Pogosyan, A, Trottenberg, T, Kupsch, A, Schneider, GH, Hariz, MI, Vandenberghe, W, Nuttin, B, Brown, P. High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J Neurosci Off J Soc Neurosci. 2008;28:61656173. PMID: 18550758Google Scholar
Eusebio, A, Thevathasan, W, Doyle Gaynor, L, Pogosyan, A, Bye, E, Foltynie, T, Zrinzo, L, Ashkan, K, Aziz, T, Brown, P. Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients. J Neurol Neurosurg Psychiatry 2011;82:569573. PMCID: PMC3072048Google Scholar
Brontë-Stewart, H, Barberini, C, Koop, MM, Hill, BC, Henderson, JM, Wingeier, B. The STN beta-band profile in Parkinson’s disease is stationary and shows prolonged attenuation after deep brain stimulation. Exp Neurol 2009. doi:10.1016/j.expneurol.2008.09.008Google Scholar
de Solages, C, Hill, BC, Koop, MM, Henderson, JM, Brontë-Stewart, H. Bilateral symmetry and coherence of subthalamic nuclei beta band activity in Parkinson’s disease. Exp Neurol 2010. doi:10.1016/j.expneurol.2009.11.012CrossRefGoogle Scholar
Whitmer, D, de Solages, C, Hill, B, Yu, H, Henderson, JM, Brontë-Stewart, H. High frequency deep brain stimulation attenuates subthalamic and cortical rhythms in Parkinson’s disease. Front Hum Neurosci 2012. doi:10.3389/fnhum.2012.00155Google Scholar
Shreve, LA, Velisar, A, Malekmohammadi, M, Koop, MM, Trager, M, Quinn, EJ, Hill, BC, Blumenfeld, Z, Kilbane, C, Mantovani, A, Henderson, JM, Brontë-Stewart, H. Subthalamic oscillations and phase amplitude coupling are greater in the more affected hemisphere in Parkinson’s disease. Clin Neurophysiol 2017. doi:10.1016/j.clinph.2016.10.095CrossRefGoogle Scholar
Giannicola, G, Marceglia, S, Rossi, L, Mrakic-Sposta, S, Rampini, P, Tamma, F, Cogiamanian, F, Barbieri, S, Priori, A. The effects of levodopa and ongoing deep brain stimulation on subthalamic beta oscillations in Parkinson’s disease. Exp Neurol 2010. doi:10.1016/j.expneurol.2010.08.011Google Scholar
Silberstein, P, Kühn, AA, Kupsch, A, Trottenberg, T, Krauss, JK, Wöhrle, JC, Mazzone, P, Insola, A, Di Lazzaro, V, Oliviero, A, Aziz, T, Brown, P. Patterning of globus pallidus local field potentials differs between Parkinson’s disease and dystonia. Brain 2003;126:25972608.Google Scholar
Chen, CC, Kühn, AA, Trottenberg, T, Kupsch, A, Schneider, GH, Brown, P. Neuronal activity in globus pallidus interna can be synchronized to local field potential activity over 3–12 Hz in patients with dystonia. Exp Neurol 2006;202:480486.Google Scholar
Chen, CC, Kühn, AA, Hoffmann, KT, Kupsch, A, Schneider, GH, Trottenberg, T, Krauss, JK, Wöhrle, C, Bardinet, E, Yelnik, J, Brown, P. Oscillatory pallidal local field potential activity correlates with involuntary EMG in dystonia. Neurology 2006;66(3):418420. doi:10.1212/01.wnl.0000196470.00165.7dGoogle Scholar
Liu, X, Wang, S, Yianni, J, Nandi, D, Bain, PG, Gregory, R, Stein, JF, Aziz, TZ. The sensory and motor representation of synchronized oscillations in the globus pallidus in patients with primary dystonia. Brain 2008;131(Pt6): 15621573. doi:10.1093/brain/awn083Google Scholar
Barow, E, Neumann, WJ, Brücke, C, Huebl, J, Horn, A, Brown, P, Krauss, JK, Schneider, GH, Kühn, AA. Deep brain stimulation suppresses pallidal low frequency activity in patients with phasic dystonic movements. Brain 2014;137(Pt11):30123024.CrossRefGoogle ScholarPubMed
Wang, DD, de Hemptinne, C, Miocinovic, S, Qasim, SE, Miller, AM, Ostrem, JL, Galifianakis, NB, San Luciano, M, Starr, PA. Subthalamic local field potentials in Parkinson’s disease and isolated dystonia: An evaluation of potential biomarkers. Neurobiol Dis 2016;89:213222. doi:10.1016/j.nbd.2016.02.015CrossRefGoogle ScholarPubMed
Neumann, W-J, Horn, A, Ewert, S, Huebl, J, Brücke, C, Slentz, C, Schneider, GH, Kühn, AA. A localized pallidal physiomarker in cervical dystonia. Ann Neurol 2017;82(6):912924. doi:10.1002/ana.25095CrossRefGoogle ScholarPubMed
Scheller, U, Lofredi, R, Van Wijk, BCM, Saryyeva, A, Krauss, JK, Schneider, GH, Kroneberg, D, Krause, P, Neumann, WJ, Kühn, AA. Pallidal low-frequency activity in dystonia after cessation of long-term deep brain stimulation. Mov Dis 2019 Nov;34(11):17341739. doi:10.1002/mds.27838. PMID: 31483903CrossRefGoogle ScholarPubMed
Whitmer, D, de Solages, C, Hill, BC, Yu, H, Brontë-Stewart, H. Resting beta hypersynchrony in secondary dystonia and its suppression during pallidal deep brain stimulation in DYT3+ Lubag dystonia. Neuromodulation. 2013 May–Jun;16(3):200205;discussion 205. doi:10.1111/j.1525-1403.2012.00519.x. PMID: 23094951Google Scholar
Weinberger, M, Hutchison, WD, Alavi, M, Hodaie, M, Lozano, AM, Moro, E, Dostrovsky, JO. Oscillatory activity in the globus pallidus internus: Comparison between Parkinson’s disease and dystonia. Clin Neurophysiol 2012;123:358368. doi:10.1016/j.clinph.2011.07.029. PMID: 21843964.Google Scholar
Piña-Fuentes, D, Van Zijl, JC, Van Dijk, JMC, Little, S, Tinkhauser, G, Oterdoom, DLM, Tijssen, MAJ, Beudel, M. The characteristics of pallidal low-frequency and beta bursts could help implementing adaptive brain stimulation in the parkinsonian and dystonic internal globus pallidus. Neurobiol Dis 2019;121:4757. doi:10.1016/j.nbd.2018.09.014Google Scholar
Timmermann, L, Gross, J, Dirks, M, Volkmann, J, Freund, HJ, Schnitzler, A. The cerebral oscillatory network of parkinsonian resting tremor. Brain 2003;126:199212.Google Scholar
Wang, SY, Aziz, TZ, Stein, JF, Liu, X. Time-frequency analysis of transient neuromuscular events: Dynamic changes in activity of the subthalamic nucleus and forearm muscles related to the intermittent resting tremor. J Neurosci Methods 2005;145:151158.Google Scholar
Tinkhauser, G, Pogosyan, A, Tan, H, Herz, DM, Kühn, AA, Brown, P. Beta burst dynamics in Parkinson’s disease off and on dopaminergic medication. Brain 2017. doi:10.1093/brain/awx252Google Scholar
Anidi, C, O’Day, JJ, Anderson, RW, Afzal, MF, Syrkin-Nikolau, J, Velisar, A, Brontë-Stewart, HM. Neuromodulation targets pathological not physiological beta bursts during gait in Parkinson’s disease. Neurobiol Dis 2018 Dec;120:107117. doi:10.1016/j.nbd.2018.09.004Google Scholar
Lofredi, R, Neumann, WJ, Brücke, C, Huebl, J, Krauss, JK, Schneider, GH, Kühn, AA. Pallidal beta bursts in Parkinson’s disease and dystonia. Mov Disord 2019;34(3):420425. doi: 10.1002/mds.27524Google Scholar
Anderson, R, Kehnemouyi, Y, Neuville, R, Wilkins, K, Anidi, C, Petrucci, M, Parker, JE, Velisar, A, Brontë-Stewart, HM. A novel method for calculating beta band burst durations in Parkinson’s disease using a physiological baseline. J Neurosci Methods 2020. doi:10.1016/j.jneumeth.2020.108811CrossRefGoogle Scholar
Zaidel, A, Spivak, A, Grieb, B, Bergman, H, Israel, Z. Subthalamic span of beta oscillations predict deep brain stimulation efficacy for patients with Parkinson’s disease. Brain 2010 Jul;133(Pt7):20072021.Google Scholar
Yoshida, F, Martinez-Torres, I, Pogosyan, A, Holl, E, Petersen, E, Chen, CC, Foltynie, T, Limousin, P, Zrinzo, LU, Hariz, MI, Brown, P. Value of subthalamic nucleus local field potentials recordings in predicting stimulation parameters for deep brain stimulation in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2010 Aug;81(8):885889.Google Scholar
Ince, NF, Gupte, A, Wichmann, T, Ashe, J, Henry, T, Bebler, M, Eberly, L, Abosch, A. Selection of optimal programming contacts based on local field potential recordings from subthalamic nucleus in patients with Parkinson’s Disease. Neurosurgery 2010 Aug;67(2):390397.Google Scholar
Connolly, AT, Muralidharan, A, Hendrix, C, Johnson, L, Gupta, R, Stanslaski, S, Denison, T, Baker, KB, Vitek, JL, Johnson, MD. Local field potential recordings in a non-human primate model of Parkinsons disease using Activa PC + S neurostimulator. J Neural Eng 2015 Dec;12(6):066012.Google Scholar
Tinkhauser, G, Pogosyan, A, Debove, I, Nowacki, A, Shah, S, Seidel, K, Tan, H, Brittain, J, Petermann, K, Biase, L, Oertel, M, Pollo, C, Brown, P, Schuepbach, M. Directional local field potentials: A tool to optimize deep brain stimulation. Mov Disord 2018 Jan;33(1):159164.Google Scholar
Kehnemouyi, YM, Wilkins, KB, Anidi, CM, Anderson, RW, Afzl, F, Brontë-Stewart, HM. Modulation of beta bursts in subthalamic sensorimotor circuits predicts improvement in bradykinesia. Brain 2021 Mar 3;144(2):473486.Google Scholar
Lenz, FA, Tasker, RR, Kwan, HC, Schnider, S, Kwong, R, Murayama, Y, Dostrovsky, JO, Murphy, JT. Single unit analysis of the human ventral thalamic nuclear group: Correlation of thalamic “tremor cells” with the 3–6 Hz component of parkinsonian tremor. J Neurosci 1988;8:754764.CrossRefGoogle ScholarPubMed
Brown, P. Oscillatory nature of human basal ganglia activity: Relationship to the pathophysiology of Parkinson’s disease. Mov Disord 2003;18(4):357363.CrossRefGoogle Scholar
McIntyre, CC, Grill, WM, Sherman, DL, Thakor, NV. Cellular effects of deep brain stimulation: Model-based analysis of activation and inhibition. J Neurophysiol 2004;91:14571469.Google Scholar
de Hemptinne, C, Swann, NC, Ostrem, JL, Ryapolova-Webb, ES, San Luciano, M, Galifianakis, NB, Starr, PA. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nat Neurosci 2015;18:779786.Google Scholar
Caire, F, Ranoux, D, Guehl, D, Burbaud, P, Cuny, E. A Systematic review of studies on anatomical position of electrode contacts used for chronic subthalamic stimulation in Parkinson’s Disease. Acta Neurochir (Wien) 2013 Sep;155(9):16471654.Google Scholar
Akram, H, Sotiropoulos, SN, Jbabdi, S, Georgiev, D, Mahlknecht, P, Hyam, J, Foltynie, T, Limousin, P, De Vita, E, Jahanshahi, M, Hariz, M, Ashburner, J, Behrens, T, Zrinzo, L. Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson’s disease. Neuroimage 2017 Sep;158:332345.Google Scholar
Bot, M, Schuurman, PR, Odekerken, VJJ, Verhagen, R, Contarino, FM, RMA, De Bie, van den Munckhof, P. Deep brain stimulation for Parkinson’s disease: Defining the optimal location within the subthalamic nucleus. J Neurol Neurosurg Psychiatry 2018 May;89(5):493498.Google Scholar
Horn, A, Wenzel, G, Irmen, F, Huebl, J, Li, N, Neumann, W, Krause, P, Bohner, G, Scheel, M, Kühn, AA. Deep brain stimulation induced normalization of the human functional connectome in Parkinson’s Disease. Brain 2019 Oct 1;142(10):31293143.Google Scholar
Dembek, TA, Roediger, J, Horn, A, Reker, P, Oehrn, C, Dafsari, HS, Li, N, Kühn, AA, Fink, GR, Visser-Vandewalle, V, Barbe, MT, Timmermann, L. Probabilistic sweet spots predict motor outcome for deep brain stimulation in Parkinson disease. Ann Neurol 2019;86:527538. doi:10.1002/ana.25567Google Scholar
Horn, A, Reich, M, Vorwerk, J, Li, N, Wenzel, G, Fang, Q, Schmitz-Hübsch, T, Nickl, R, Kupsch, A, Volkmann, J, Kühn, AA, Fox, MD. Connectivity predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol 2017 July;82(1):6778. doi:10.1002/ana.24974CrossRefGoogle ScholarPubMed
Vanegas-Arroyave, N, Lauro, PM, Huang, L, Hallett, M, Horovitz, SG, Zaghloul, KA, Lungu, C. Tractography patterns of subthalamic nucleus deep brain stimulation. Brain 2016;139:12001210. doi:10.1093/brain/aww020Google Scholar
Coenen, VA, Allert, N, Paus, S, Kronenburger, M, Urbach, H, Madler, B. Modulation of the cerebello-thalamo-cortical network in thalamic deep brain stimulation for tremor: A diffusion tensor imaging study. Neurosurgery 2014 Dec;75(6):657669.CrossRefGoogle ScholarPubMed
Calabrese, E, Hickey, P, Hulette, C, Zhang, J, Parente, B, Lad, SP, Johnson, GA. Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization. Hum Brain Mapp 2015 Aug;36(8):31673178.CrossRefGoogle ScholarPubMed
Akram, H, Dayal, V, Mahlknecht, P, Georgiev, D, Hyam, J, Foltynie, T, Limousin, P, De Vita, E, Jahanshahi, M, Ashburner, J, Behrens, T, Hariz, M, Zrinzo, L. Connectivity derived thalamic segmentation in deep brain stimulation for tremor. Neuroimage Clin 2018 Jan 28;18:130142.Google Scholar
Dembek, TA, Barbe, MT, Aström, M, Hoevels, M, Visser-Vandewalle, V, Fink, GR, Timmermann, L. Probabilistic mapping of deep brain stimulation effects in essential tremor. Neuroimage Clin 2016 Nov 17;13:164173. doi:10.1016/j.nicl.2016.11.019. PMID: 27981031Google Scholar
Reich, MM, Horn, A, Lange, F, Roothans, J, Paschen, S, Runge, J, Wodarg, F, Pozzi, NG, Witt, K, Nickl, RC, Soussang, L, Ewert, S, Maltese, V, Wittstock, M, Schneider, GH, Coenen, V, Mahlknecht, P, Poese, W, Eisner, W, Helmers, AK, Matthies, C, Sturm, V, Isiais, IU, Krauss, JK, Kühn, AA, Deuschl, G, Volkmann, J. Probabilistic mapping of the antidystonic effect of pallidal neurostimulation: A multicenter imaging study. Brain 2019 May 1;142(5):13861398.Google Scholar
Ondo, W, Brontë-Stewart, H. The North American Survey of Placement and Adjustment Strategies for Deep Brain Stimulation. Stereotact Funct Neurosurg 2005;83(4):142147.Google Scholar
Holloway, KL, Gaede, SE, Starr, PA, Rosenow, JM, Ramakrishnan, V, Henderson, JM. Frameless stereotaxy using bone fiducial markers for deep brain stimulation. J Neurosurg 2005;103(3):404413.Google Scholar
Bot, M, Van den Munckhof, P, Bakay, R, Sierens, D, Stebbins, G, Verhagen, M. Analysis of stereotactic accuracy in patients undergoing deep brain stimulation using Nexframe and the Leksell frame. Stereotactic Funct Neurosurg 2015;93:316325.Google Scholar
Svennilson, E, Torvik, A, Lowe, R, Leksell, L. Treatment of Parkinsonism by stereotactic thermolesions in the pallidal region. Acta psychiat scand 1960;35:358377.Google Scholar
Vitek, J, Bakay, R, DeLong, M. Microelectrode-guided pallidotomy for medically intractable Parkinson’s disease. Adv Neurol 1997;74:183198.Google Scholar
Gross, R, Lombardi, W, Lang, A, Duff, J, Hutchison, W, Saint-Cyr, J, Tasker, RR, Lozano, AM. Relationship of lesion location to clinical outcome following microelectrode-guided pallidotomy for Parkinson’s disease [see comments]. Brain 1999;122:405416.Google Scholar
Eskandar, E, Cosgrove, G, Shinobu, L, Penney, J. The importance of accurate lesion placement in posteroventral pallidotomy: Report of two cases. J Neurosurg 1998;89:630634.Google Scholar
Brontë-Stewart, H, Hill, B, Molander, M, Kaufman, R, Pappas, C, Fross, R, et al. Lesion location predicts clinical outcome of pallidotomy. Mov Disord 1998;13:300.Google Scholar
Romanelli, P, Brontë-Stewart, HM, Heit, G, Schaal, DW, Vincenzo, E. The functional organization of the sensorimotor region of the subthalamic nucleus. Stereotact Funct Neurosurg 2004;82:222229.Google Scholar
Haynes, WIA, Haber, SN. The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: Implications for basal ganglia models and deep brain stimulation. J Neurosci 2013;33(11):48044814.Google Scholar
Starr, PA, Vitek, JL, DeLong, M, Bakay, RA. Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus. Neurosurgery 1999;44(2);303313.Google Scholar
Bejjani, BP, Dormont, D, Pidoux, B, Yelnik, J, Damier, P, Arnulf, I, Bonnet, AM, Marsault, C, Agid, Y, Philippon, J, Cornu, P. Bilateral subthalamic stimulation for Parkinson’s disease by using three-dimensional stereotactic magnetic resonance imaging and electrophysiological guidance. J Neurosurg 2000;92(4):615625.Google Scholar
Cuny, E, Grehl, D, Burbaud, P, Gross, C, Dousset, V, Rougier, A. Lack of agreement between direct magnetic resonance imaging and statistical determination of a subthalamic target: The role of electrophysiological guidance. J Neurosurg 2002;97:591597.Google Scholar
Okun, MS, Vitek, JL. Lesion therapy for Parkinson’s disease and other movement disorders: Update and controversies. Mov Disord 2004;19(4):375389.Google Scholar
The Deep Brain Stimulation for Parkinson’s Disease Study Group. Deep brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. NEJM 2001;345:956963.Google Scholar
Binder, DK, Rau, GM, Starr, PA. Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders. Neurosurg 2005;6(4):722732.Google Scholar
Miller Koop, M, Andrzejewski, A, Hill, BC, Heit, G, Brontë-Stewart, HM. Improvement in a quantitative measure of bradykinesia after microelectrode recording in patients with Parkinson’s disease during deep brain stimulation surgery. Mov Disord 2006;21(5):673678.Google Scholar
Walker, HC, Faulk, J, Rahman, AF, Gonzalez, CL, Roush, P, Nakhmani, A, Crowell, JL, Guthrie, B. Awake testing during deep brain stimulation predicts postoperative stimulation side effect thresholds. Brain Sciences 2019;9(2):44.Google Scholar
Contarino, MF, Bour, LJ, Verhagen, R, Lourens, MAJ, de Bie, RMA, Van den Munckhof, P, Schuurman, PR. Directional steering: A novel approach to deep brain stimulation. Neurology 2014;83:11631169. 10.1212/WNL.0000000000000823Google Scholar
Dembek, TA, Reker, P, Visser-Vandewalle, V, Wirths, J, Treuer, H, Klehr, M, Roediger, J, Dafsari, H, Barbe, MT, Timmermann, L. Directional DBS increases side-effect thresholds: A prospective, double-blind trial. Mov Disord 2017 Oct;32(1):13801388.Google Scholar
Bejjani, B, Damier, P, Arnulf, I, Thivard, L, Bonnet, AM, Dormont, D, Cornu, P, Pidoux, B, Samson, Y, Agid, Y. Transient acute depression induced by high-frequency deep-brain stimulation. N Engl J Med 1999;340:14761480. doi:10.1056/NEJM199905133401905Google Scholar
Bejjani, B, Damier, P, Arnulf, I, Bonnet, A, Vidailhet, M, Dormont, D, Pidoux, B, Cornu, P, Marsault, C, Agid, Y. Pallidal stimulation for Parkinson’s disease. Two targets? Neurol 1997;49:15641569.Google Scholar
Pollak, P, Benabid, AL, Krack, P, et al. Deep brain stimulation. Parkinson’s Disease and Movement Disorders (Williams and Wilkins, Baltimore) 1998;48:10851101.Google Scholar
Plaha, P, Khan, S, Gill, SS. Bilateral stimulation of the caudal zona incerta nucleus for tremor control. J Neurol Neurosurg Psychiatry 2008;79:504513.Google Scholar
Barbe, MT, Reker, P, Hamacher, S, Franklin, J, Kraus, D, Dembek, TA, Becker, J, Steffen, JK, Allert, N, Wirths, J, Dafsari, HS, Voges, J, Fink, G, Visser-Vandewalle, V, Timmermann, L. DBS of the PSA and the VIM in essential tremor: A randomized, double-blind, crossover trial. Neurology 2018;91(6):543550.Google Scholar
Horn, A, Li, N, Dembek, TA, Kappel, A, Boulay, C, Ewert, S, Tietze, A, Husch, A, Perera, T, Neumann, WJ, Reisert, M, Si, H, Oostenveld, R, Rorden, C, Yeh, FC, Fang, Q, Herrington, TM, Vorwerk, J, Kühn, AA. Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging. NeuroImage 2019;184:293316.Google Scholar
Okun, MS, Tagliati, M, Pourfar, M, Fernandez, HH, Rodriguez, RL, Alterman, RL, Management of referred deep brain stimulation failures: A retrospective analysis from 2 movement disorders centers. Arch Neurol 2005;62(8):12501255.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×