Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T04:55:24.524Z Has data issue: false hasContentIssue false

Chapter 14 - Managing Deep Brain Stimulation Patients with Tourette Syndrome and Other Emerging Applications

Published online by Cambridge University Press:  09 June 2022

William J. Marks
Affiliation:
Stanford University, California
Jill L. Ostrem
Affiliation:
University of California, San Francisco
Get access

Summary

The management of deep brain stimulation (DBS) patients after surgery is an iterative process that entails stimulator adjustment, observation, and medication adjustment (where relevant) until the DBS settings are optimized and the desired clinical effect is achieved. Although such procedures and outcomes are better defined in the treatment of patients with more common indications such as Parkinson’s disease or obsessive-compulsive disorder, they are less clear when considering the postoperative management of individuals with less well-studied conditions.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hirschtritt, ME, Lee, PC, Pauls, DL, et al. Lifetime prevalence, age of risk, and genetic relationships of comorbid psychiatric disorders in Tourette syndrome. JAMA Psychiatry. 2015;72(4):325333.Google Scholar
Bloch, MH, Leckman, JF. Clinical course of Tourette syndrome. J Psychosom Res. 2009;67(6):497501.Google Scholar
Freeman, RD, Tourette Syndrome International Database C. Tic disorders and ADHD: Answers from a world-wide clinical dataset on Tourette syndrome. Eur Child Adolesc Psychiatry. 2007;16 Suppl 1:1523.Google Scholar
Schaefer, SM, Chow, CA, Louis, ED, Robakis, D. Tic exacerbation in adults with Tourette syndrome: A case series. Tremor Other Hyperkinet Mov (N Y). 2017;7:450.CrossRefGoogle ScholarPubMed
Pringsheim, T, Okun, MS, Muller-Vahl, K, et al. Practice guideline recommendations summary: Treatment of tics in people with Tourette syndrome and chronic tic disorders. Neurology. 2019;92(19):896906.Google Scholar
Schrock, LE, Mink, JW, Woods, DW, et al. Tourette syndrome deep brain stimulation: A review and updated recommendations. Mov Disord. 2015;30(4):448471.Google Scholar
Viswanathan, A, Jimenez-Shahed, J, Baizabal Carvallo, JF, Jankovic, J. Deep brain stimulation for Tourette syndrome: Target selection. Stereotact Funct Neurosurg. 2012;90(4):213224.Google Scholar
Vandewalle, V, Van der Linden, C, Groenewegen, HJ, Caemaert, J. Stereotactic treatment of Gilles de la Tourette syndrome by high frequency stimulation of thalamus. Lancet. 1999;353(9154):724.Google Scholar
Sadikot, AF, Rymar, VV. The primate centromedian-parafascicular complex: Anatomical organization with a note on neuromodulation. Brain Res Bull. 2009;78(2–3):122130.Google Scholar
Zhuang, P, Hallett, M, Zhang, X, Li, J, Zhang, Y, Li, Y. Neuronal activity in the globus pallidus internus in patients with tics. J Neurol Neurosurg Psychiatry. 2009;80(10):10751081.CrossRefGoogle ScholarPubMed
Kalanithi, PS, Zheng, W, Kataoka, Y, et al. Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome. Proc Natl Acad Sci U S A. 2005;102(37):1330713312.CrossRefGoogle ScholarPubMed
Middleton, FA, Strick, PL. Basal-ganglia “projections” to the prefrontal cortex of the primate. Cereb Cortex. 2002;12(9):926935.Google Scholar
Jimenez-Shahed, J. Design challenges for stimulation trials of Tourette’s syndrome. Lancet Neurol. 2015;14(6):563565.Google Scholar
Maciunas, RJ, Maddux, BN, Riley, DE, et al. Prospective randomized double-blind trial of bilateral thalamic deep brain stimulation in adults with Tourette syndrome. J Neurosurg. 2007;107(5):10041014.CrossRefGoogle ScholarPubMed
Welter, ML, Mallet, L, Houeto, JL, et al. Internal pallidal and thalamic stimulation in patients with Tourette syndrome. Arch Neurol. 2008;65(7):952957.Google Scholar
Ackermans, L, Duits, A, Van der Linden, C, et al. Double-blind clinical trial of thalamic stimulation in patients with Tourette syndrome. Brain. 2011;134(Pt 3):832844.Google Scholar
Wardell, K, Kefalopoulou, Z, Diczfalusy, E, et al. Deep brain stimulation of the pallidum internum for Gilles de la Tourette syndrome: A patient-specific model-based simulation study of the electric field. Neuromodulation. 2015;18(2):9096.Google Scholar
Welter, ML, Houeto, JL, Thobois, S, et al. Anterior pallidal deep brain stimulation for Tourette’s syndrome: A randomised, double-blind, controlled trial. Lancet Neurol. 2017;16(8):610619.Google Scholar
Müller-Vahl KR, Szejko N, Saryyeva A, et al. Randomized double-blind sham-controlled trial of thalamic versus GPi stimulation in patients with severe medically refractory Gilles de la Tourette syndrome. Brain Stimul. 2021 14(3):662–675.Google Scholar
Zhang, JG, Ge, Y, Stead, M, et al. Long-term outcome of globus pallidus internus deep brain stimulation in patients with Tourette syndrome. Mayo Clin Proc. 2014;89(11):15061514.Google Scholar
Dehning, S, Leitner, B, Schennach, R, et al. Functional outcome and quality of life in Tourette’s syndrome after deep brain stimulation of the posteroventrolateral globus pallidus internus: Long-term follow-up. World J Biol Psychiatry. 2014;15(1):6675.Google Scholar
Sachdev, PS, Mohan, A, Cannon, E, et al. Deep brain stimulation of the antero-medial globus pallidus interna for Tourette syndrome. PLoS One. 2014;9(8):e104926.Google Scholar
Dowd, RS, Pourfar, M, Mogilner, AY. Deep brain stimulation for Tourette syndrome: A single-center series. J Neurosurg. 2018;128(2):596604.Google Scholar
Porta, M, Brambilla, A, Cavanna, AE, et al. Thalamic deep brain stimulation for treatment-refractory Tourette syndrome: Two-year outcome. Neurology. 2009;73(17):13751380.CrossRefGoogle ScholarPubMed
Martinez-Ramirez, D, Jimenez-Shahed, J, Leckman, JF, et al. Efficacy and safety of deep brain stimulation in Tourette syndrome: The International Tourette Syndrome Deep Brain Stimulation Public Database and Registry. JAMA Neurol. 2018;75(3):353359.Google Scholar
Okun, MS, Rodriguez, RL, Foote, KD, et al. A case-based review of troubleshooting deep brain stimulator issues in movement and neuropsychiatric disorders. Parkinsonism Relat Disord. 2008;14(7):532538.Google Scholar
Coulombe, MA, Elkaim, LM, Alotaibi, NM, et al. Deep brain stimulation for Gilles de la Tourette syndrome in children and youth: A meta-analysis with individual participant data. J Neurosurg Pediatr. 2018;23(2):236246.Google Scholar
Servello, D, Sassi, M, Gaeta, M, Ricci, C, Porta, M. Tourette syndrome (TS) bears a higher rate of inflammatory complications at the implanted hardware in deep brain stimulation (DBS). Acta Neurochir (Wien). 2011;153(3):629632.Google Scholar
Schoenberg, MR, Maddux, BN, Riley, DE, et al. Five-months-postoperative neuropsychological outcome from a pilot prospective randomized clinical trial of thalamic deep brain stimulation for Tourette syndrome. Neuromodulation. 2015;18(2):97104.CrossRefGoogle ScholarPubMed
Cappon, D, Beigi, M, Kefalopoulou, Z, et al. Globus pallidal deep brain stimulation for Tourette syndrome: Effects on cognitive function. Parkinsonism Relat Disord. 2019;69:1418.Google Scholar
Niemann, N SA, Viswanathan, A, Jimenez Shahed, J. Safety profile of unblinded internal pallidal deep brain stimulation for medically refractory Tourette syndrome (P1.045). Neurology. 2016;86:P1.045.CrossRefGoogle Scholar
Niemann, N, Jimenez-Shahed, J. Deutetrabenazine in the treatment of tardive dyskinesia. Neurodegener Dis Manag. 2019;9(2):5971.Google Scholar
Waln, O, Jankovic, J. An update on tardive dyskinesia: From phenomenology to treatment. Tremor Other Hyperkinet Mov (N Y). 2013;3.Google Scholar
Morigaki, R, Mure, H, Kaji, R, Nagahiro, S, Goto, S. Therapeutic perspective on tardive syndrome with special reference to deep brain stimulation. Front Psychiatry. 2016;7:207.Google Scholar
Damier, P, Thobois, S, Witjas, T, et al. Bilateral deep brain stimulation of the globus pallidus to treat tardive dyskinesia. Arch Gen Psychiatry. 2007;64(2):170176.Google Scholar
Pouclet-Courtemanche, H, Rouaud, T, Thobois, S, et al. Long-term efficacy and tolerability of bilateral pallidal stimulation to treat tardive dyskinesia. Neurology. 2016;86(7):651659.Google Scholar
Gruber, D, Sudmeyer, M, Deuschl, G, et al. Neurostimulation in tardive dystonia/dyskinesia: A delayed start, sham stimulation-controlled randomized trial. Brain Stimul. 2018;11(6):13681377.CrossRefGoogle ScholarPubMed
Deng, ZD, Li, DY, Zhang, CC, et al. Long-term follow-up of bilateral subthalamic deep brain stimulation for refractory tardive dystonia. Parkinsonism Relat Disord. 2017;41:5865.Google Scholar
Macerollo, A, Deuschl, G. Deep brain stimulation for tardive syndromes: Systematic review and meta-analysis. J Neurol Sci. 2018;389:5560.Google Scholar
Schrader, C, Capelle, HH, Kinfe, TM, et al. GPi-DBS may induce a hypokinetic gait disorder with freezing of gait in patients with dystonia. Neurology. 2011;77(5):483488.Google Scholar
Trottenberg, T, Volkmann, J, Deuschl, G, et al. Treatment of severe tardive dystonia with pallidal deep brain stimulation. Neurology. 2005;64(2):344346.Google Scholar
Armstrong, MJ, Miyasaki, JM, American Academy of N.Evidence-based guideline: Pharmacologic treatment of chorea in Huntington disease: Report of the guideline development subcommittee of the American Academy of Neurology. Neurology. 2012;79(6):597603.CrossRefGoogle Scholar
Liu, Y, Li, F, Luo, H, et al. Improvement of deep brain stimulation in dyskinesia in Parkinson’s disease: A meta-analysis. Front Neurol. 2019;10:151.Google Scholar
Temel, Y, Cao, C, Vlamings, R, et al. Motor and cognitive improvement by deep brain stimulation in a transgenic rat model of Huntington’s disease. Neurosci Lett. 2006;406(1–2):138141.Google Scholar
Wojtecki, L, Groiss, SJ, Ferrea, S, et al. A prospective pilot trial for pallidal deep brain stimulation in Huntington’s disease. Front Neurol. 2015;6:177.CrossRefGoogle ScholarPubMed
Sharma, M, Deogaonkar, M. Deep brain stimulation in Huntington’s disease: Assessment of potential targets. J Clin Neurosci. 2015;22(5):812817.CrossRefGoogle ScholarPubMed
Gonzalez, V, Cif, L, Biolsi, B, et al. Deep brain stimulation for Huntington’s disease: Long-term results of a prospective open-label study. J Neurosurg. 2014;121(1):114122.Google Scholar
Delorme, C, Rogers, A, Lau, B, et al. Deep brain stimulation of the internal pallidum in Huntington’s disease patients: Clinical outcome and neuronal firing patterns. J Neurol. 2016;263(2):290298.Google Scholar
Zittel, S, Tadic, V, Moll, CKE, et al. Prospective evaluation of Globus pallidus internus deep brain stimulation in Huntington’s disease. Parkinsonism Relat Disord. 2018;51:96100.CrossRefGoogle ScholarPubMed
Velez-Lago, FM, Thompson, A, Oyama, G, et al. Differential and better response to deep brain stimulation of chorea compared to dystonia in Huntington’s disease. Stereotact Funct Neurosurg. 2013;91(2):129133.Google Scholar
Vedam-Mai, V, Martinez-Ramirez, D, Hilliard, JD, et al. Post-mortem findings in Huntington’s deep brain stimulation: A moving target due to atrophy. Tremor Other Hyperkinet Mov (N Y). 2016;6:372.Google Scholar
Larson, PS, Cheung, SW. A stroke of silence: Tinnitus suppression following placement of a deep brain stimulation electrode with infarction in area LC. J Neurosurg. 2013;118(1):192194.CrossRefGoogle ScholarPubMed
Lowry, LD, Eisenman, LM, Saunders, JC. An absence of tinnitus. Otol Neurotol. 2004;25(4):474478.Google Scholar
Cheung, SW, Racine, CA, Henderson-Sabes, J, et al. Phase I trial of caudate deep brain stimulation for treatment-resistant tinnitus. J Neurosurg. 2019:110.Google Scholar
Smit, JV, Janssen, ML, Engelhard, M, et al. The impact of deep brain stimulation on tinnitus. Surg Neurol Int. 2016;7(Suppl 35):S848S854.Google Scholar
Shi, Y, Burchiel, KJ, Anderson, VC, Martin, WH. Deep brain stimulation effects in patients with tinnitus. Otolaryngol Head Neck Surg. 2009;141(2):285287.Google Scholar
Cheung, SW, Larson, PS. Tinnitus modulation by deep brain stimulation in locus of caudate neurons (area LC). Neuroscience. 2010;169(4):17681778.Google Scholar
Weller, J, Budson, A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Res. 2018;7.CrossRefGoogle Scholar
Hamani, C, McAndrews, MP, Cohn, M, et al. Memory enhancement induced by hypothalamic/fornix deep brain stimulation. Ann Neurol. 2008;63(1):119123.CrossRefGoogle ScholarPubMed
Laxton, AW, Tang-Wai, DF, McAndrews, MP, et al. A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease. Ann Neurol. 2010;68(4):521534.Google Scholar
Lozano, AM, Fosdick, L, Chakravarty, MM, et al. A phase II study of fornix deep brain stimulation in mild Alzheimer’s disease. J Alzheimers Dis. 2016;54(2):777787.CrossRefGoogle ScholarPubMed
Kuhn, J, Hardenacke, K, Lenartz, D, et al. Deep brain stimulation of the nucleus basalis of Meynert in Alzheimer’s dementia. Mol Psychiatry. 2015;20(3):353360.Google Scholar
Buzsaki, G, Bickford, RG, Ponomareff, G, Thal, LJ, Mandel, R, Gage, FH. Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci. 1988;8(11):40074026.Google Scholar
Kurosawa, M, Sato, A, Sato, Y. Stimulation of the nucleus basalis of Meynert increases acetylcholine release in the cerebral cortex in rats. Neurosci Lett. 1989;98(1):4550.Google Scholar
Hardenacke, K, Hashemiyoon, R, Visser-Vandewalle, V, et al. Deep brain stimulation of the nucleus basalis of Meynert in Alzheimer’s dementia: Potential predictors of cognitive change and results of a long-term follow-up in eight patients. Brain Stimul. 2016;9(5):799800.Google Scholar
Colloca, L, Ludman, T, Bouhassira, D, et al. Neuropathic pain. Nat Rev Dis Primers. 2017;3:17002.CrossRefGoogle ScholarPubMed
Moore, NZ, Lempka, SF, Machado, A. Central neuromodulation for refractory pain. Neurosurg Clin N Am. 2014;25(1):7783.Google Scholar
Rasche, D, Rinaldi, PC, Young, RF, Tronnier, VM. Deep brain stimulation for the treatment of various chronic pain syndromes. Neurosurg Focus. 2006;21(6):E8.CrossRefGoogle ScholarPubMed
Keifer, OP, Jr., Riley, JP, Boulis, NM. Deep brain stimulation for chronic pain: Intracranial targets, clinical outcomes, and trial design considerations. Neurosurg Clin N Am. 2014;25(4):671692.Google Scholar
Coffey, RJ, Lozano, AM. Neurostimulation for chronic noncancer pain: An evaluation of the clinical evidence and recommendations for future trial designs. J Neurosurg. 2006;105(2):175189.Google Scholar
Coffey, RJ. Deep brain stimulation for chronic pain: Results of two multicenter trials and a structured review. Pain Med. 2001;2(3):183192.Google Scholar
Levy, R, Deer, TR, Henderson, J. Intracranial neurostimulation for pain control: A review. Pain Physician. 2010;13(2):157165.Google Scholar
Boccard, SG, Pereira, EA, Moir, L, Aziz, TZ, Green, AL. Long-term outcomes of deep brain stimulation for neuropathic pain. Neurosurgery. 2013;72(2):221–230; discussion 231.Google Scholar
Abdallat M, Saryyeva A, Blahak C, et al. Centromedian-Parafascicular and Somatosensory Thalamic Deep Brain Stimulation for Treatment of Chronic Neuropathic Pain: A Contemporary Series of 40 Patients. Biomedicines. 2021;9(7):731.Google Scholar
Lempka, SF, Malone, DA, Jr., Hu, B, et al. Randomized clinical trial of deep brain stimulation for poststroke pain. Ann Neurol. 2017;81(5):653663.Google Scholar
Pereira, EA, Aziz, TZ. Neuropathic pain and deep brain stimulation. Neurotherapeutics. 2014;11(3):496507.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×