Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-28T14:12:32.195Z Has data issue: false hasContentIssue false

Chapter 15 - Assessing Patient Outcomes and Troubleshooting Deep Brain Stimulation

Published online by Cambridge University Press:  09 June 2022

William J. Marks
Affiliation:
Stanford University, California
Jill L. Ostrem
Affiliation:
University of California, San Francisco
Get access

Summary

This chapter reviews the methods for assessing outcomes following deep brain stimulation (DBS) to treat movement disorders and also provides a detailed approach to troubleshooting problems with the therapy. Practitioners need to keep in mind that many DBS “failures” are preventable or addressable.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Okun, MS, Tagliati, M, Pourfar, M, et al. Management of referred deep brain stimulation failures: A retrospective analysis from 2 movement disorders centers. Arch Neurol. 2005;62(8):12501255. doi:10.1001/archneur.62.8.noc40425Google Scholar
Goetz, CG, Fahn, S, Martinez-Martin, P, et al. Movement Disorder Society–sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Process, format, and clinimetric testing plan. Mov Disord. 2007;22(1):4147. doi:10.1002/mds.21198Google Scholar
Morishita, T, Rahman, M, Foote, KD, et al. DBS candidates that fall short on a levodopa challenge test: Alternative and important indications. Neurologist. 2011;17(5):263268. doi:10.1097/NRL.0b013e31822d1069CrossRefGoogle ScholarPubMed
Defer, GL, Widner, H, Marié, RM, Rémy, P, Levivier, M. Core assessment program for surgical interventional therapies in Parkinson’s disease (CAPSIT-PD). Mov Disord. 1999;14(4):572584. doi:10.1002/1531-8257(199907)14:4<572::aid-mds1005>3.0.co;2-c3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Germano, IM, Gracies, J-M, Weisz, DJ, Tse, W, Koller, WC, Olanow, CW. Unilateral stimulation of the subthalamic nucleus in Parkinson disease: A double-blind 12-month evaluation study. J Neurosurg. 2004;101(1):3642. doi:10.3171/jns.2004.101.1.0036CrossRefGoogle ScholarPubMed
Weaver, F, Follett, K, Hur, K, Ippolito, D, Stern, M. Deep brain stimulation in Parkinson disease: A metaanalysis of patient outcomes. J Neurosurg. 2005;103(6):956967. doi:10.3171/jns.2005.103.6.0956Google Scholar
Williams, NR, Foote, KD, Okun, MS. STN vs. GPi Deep brain stimulation: Translating the rematch into clinical practice. Mov Disord Clin Pract. 2014;1(1):2435. doi:10.1002/mdc3.12004CrossRefGoogle ScholarPubMed
Vickrey, BG. Getting oriented to patient-oriented outcomes. Neurology. 1999;53(4):662663. doi:10.1212/wnl.53.4.662Google Scholar
Guyatt, GH, Bombardier, C, Tugwell, PX. Measuring disease-specific quality of life in clinical trials. CMAJ. 1986;134(8):889895. www.ncbi.nlm.nih.gov/pubmed/3955482Google ScholarPubMed
Doward, LC, McKenna, SP. Defining patient-reported outcomes. Value Health. 7 Suppl 1:S4–S8. doi:10.1111/j.1524-4733.2004.7s102.xGoogle Scholar
Hayes, V, Morris, J, Wolfe, C, Morgan, M. The SF-36 health survey questionnaire: Is it suitable for use with older adults? Age Ageing. 1995;24(2):120125. doi:10.1093/ageing/24.2.120CrossRefGoogle ScholarPubMed
Hobson, JP, Meara, RJ. Is the SF-36 health survey questionnaire suitable as a self-report measure of the health status of older adults with Parkinson’s disease? Qual Life Res. 1997;6(3):213216. doi:10.1023/a:1026454503917Google Scholar
Ware, JE, Sherbourne, CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30(6):473483. www.ncbi.nlm.nih.gov/pubmed/1593914Google Scholar
Hunt, SM, McKenna, SP, McEwen, J, Williams, J, Papp, E. The Nottingham Health Profile: Subjective health status and medical consultations. Soc Sci Med A. 1981;15(3 Pt 1):221229. doi:10.1016/0271-7123(81)90005-5Google Scholar
Bergner, M, Bobbitt, RA, Carter, WB, Gilson, BS. The Sickness Impact Profile: Development and final revision of a health status measure. Med Care. 1981;19(8):787805. doi:10.1097/00005650-198108000-00001CrossRefGoogle ScholarPubMed
Welsh, M, McDermott, MP, Holloway, RG, et al. Development and testing of the Parkinson’s Disease Quality of Life Scale. Mov Disord. 2003;18(6):637645. doi:10.1002/mds.10424CrossRefGoogle ScholarPubMed
Kuehler, A, Henrich, G, Schroeder, U, Conrad, B, Herschbach, P, Ceballos-Baumann, A. A novel quality of life instrument for deep brain stimulation in movement disorders. J Neurol Neurosurg Psychiatry. 2003;74(8):10231030. doi:10.1136/jnnp.74.8.1023Google Scholar
Tröster, AI, Pahwa, R, Fields, JA, Tanner, CM, Lyons, KE. Quality of Life in Essential Tremor Questionnaire (QUEST): Development and initial validation. Parkinsonism Relat Disord. 2005;11(6):367373. doi:10.1016/j.parkreldis.2005.05.009Google Scholar
Thorsen, H, McKenna, S, Tennant, A, Holstein, P. Nottingham Health Profile scores predict the outcome and support aggressive revascularisation for critical ischaemia. Eur J Vasc Endovasc Surg. 2002;23(6):495499. doi:10.1053/ejvs.2002.1648Google Scholar
Devlin, N, Williams, A. Valuing quality of life: Results for New Zealand health professionals. N Z Med J. 1999;112(1083):6871. www.ncbi.nlm.nih.gov/pubmed/10210306Google ScholarPubMed
Hobson, P, Holden, A, Meara, J. Measuring the impact of Parkinson’s disease with the Parkinson’s Disease Quality of Life Questionnaire. Age Ageing. 1999;28(4):341346. doi:10.1093/ageing/28.4.341CrossRefGoogle ScholarPubMed
Jenkinson, C, Fitzpatrick, R, Argyle, M. The Nottingham Health Profile: An analysis of its sensitivity in differentiating illness groups. Soc Sci Med. 1988;27(12):14111414. doi:10.1016/0277-9536(88)90207-9CrossRefGoogle ScholarPubMed
Wiklund, I. The Nottingham Health Profile: A measure of health-related quality of life. Scand J Prim Health Care Suppl. 1990;1:1518. www.ncbi.nlm.nih.gov/pubmed/2100359Google ScholarPubMed
Hagell, P, Whalley, D, McKenna, SP, Lindvall, O. Health status measurement in Parkinson’s disease: Validity of the PDQ-39 and Nottingham Health Profile. Mov Disord. 2003;18(7):773–783. doi:10.1002/mds.10438Google Scholar
Hunt, SM, McKenna, SP. Validating the {SF}-36. BMJ. 1992;305(6854):645; author reply 646–645; author reply 646. doi:10.1136/bmj.305.6854.645-bGoogle Scholar
Sullivan, M, Karlsson, J, Ware, JE. The Swedish SF-36 Health Survey: I. Evaluation of data quality, scaling assumptions, reliability and construct validity across general populations in Sweden. Soc Sci Med. 1995;41(10):13491358. doi:10.1016/0277-9536(95)00125-qCrossRefGoogle ScholarPubMed
Den Oudsten, BL, Van Heck, GL, De Vries, J. The suitability of patient-based measures in the field of Parkinson’s disease: A systematic review. Mov Disord. 2007;22(10):13901401. doi:10.1002/mds.21539CrossRefGoogle ScholarPubMed
Blahak, C, Wöhrle, JC, Capelle, HH, et al. Health-related quality of life in segmental dystonia is improved by bilateral pallidal stimulation. J Neurol. 2008;255(2):178182. doi:10.1007/s00415-008-0614-3CrossRefGoogle ScholarPubMed
Hälbig, TD, Gruber, D, Kopp, UA, Schneider, G-H, Trottenberg, T, Kupsch, A. Pallidal stimulation in dystonia: Effects on cognition, mood, and quality of life. J Neurol Neurosurg Psychiatry. 2005;76(12):17131716. doi:10.1136/jnnp.2004.057992Google Scholar
Mueller, J, Skogseid, IM, Benecke, R, et al. Pallidal deep brain stimulation improves quality of life in segmental and generalized dystonia: Results from a prospective, randomized sham-controlled trial. Mov Disord. 2008;23(1):131134. doi:10.1002/mds.21783Google Scholar
Skogseid, IM. Pallidal deep brain stimulation is effective, and improves quality of life in primary segmental and generalized dystonia. Acta Neurol Scand Suppl. 2008;188:5155. doi:10.1111/j.1600-0404.2008.01032.xGoogle Scholar
Castelli, L, Perozzo, P, Zibetti, M, et al. Chronic deep brain stimulation of the subthalamic nucleus for Parkinson’s disease: Effects on cognition, mood, anxiety and personality traits. Eur Neurol. 2006;55(3):136144. doi:10.1159/000093213Google Scholar
Funkiewiez, A, Ardouin, C, Caputo, E, et al. Long term effects of bilateral subthalamic nucleus stimulation on cognitive function, mood, and behaviour in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2004;75(6):834839. doi:10.1136/jnnp.2002.009803CrossRefGoogle ScholarPubMed
Voon, V, Moro, E, Saint-Cyr, JA, Lozano, AM, Lang, AE. Psychiatric symptoms following surgery for Parkinson’s disease with an emphasis on subthalamic stimulation. Adv Neurol. 2005;96:130147. www.ncbi.nlm.nih.gov/pubmed/16383217Google Scholar
Odekerken, VJJ, Van Laar, T, Staal, MJ, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): A randomised controlled trial. Lancet Neurol. 2013;12(1):3744. doi:10.1016/S1474-4422(12)70264-8Google Scholar
Mink, JW, Walkup, J, Frey, KA, et al. Patient selection and assessment recommendations for deep brain stimulation in Tourette syndrome. Mov Disord. 2006;21(11):18311838. doi:10.1002/mds.21039Google Scholar
Rodriguez, RL, Fernandez, HH, Haq, I, Okun, MS. Pearls in patient selection for deep brain stimulation. Neurologist. 2007;13(5):253260. doi:10.1097/NRL.0b013e318095a4d5Google Scholar
Contarino, MF, Daniele, A, Sibilia, AH, et al. Cognitive outcome 5 years after bilateral chronic stimulation of subthalamic nucleus in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2007;78(3):248252. doi:10.1136/jnnp.2005.086660Google Scholar
Dujardin, K, Defebvre, L, Krystkowiak, P, Blond, S, Destée, A. Influence of chronic bilateral stimulation of the subthalamic nucleus on cognitive function in Parkinson’s disease. J Neurol. 2001;248(7):603611. doi:10.1007/s004150170139Google Scholar
Moretti, R, Torre, P, Antonello, RM, et al. Neuropsychological changes after subthalamic nucleus stimulation: A 12 month follow-up in nine patients with Parkinson’s disease. Parkinsonism Relat Disord. 2003;10(2):7379. doi:10.1016/s1353-8020(03)00073-7Google Scholar
Schroeder, U, Kuehler, A, Haslinger, B, et al. Subthalamic nucleus stimulation affects striato-anterior cingulate cortex circuit in a response conflict task: A PET study. Brain. 2002;125(Pt 9):19952004. doi:10.1093/brain/awf199CrossRefGoogle Scholar
Schüpbach, WMM, Chastan, N, Welter, ML, et al. Stimulation of the subthalamic nucleus in Parkinson’s disease: A 5 year follow up. J Neurol Neurosurg Psychiatry. 2005;76(12):16401644. doi:10.1136/jnnp.2005.063206Google Scholar
Alegret, M, Junqué, C, Valldeoriola, F, et al. Effects of bilateral subthalamic stimulation on cognitive function in Parkinson disease. Arch Neurol. 2001;58(8):12231227. doi:10.1001/archneur.58.8.1223CrossRefGoogle ScholarPubMed
Morrison, CE, Borod, JC, Perrine, K, et al. Neuropsychological functioning following bilateral subthalamic nucleus stimulation in Parkinson’s disease. Arch Clin Neuropsychol. 2004;19(2):165181. doi:10.1016/S0887-6177(03)00004-0CrossRefGoogle ScholarPubMed
Saint-Cyr, JA, Trépanier, LL, Kumar, R, Lozano, AM, Lang, AE. Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson’s disease. Brain. 2000;123. Pt 1:20912108. doi:10.1093/brain/123.10.2091Google Scholar
Gironell, A, Kulisevsky, J, Rami, L, Fortuny, N, García-Sánchez, C, Pascual-Sedano, B. Effects of pallidotomy and bilateral subthalamic stimulation on cognitive function in Parkinson disease. A controlled comparative study. J Neurol. 2003;250(8):917923. doi:10.1007/s00415-003-1109-xGoogle Scholar
De Gaspari, D, Siri, C, Di Gioia, M, et al. Clinical correlates and cognitive underpinnings of verbal fluency impairment after chronic subthalamic stimulation in Parkinson’s disease. Parkinsonism Relat Disord. 2006;12(5):289295. doi:10.1016/j.parkreldis.2006.01.001Google Scholar
De Gaspari, D, Siri, C, Landi, A, et al. Clinical and neuropsychological follow up at 12 months in patients with complicated Parkinson’s disease treated with subcutaneous apomorphine infusion or deep brain stimulation of the subthalamic nucleus. J Neurol Neurosurg Psychiatry. 2006;77(4):450453. doi:10.1136/jnnp.2005.078659Google Scholar
Williams, AE, Arzola, GM, Strutt, AM, Simpson, R, Jankovic, J, York, MK. Cognitive outcome and reliable change indices two years following bilateral subthalamic nucleus deep brain stimulation. Parkinsonism Relat Disord. 2011;17(5):321327. doi:10.1016/j.parkreldis.2011.01.011Google Scholar
Damiano, AM, Snyder, C, Strausser, B, Willian, MK. A review of health-related quality-of-life concepts and measures for Parkinson’s disease. Qual Life Res. 1999;8(3):235243. doi:10.1023/a:1008823222574Google Scholar
Diamond, A, Jankovic, J. The effect of deep brain stimulation on quality of life in movement disorders. J Neurol Neurosurg Psychiatry. 2005;76(9):11881193. doi:10.1136/jnnp.2005.065334CrossRefGoogle ScholarPubMed
Schulzer, M, Mak, E, Calne, SM. The psychometric properties of the Parkinson’s Impact Scale (PIMS) as a measure of quality of life in Parkinson’s disease. Parkinsonism Relat Disord. 2003;9(5):291294. doi:10.1016/s1353-8020(03)00019-1Google Scholar
Calne, SM, Mak, E, Hall, J, et al. Validating a quality-of-life scale in caregivers of patients with Parkinson’s disease: Parkinson’s Impact Scale (PIMS). Adv Neurol. 2003;91:115122. www.ncbi.nlm.nih.gov/pubmed/12442670Google Scholar
Jenkinson, C, Fitzpatrick, R, Peto, V, Greenhall, R, Hyman, N. The Parkinson’s Disease Questionnaire (PDQ-39): Development and validation of a Parkinson’s disease summary index score. Age Ageing. 1997;26(5):353357. doi:10.1093/ageing/26.5.353CrossRefGoogle ScholarPubMed
Peto, V, Jenkinson, C, Fitzpatrick, R, Greenhall, R. The development and validation of a short measure of functioning and well being for individuals with Parkinson’s disease. Qual Life Res. 1995;4(3):241248. doi:10.1007/bf02260863Google Scholar
Folstein, MF, Folstein, SE, McHugh, PR. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189198. doi:10.1016/0022-3956(75)90026-6Google Scholar
Gardner, R, Oliver-Muñoz, S, Fisher, L, Empting, L. Mattis Dementia Rating Scale: Internal reliability study using a diffusely impaired population. J Clin Neuropsychol. 1981;3(3):271275. doi:10.1080/01688638108403130CrossRefGoogle ScholarPubMed
W D. Wechsler Adult Intelligence Scale (WAIS-3R). Third ed.; 1997.Google Scholar
Lhermitte, F, Pillon, B, Serdaru, M. Human autonomy and the frontal lobes. Part I: Imitation and utilization behavior: A neuropsychological study of 75 patients. Ann Neurol. 1986;19(4):326334. doi:10.1002/ana.410190404Google Scholar
Nelson, HE. A modified card sorting test sensitive to frontal lobe defects. Cortex. 1976;12(4):313324. doi:10.1016/s0010-9452(76)80035-4Google Scholar
Giovagnoli, AR, Del Pesce, M, Mascheroni, S, Simoncelli, M, Laiacona, M, Capitani, E. Trail making test: Normative values from 287 normal adult controls. Ital J Neurol Sci. 1996;17(4):305309. doi:10.1007/bf01997792CrossRefGoogle ScholarPubMed
Miner, T, Ferraro, FR. The role of speed of processing, inhibitory mechanisms, and presentation order in trail-making test performance. Brain Cogn. 1998;38(2):246253. doi:10.1006/brcg.1998.1034Google Scholar
Tombaugh, TN, Kozak, J, Rees, L. Normative data stratified by age and education for two measures of verbal fluency: FAS and animal naming. Arch Clin Neuropsychol. 1999;14(2):167177. www.ncbi.nlm.nih.gov/pubmed/14590600Google Scholar
Benton, ALHK. Multilingual Aphasia Examination. Iowa City, IA: AJA Associates; 1989.Google Scholar
Amodio, P, Wenin, H, Del Piccolo, F, et al. Variability of trail making test, symbol digit test and line trait test in normal people. A normative study taking into account age-dependent decline and sociobiological variables. Aging Clin Exp Res. 2002;14(2):117131. doi:10.1007/bf03324425Google Scholar
Arbuthnott, K, Frank, J. Trail making test, part B as a measure of executive control: Validation using a set-switching paradigm. J Clin Exp Neuropsychol. 2000;22(4):518528. doi:10.1076/1380-3395(200008)22:4;1-0;FT518CrossRefGoogle ScholarPubMed
Mascolo, MF, Hirtle, SC. Verbal coding and the elimination of Stroop interference in a matching task. Am J Psychol. 1990;103(2):195215. www.ncbi.nlm.nih.gov/pubmed/2349976CrossRefGoogle Scholar
Van der Elst, W, Van Boxtel, MPJ, Van Breukelen, GJP, Jolles, J. Detecting the significance of changes in performance on the Stroop Color-Word Test, Rey’s Verbal Learning Test, and the Letter Digit Substitution Test: The regression-based change approach. J Int Neuropsychol Soc. 2008;14(1):7180. doi:10.1017/S1355617708080028Google Scholar
Flowers, KA, Robertson, C. The effect of Parkinson’s disease on the ability to maintain a mental set. J Neurol Neurosurg Psychiatry. 1985;48(6):517529. doi:10.1136/jnnp.48.6.517Google Scholar
Wechsler Memory Scale. San Antonio, TX: Psychological Corporation; 1997.Google Scholar
Owen, AM, Beksinska, M, James, M, et al. Visuospatial memory deficits at different stages of Parkinson’s disease. Neuropsychologia. 1993;31(7):627644. doi:10.1016/0028-3932(93)90135-mGoogle Scholar
Cooper, JA, Sagar, HJ, Jordan, N, Harvey, NS, Sullivan, EV. Cognitive impairment in early, untreated Parkinson’s disease and its relationship to motor disability. Brain. 1991;114. Pt 5:20952122. doi:10.1093/brain/114.5.2095Google Scholar
Tombaugh, TN. A comprehensive review of the Paced Auditory Serial Addition Test (PASAT). Arch Clin Neuropsychol. 2006;21(1):5376. doi:10.1016/j.acn.2005.07.006Google Scholar
Wiens, AN, Fuller, KH, Crossen, JR. Paced Auditory Serial Addition Test: Adult norms and moderator variables. J Clin Exp Neuropsychol. 1997;19(4):473483. doi:10.1080/01688639708403737CrossRefGoogle ScholarPubMed
Frank, RM, Byrne, GJ. The clinical utility of the Hopkins Verbal Learning Test as a screening test for mild dementia. Int J Geriatr Psychiatry. 2000;15(4):317324. doi:10.1002/(sici)1099-1166(200004)15:4<317::aid-gps116>3.0.co;2-7Google Scholar
Shapiro, AM, Benedict, RH, Schretlen, D, Brandt, J. Construct and concurrent validity of the Hopkins Verbal Learning Test–Revised. Clin Neuropsychol. 1999;13(3):348358. doi:10.1076/clin.13.3.348.1749Google Scholar
Poreh, A. Analysis of mean learning of normal participants on the Rey Auditory-Verbal Learning Test. Psychol Assess. 2005;17(2):191199. doi:10.1037/1040-3590.17.2.191CrossRefGoogle ScholarPubMed
Ryan, JJ, Geisser, ME. Validity and diagnostic accuracy of an alternate form of the Rey Auditory Verbal Learning Test. Arch Clin Neuropsychol. 1986;1(3):209217. www.ncbi.nlm.nih.gov/pubmed/14591149CrossRefGoogle ScholarPubMed
Pillon, B, Deweer, B, Agid, Y, Dubois, B. Explicit memory in Alzheimer’s, Huntington’s, and Parkinson’s diseases. Arch Neurol. 1993;50(4):374379. doi:10.1001/archneur.1993.00540040036010Google Scholar
Cockburn, J. Performance on the Tower of London Test after severe head injury. J Int Neuropsychol Soc. 1995;1(6):537544. doi:10.1017/s1355617700000667Google Scholar
Delis, DC, Kramer, JH, Kaplan, E, Holdnack, J. Reliability and validity of the Delis-Kaplan Executive Function System: An update. J Int Neuropsychol Soc. 2004;10(2):301303. doi:10.1017/S1355617704102191Google Scholar
Homack, S, Lee, D, Riccio, CA. Test review: Delis–Kaplan executive function system. J Clin Exp Neuropsychol. 2005;27(5):599609. doi:10.1080/13803390490918444Google Scholar
Calero, MD, Arnedo, ML, Navarro, E, Ruiz-Pedrosa, M, Carnero, C. Usefulness of a 15-item version of the Boston Naming Test in neuropsychological assessment of low-educational elders with dementia. J Gerontol B Psychol Sci Soc Sci. 2002;57(2):P187–P191. doi:10.1093/geronb/57.2.p187CrossRefGoogle ScholarPubMed
Kent, PS, Luszcz, MA. A review of the Boston Naming Test and multiple-occasion normative data for older adults on 15-item versions. Clin Neuropsychol. 2002;16(4):555574. doi:10.1076/clin.16.4.555.13916Google Scholar
Tombaugh, TN, Hubley, AM. The 60-item Boston Naming Test: Norms for cognitively intact adults aged 25 to 88 years. J Clin Exp Neuropsychol. 1997;19(6):922932. doi:10.1080/01688639708403773Google Scholar
Gladsjo, JA, Schuman, CC, Evans, JD, Peavy, GM, Miller, SW, Heaton, RK. Norms for letter and category fluency: Demographic corrections for age, education, and ethnicity. Assessment. 1999;6(2):147178. doi:10.1177/107319119900600204Google Scholar
Sunderland, T, Hill, JL, Mellow, AM, et al. Clock drawing in Alzheimer’s disease: A novel measure of dementia severity. J Am Geriatr Soc. 1989;37(8):725729. doi:10.1111/j.1532-5415.1989.tb02233.xGoogle Scholar
Janvin, C, Aarsland, D, Larsen, JP, Hugdahl, K. Neuropsychological profile of patients with Parkinson’s disease without dementia. Dement Geriatr Cogn Disord. 2003;15(3):126131. doi:10.1159/000068483CrossRefGoogle ScholarPubMed
Warrington, EKJM. The Visual Object and Space Perception Battery. Bury St Edmunds: Thames Valley Test Company; 1991.Google Scholar
Mason, CF, Ganzler, H. Adult Norms for the Shipley Institute of Living Scale and Hooper Visual Organization Test Based on Age and Education. J Gerontol. 1964;19:419424. doi:10.1093/geronj/19.4.419CrossRefGoogle ScholarPubMed
Merten, T, Beal, C. An analysis of the Hooper Visual Organization Test with neurological patients. Clin Neuropsychol. 1999;13(4):521529. doi:10.1076/1385-4046(199911)13:04;1-Y;FT521Google Scholar
Schretlen, DJ, Pearlson, GD, Anthony, JC, Yates, KO. Determinants of Benton Facial Recognition Test performance in normal adults. Neuropsychology. 2001;15(3):405410. doi:10.1037//0894-4105.15.3.405CrossRefGoogle ScholarPubMed
Starkstein, SE, Mayberg, HS, Preziosi, TJ, Andrezejewski, P, Leiguarda, R, Robinson, RG. Reliability, validity, and clinical correlates of apathy in Parkinson’s disease. J Neuropsychiatry Clin Neurosci. 1992;4(2):134139. doi:10.1176/jnp.4.2.134Google Scholar
Sockeel, P, Dujardin, K, Devos, D, Denève, C, Destée, A, Defebvre, L. The Lille Apathy Rating Scale (LARS), a new instrument for detecting and quantifying apathy: Validation in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2006;77(5):579584. doi:10.1136/jnnp.2005.075929Google Scholar
Bruss, GS, Gruenberg, AM, Goldstein, RD, Barber, JP. Hamilton Anxiety Rating Scale Interview guide: Joint interview and test-retest methods for interrater reliability. Psychiatry Res. 1994;53(2):191202. doi:10.1016/0165-1781(94)90110-4Google Scholar
Leentjens, AF, Verhey, FR, Lousberg, R, Spitsbergen, H, Wilmink, FW. The validity of the Hamilton and Montgomery–Asberg depression rating scales as screening and diagnostic tools for depression in Parkinson’s disease. Int J Geriatr Psychiatry. 2000;15(7):644649. doi:10.1002/1099-1166(200007)15:7<644::aid-gps167>3.0.co;2-lGoogle Scholar
Weintraub, D, Oehlberg, KA, Katz, IR, Stern, MB. Test characteristics of the 15-item geriatric depression scale and Hamilton depression rating scale in Parkinson disease. Am J Geriatr Psychiatry. 2006;14(2):169175. doi:10.1097/01.JGP.0000192488.66049.4bGoogle Scholar
Visser, M, Leentjens, AFG, Marinus, J, Stiggelbout, AM, Van Hilten, JJ. Reliability and validity of the Beck Depression Inventory in patients with Parkinson’s disease. Mov Disord. 2006;21(5):668672. doi:10.1002/mds.20792Google Scholar
Ertan, FS, Ertan, T, Kiziltan, G, Uyguçgil, H. Reliability and validity of the Geriatric Depression Scale in depression in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2005;76(10):14451447. doi:10.1136/jnnp.2004.057984Google Scholar
Biggs, JT, Wylie, LT, Ziegler, VE. Validity of the Zung Self-Rating Depression Scale. Br J Psychiatry. 1978;132:381385. doi:10.1192/bjp.132.4.381Google Scholar
Thurber, S, Snow, M, Honts, CR. The Zung Self-Rating Depression Scale: Convergent validity and diagnostic discrimination. Assessment. 2002;9(4):401405. doi:10.1177/1073191102238471Google Scholar
Young, RC, Biggs, JT, Ziegler, VE, Meyer, DA. A rating scale for mania: Reliability, validity and sensitivity. Br J Psychiatry. 1978;133:429435. doi:10.1192/bjp.133.5.429Google Scholar
Steiner, M, Streiner, DL. Validation of a revised visual analog scale for premenstrual mood symptoms: Results from prospective and retrospective trials. Can J Psychiatry. 2005;50(6):327332. doi:10.1177/070674370505000607Google Scholar
Goodman, WK, Price, LH, Rasmussen, SA, et al. The Yale-Brown Obsessive Compulsive Scale. I. Development, use, and reliability. Arch Gen Psychiatry. 1989;46(11):10061011. doi:10.1001/archpsyc.1989.01810110048007CrossRefGoogle ScholarPubMed
Goodman, WK, LH, Price, SA, Rasmussen, et al. The Yale-Brown Obsessive Compulsive Scale. II. Validity. Arch Gen Psychiatry. 1989;46(11):10121016. doi:10.1001/archpsyc.1989.01810110054008Google Scholar
Kim, SW, Dysken, MW, Kuskowski, M. The Yale-Brown Obsessive-Compulsive Scale: A reliability and validity study. Psychiatry Res. 1990;34(1):99106. doi:10.1016/0165-1781(90)90061-9CrossRefGoogle Scholar
Cummings, JL, Mega, M, Gray, K, Rosenberg-Thompson, S, Carusi, DA, Gornbein, J. The Neuropsychiatric Inventory: Comprehensive assessment of psychopathology in dementia. Neurology. 1994;44(12):23082314. doi:10.1212/wnl.44.12.2308CrossRefGoogle ScholarPubMed
Brandstaedter, D, Spieker, S, Ulm, G, et al. Development and evaluation of the Parkinson Psychosis Questionnaire: A screening instrument for the early diagnosis of drug-induced psychosis in Parkinson’s disease. J Neurol. 2005;252(9):10601066. doi:10.1007/s00415-005-0816-xCrossRefGoogle ScholarPubMed
Okun, MS, Foote, KD. A mnemonic for Parkinson disease patients considering DBS: A tool to improve perceived outcome of surgery. Neurologist. 2004;10(5):290. doi:10.1097/01.nrl.0000138737.97544.7cCrossRefGoogle ScholarPubMed
Okun, MS, Rodriguez, RL, Foote, KD, et al. A case-based review of troubleshooting deep brain stimulator issues in movement and neuropsychiatric disorders. Parkinsonism Relat Disord. 2008;14(7):532538. doi:10.1016/j.parkreldis.2008.01.001CrossRefGoogle ScholarPubMed
Rughani, AI, Hodaie, M, Lozano, AM. Acute complications of movement disorders surgery: Effects of age and comorbidities. Mov Disord. 2013;28(12):16611667. doi:10.1002/mds.25610Google Scholar
Mikos, A, Pavon, J, Bowers, D, et al. Factors related to extended hospital stays following deep brain stimulation for Parkinson’s disease. Parkinsonism Relat Disord. 2010;16(5):324328. doi:10.1016/j.parkreldis.2010.02.002CrossRefGoogle ScholarPubMed
Beric, A, Kelly, PJ, Rezai, A, et al. Complications of deep brain stimulation surgery. Stereotact Funct Neurosurg. 2001;77(1–4):7378. doi:10.1159/000064600CrossRefGoogle ScholarPubMed
Fenoy, AJ, Simpson, RK. Risks of common complications in deep brain stimulation surgery: Management and avoidance. J Neurosurg. 2014;120(January):132139. doi:10.3171/2013.10.JNS131225Google Scholar
Franzini, A, Cordella, R, Messina, G, et al. Deep brain stimulation for movement disorders. Considerations on 276 consecutive patients. J Neural Transm. 2011;118(10):1497–1510. doi:10.1007/s00702-011-0656-zGoogle Scholar
Hariz, MI. Complications of deep brain stimulation surgery. Mov Disord. 2002;17 Suppl 3:S162S166. doi:10.1002/mds.10159Google Scholar
Oh, MY, Abosch, A, Kim, SH, Lang, AE, Lozano, AM. Long-term hardware-related complications of deep brain stimulation. Neurosurgery. 2002;50(6):12681274; discussion 1274–6. doi:10.1097/00006123-200206000-00017Google Scholar
Seijo, FJ, Alvarez-Vega, MA, Gutierrez, JC, Fdez-Glez, F, Lozano, B. Complications in subthalamic nucleus stimulation surgery for treatment of Parkinson’s disease. Review of 272 procedures. Acta Neurochir (Wien). 2007;149(9):867875; discussion 876. doi:10.1007/s00701-007-1267-1Google Scholar
Boviatsis, EJ, Stavrinou, LC, Themistocleous, M, Kouyialis, AT, Sakas, DE. Surgical and hardware complications of deep brain stimulation: A seven-year experience and review of the literature. Acta Neurochir (Wien). 2010;152(12):20532062. doi:10.1007/s00701-010-0749-8Google Scholar
Umemura, A, Oka, Y, Yamamoto, K, Okita, K, Matsukawa, N, Yamada, K. Complications of subthalamic nucleus stimulation in Parkinson’s disease. Neurol Med Chir (Tokyo). 2011;51(11):749755. doi:10.2176/nmc.51.749Google Scholar
Hariz, MI, Fodstad, H. Do microelectrode techniques increase accuracy or decrease risks in pallidotomy and deep brain stimulation? A critical review of the literature. Stereotact Funct Neurosurg. 1999;72(2–4):157169. doi:10.1159/000029720Google Scholar
Palur, RS, Berk, C, Schulzer, M, Honey, CR. A metaanalysis comparing the results of pallidotomy performed using microelectrode recording or macroelectrode stimulation. J Neurosurg. 2002;96(6):10581062. doi:10.3171/jns.2002.96.6.1058Google Scholar
Umemura, A, Jaggi, JL, Hurtig, HI, et al. Deep brain stimulation for movement disorders: Morbidity and mortality in 109 patients. J Neurosurg. 2003;98(4):779784. doi:10.3171/jns.2003.98.4.0779Google Scholar
Binder, DK, Rau, GM, Starr, PA. Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders. Neurosurgery. 2005;56(4):722732; discussion 722–732. doi:10.1227/01.neu.0000156473.57196.7eGoogle Scholar
Sansur, CA, Frysinger, RC, Pouratian, N, et al. Incidence of symptomatic hemorrhage after stereotactic electrode placement. J Neurosurg. 2007;107(5):9981003. doi:10.3171/JNS-07/11/0998Google Scholar
Gorgulho, A, De Salles, AAF, Frighetto, L, Behnke, E. Incidence of hemorrhage associated with electrophysiological studies performed using macroelectrodes and microelectrodes in functional neurosurgery. J Neurosurg. 2005;102(5):888896. doi:10.3171/jns.2005.102.5.0888Google Scholar
Voges, J, Hilker, R, Bötzel, K, et al. Thirty days complication rate following surgery performed for deep-brain-stimulation. Mov Disord. 2007;22(10):14861489. doi:10.1002/mds.21481Google Scholar
Inci, S, Erbengi, A, Berker, M. Pulmonary embolism in neurosurgical patients. Surg Neurol. 1995;43(2):123128; discussion 128–129. doi:10.1016/0090-3019(95)80121-vGoogle Scholar
Krack, P, Batir, A, Van Blercom, N, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med. 2003;349(20):19251934. doi:10.1056/NEJMoa035275Google Scholar
Volkmann, J, Allert, N, Voges, J, Weiss, PH, Freund, HJ, Sturm, V. Safety and efficacy of pallidal or subthalamic nucleus stimulation in advanced PD. Neurology. 2001;56(4):548551. doi:10.1212/wnl.56.4.548Google Scholar
Deep-Brain Stimulation for Parkinson’s Disease Study Group, Obeso, JA, Olanow, CW, et al. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med. 2001;345(13):956963. doi:10.1056/NEJMoa000827Google Scholar
Benabid, AL, Koudsie, A, Benazzouz, A, Le Bas, J-F, Pollak, P. Imaging of subthalamic nucleus and ventralis intermedius of the thalamus. Mov Disord. 2002;17 Suppl 3:S123S129. doi:10.1002/mds.10153Google Scholar
Hamani, C, Richter, E, Schwalb, JM, Lozano, AM. Bilateral subthalamic nucleus stimulation for Parkinson’s disease: A systematic review of the clinical literature. Neurosurgery. 2005;56(6):13131321; discussion 1321–1324. doi:10.1227/01.neu.0000159714.28232.c4Google Scholar
Medtronic. Deep Brain Stimulation 3387/89 Lead Kit: Implant Manual. Minneapolis, MN: Medtronic, Inc.; 2000.Google Scholar
Lyons, KE, Wilkinson, SB, Overman, J, Pahwa, R. Surgical and hardware complications of subthalamic stimulation: A series of 160 procedures. Neurology. 2004;63(4):612616. doi:10.1212/01.wnl.0000134650.91974.1aGoogle Scholar
Schwalb, JM, Riina, HA, Skolnick, B, Jaggi, JL, Simuni, T, Baltuch, GH. Revision of deep brain stimulator for tremor. Technical note. J Neurosurg. 2001;94(6):10101012. doi:10.3171/jns.2001.94.6.1010Google Scholar
Sherif, C, Dorfer, C, Kalteis, K, et al. Deep brain pulse-generator and lead-extensions: Subjective sensations related to measured parameters. Mov Disord. 2008;23(7):10361041. doi:10.1002/mds.21973Google Scholar
Alesch, F, Pinter, MM, Helscher, RJ, Fertl, L, Benabid, AL, Koos, WT. Stimulation of the ventral intermediate thalamic nucleus in tremor dominated Parkinson’s disease and essential tremor. Acta Neurochir (Wien). 1995;136(1–2):7581. doi:10.1007/bf01411439Google Scholar
Albanese, A, Nordera, GP, Caraceni, T, Moro, E. Long-term ventralis intermedius thalamic stimulation for parkinsonian tremor. Italian Registry for Neuromodulation in Movement Disorders. Adv Neurol. 1999;80:631634. www.ncbi.nlm.nih.gov/pubmed/10410782Google Scholar
Kumar, K, Kelly, M, Toth, C. Deep brain stimulation of the ventral intermediate nucleus of the thalamus for control of tremors in Parkinson’s disease and essential tremor. Stereotact Funct Neurosurg. 1999;72(1):4761. doi:10.1159/000029671Google Scholar
Limousin, P, Speelman, JD, Gielen, F, Janssens, M. Multicentre European study of thalamic stimulation in parkinsonian and essential tremor. J Neurol Neurosurg Psychiatry. 1999;66(3):289296. doi:10.1136/jnnp.66.3.289Google Scholar
Benabid, AL, Pollak, P, Gao, D, et al. Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg. 1996;84(2):203214. doi:10.3171/jns.1996.84.2.0203Google Scholar
Deuschl, G, Herzog, J, Kleiner-Fisman, G, et al. Deep brain stimulation: Postoperative issues. Mov Disord. 2006;21(S14):S219S237. doi:10.1002/mds.20957CrossRefGoogle ScholarPubMed
Limousin-Dowsey, P, Pollak, P, Van Blercom, N, Krack, P, Benazzouz, A, Benabid, A. Thalamic, subthalamic nucleus and internal pallidum stimulation in Parkinson’s disease. J Neurol. 1999;246 Suppl:II42–II45. doi:10.1007/bf03161080Google Scholar
Kleiner-Fisman, G, Fisman, DN, Sime, E, Saint-Cyr, JA, Lozano, AM, Lang, AE. Long-term follow up of bilateral deep brain stimulation of the subthalamic nucleus in patients with advanced Parkinson disease. J Neurosurg. 2003;99(3):489495. doi:10.3171/jns.2003.99.3.0489Google Scholar
Tavella, A, Bergamasco, B, Bosticco, E, et al. Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: Long-term follow-up. Neurol Sci. 2002;23 Suppl 2:S111S112. doi:10.1007/s100720200094Google Scholar
Valldeoriola, F, Pilleri, M, Tolosa, E, Molinuevo, JL, Rumià, J, Ferrer, E. Bilateral subthalamic stimulation monotherapy in advanced Parkinson’s disease: Long-term follow-up of patients. Mov Disord. 2002;17(1):125132. doi:10.1002/mds.1278Google Scholar
Kadowaki, T, Hashimoto, K, Suzuki, K, Watanabe, Y, Hirata, K. Case report: Recurrent parkinsonism-hyperpyrexia syndrome following discontinuation of subthalamic deep brain stimulation. Mov Disord. 2011;26(8):15611562. doi:10.1002/mds.23596Google Scholar
Hocker, S, Kenney, DL, Ramar, K. Parkinsonism-hyperpyrexia syndrome: Broadening our differential diagnosis in the ICU. Neurol Clin Pract. 2013;3(6):535538. doi:10.1212/CPJ.0b013e3182a9c652Google Scholar
Herzog, J, Volkmann, J, Krack, P, et al. Two-year follow-up of subthalamic deep brain stimulation in Parkinson’s disease. Mov Disord. 2003;18(11):13321337. doi:10.1002/mds.10518Google Scholar
Hariz, MI, Johansson, F, Shamsgovara, P, Johansson, E, Hariz, GM, Fagerlund, M. Bilateral subthalamic nucleus stimulation in a parkinsonian patient with preoperative deficits in speech and cognition: Persistent improvement in mobility but increased dependency: A case study. Mov Disord. 2000;15(1):136139. doi:10.1002/1531-8257(200001)15:1<136::aid-mds1021>3.0.co;2-5Google Scholar
Doshi, PK, Chhaya, N, Bhatt, MH. Depression leading to attempted suicide after bilateral subthalamic nucleus stimulation for Parkinson’s disease. Mov Disord. 2002;17(5):10841085. doi:10.1002/mds.10198Google Scholar
Houeto, JL, Mesnage, V, Mallet, L, et al. Behavioural disorders, Parkinson’s disease and subthalamic stimulation. J Neurol Neurosurg Psychiatry. 2002;72(6):701707. doi:10.1136/jnnp.72.6.701Google Scholar
Holmberg, B, Corneliusson, O, Elam, M. Bilateral stimulation of nucleus subthalamicus in advanced Parkinson’s disease: No effects on, and of, autonomic dysfunction. Mov Disord. 2005;20(8):976981. doi:10.1002/mds.20492Google Scholar
Østergaard, K, Sunde, N, Dupont, E. Effects of bilateral stimulation of the subthalamic nucleus in patients with severe Parkinson’s disease and motor fluctuations. Mov Disord. 2002;17(4):693700. doi:10.1002/mds.10188Google Scholar
Rodriguez-Oroz, MC, Obeso, JA, Lang, AE, et al. Bilateral deep brain stimulation in Parkinson’s disease: A multicentre study with 4 years follow-up. Brain. 2005;128(10):22402249. doi:10.1093/brain/awh571Google Scholar
Krause, M, Fogel, W, Heck, A, et al. Deep brain stimulation for the treatment of Parkinson’s disease: Subthalamic nucleus versus globus pallidus internus. J Neurol Neurosurg Psychiatry. 2001;70(4):464470. doi:10.1136/jnnp.70.4.464Google Scholar
Voon, V, Hassan, K, Zurowski, M, et al. Prevalence of repetitive and reward-seeking behaviors in Parkinson disease. Neurology. 2006;67(7):12541257. doi:10.1212/01.wnl.0000238503.20816.13Google Scholar
Romito, LMA, Scerrati, M, Contarino, MF, Bentivoglio, AR, Tonali, P, Albanese, A. Long-term follow up of subthalamic nucleus stimulation in Parkinson’s disease. Neurology. 2002;58(10):15461550. doi:10.1212/wnl.58.10.1546Google Scholar
Kumar, R, Lang, AE, Rodriguez-Oroz, MC, et al. Deep brain stimulation of the globus pallidus pars interna in advanced Parkinson’s disease. Neurology. 2000;55(12 Suppl 6):S34S39. www.ncbi.nlm.nih.gov/pubmed/11188973Google Scholar
Sobstyl, M, Ząbek, M, Kmieć, T, Sławek, J, Budohoski, KP. Status dystonicus due to internal pulse generator depletion in a patient with primary generalized dystonia. Mov Disord. 2014;29(2):188189. doi:10.1002/mds.25553CrossRefGoogle Scholar
Broderick, J, Connolly, S, Feldmann, E, et al. Guidelines for the management of spontaneous intracerebral hemorrhage in adults: 2007 update: A guideline from the American Heart Association/American Stroke Association Stroke Council, High Blood Pressure Research Council, and the Quality of Care and Out. Stroke. 2007;38(6):20012023. doi:10.1161/STROKEAHA.107.183689Google Scholar
Van den Bergh, WM, Van der Schaaf, I, Van Gijn, J. The spectrum of presentations of venous infarction caused by deep cerebral vein thrombosis. Neurology. 2005;65(2):192196. doi:10.1212/01.wnl.0000179677.84785.63Google Scholar
Morcos, Z. The spectrum of presentations of venous infarction caused by deep cerebral vein thrombosis. Neurology. 2006;66(8):1284; author reply 1284. doi:10.1212/wnl.66.8.1284Google Scholar
Morishita, T, Okun, MS, Burdick, A, Jacobson, CE, Foote, KD. Cerebral venous infarction: A potentially avoidable complication of deep brain stimulation surgery. Neuromodulation. 2013; 16(5):407–413; discussion 413. doi:10.1111/ner.12052Google Scholar
Ferro, JM, Canhão, P. Acute treatment of cerebral venous and dural sinus thrombosis. Curr Treat Options Neurol. 2008;10(2):126137. doi:10.1007/s11940-008-0014-0Google Scholar
Masuhr, F, Einhäupl, K. Treatment of cerebral venous and sinus thrombosis. Front Neurol Neurosci. 2008;23:132143. doi:10.1159/000111375Google Scholar
Zeng, L, Derex, L, Maarrawi, J, et al. Lifesaving decompressive craniectomy in “malignant” cerebral venous infarction. Eur J Neurol. 2007;14(1):e27e28. doi:10.1111/j.1468-1331.2006.01560.xGoogle Scholar
Ferro, JM, Canhão, P, Bousser, M-G, Stam, J, Barinagarrementeria, F, ISCVT Investigators. Early seizures in cerebral vein and dural sinus thrombosis: Risk factors and role of antiepileptics. Stroke. 2008;39(4):11521158. doi:10.1161/STROKEAHA.107.487363Google Scholar
Muir, KW. The PREVAIL trial and low-molecular-weight heparin for prevention of venous thromboembolism. Stroke. 2008;39(7):21742176. doi:10.1161/STROKEAHA.107.509588CrossRefGoogle ScholarPubMed
Lee, AYY, Levine, MN, Baker, RI, et al. Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N Engl J Med. 2003;349(2):146153. doi:10.1056/NEJMoa025313Google Scholar
Patrono, C, Baigent, C, Hirsh, J, Roth, G. Antiplatelet drugs: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Eighth ed. Chest. 2008;133(6 Suppl):199S233S. doi:10.1378/chest.08-0672Google Scholar
Marik, PE. Aspiration pneumonitis and aspiration pneumonia. N Engl J Med. 2001;344(9):665671. doi:10.1056/NEJM200103013440908Google Scholar
Gologorsky, Y, Ben-Haim, S, Moshier, EL, et al. Transgressing the ventricular wall during subthalamic deep brain stimulation surgery for Parkinson disease increases the risk of adverse neurological sequelae. Neurosurgery. 2011;69(2):294299; discussion 299–300. doi:10.1227/NEU.0b013e318214abdaGoogle Scholar
Bronstein, JM, Tagliati, M, Alterman, RL, et al. Deep brain stimulation for Parkinson disease: An expert consensus and review of key issues. Arch Neurol. 2011;68(2):165. doi:10.1001/archneurol.2010.260Google Scholar
Sillay, KA, Larson, PS, Starr, PA. Deep brain stimulator hardware-related infections: Incidence and management in a large series. Neurosurgery. 2008;62(2):360366; discussion 366–367. doi:10.1227/01.neu.0000316002.03765.33Google Scholar
Levy, RM, Lamb, S, Adams, JE. Treatment of chronic pain by deep brain stimulation: Long term follow-up and review of the literature. Neurosurgery. 1987;21(6):885893. doi:10.1227/00006123-198712000-00017Google Scholar
Seal, LA, Paul-Cheadle, D. A systems approach to preoperative surgical patient skin preparation. Am J Infect Control. 2004;32(2):5762. doi:10.1016/j.ajic.2003.11.001Google Scholar
Miyagi, Y, Shima, F, Ishido, K. Implantation of deep brain stimulation electrodes in unshaved patients. Technical note. J Neurosurg. 2002;97(6):14761478. doi:10.3171/jns.2002.97.6.1476Google Scholar
Masterson, TM, Rodeheaver, GT, Morgan, RF, Edlich, RF. Bacteriologic evaluation of electric clippers for surgical hair removal. Am J Surg. 1984;148(3):301302. doi:10.1016/0002-9610(84)90458-6Google Scholar
Hariz, MI, Johansson, F. Hardware failure in parkinsonian patients with chronic subthalamic nucleus stimulation is a medical emergency. Mov Disord. 2001;16(1):166168. doi:10.1002/1531-8257(200101)16:1<166::aid-mds1031>3.0.co;2-sGoogle Scholar
Blomstedt, P, Hariz, MI. Hardware-related complications of deep brain stimulation: A ten year experience. Acta Neurochir (Wien). 2005;147(10):10611064; discussion 1064. doi:10.1007/s00701-005-0576-5Google Scholar
Baizabal Carvallo, JF, Mostile, G, Almaguer, M, Davidson, A, Simpson, R, Jankovic, J. Deep brain stimulation hardware complications in patients with movement disorders: Risk factors and clinical correlations. Stereotact Funct Neurosurg. 2012;90(5):300306. doi:10.1159/000338222Google Scholar
Fernández, FS, Alvarez Vega, MA, Antuña Ramos, A, Fernández González, F, Lozano Aragoneses, B. Lead fractures in deep brain stimulation during long-term follow-up. Parkinsons Dis. 2010:409356. doi:10.4061/2010/409356Google Scholar
Panov, F, Gologorsky, Y, Connors, G, Tagliati, M, Miravite, J, Alterman, RL. Deep brain stimulation in DYT1 dystonia: A 10-year experience. Neurosurgery. 2013;73(1):8693; discussion 93. doi:10.1227/01.neu.0000429841.84083.c8Google Scholar
Tagliati, M, Krack, P, Volkmann, J, et al. Long-term management of DBS in dystonia: Response to stimulation, adverse events, battery changes, and special considerations. Mov Disord. 2011;26(S1):S54S62. doi:10.1002/mds.23535Google Scholar
Machado, AG, Hiremath, GK, Salazar, F, Rezai, AR. Fracture of subthalamic nucleus deep brain stimulation hardware as a result of compulsive manipulation: Case report. Neurosurgery. 2005;57(6):E1318; discussion E1318. doi:10.1227/01.neu.0000187566.01731.51Google Scholar
Cardoso, AF, Almeida, GM. Twiddler syndrome. Arq Bras Cardiol. 2008;90(2):e15. doi:10.1590/s0066-782x2008000200016Google Scholar
Dursun, I, Yesildag, O, Soylu, K, Yilmaz, O, Yasar, E, Meric, M. Late pacemaker twiddler syndrome. Clin Res Cardiol. 2006;95(10):547549. doi:10.1007/s00392-006-0417-4Google Scholar
Fahraeus, T, Höijer, CJ. Early pacemaker twiddler syndrome. Europace. 2003;5(3):279281. doi:10.1016/s1099-5129(03)00032-1Google Scholar
Geissinger, G, Neal, JH. Spontaneous twiddler’s syndrome in a patient with a deep brain stimulator. Surg Neurol. 2007;68(4):454456; discussion 456. doi:10.1016/j.surneu.2006.10.062Google Scholar
Farris, S, Vitek, J, Giroux, ML. Deep brain stimulation hardware complications: The role of electrode impedance and current measurements. Mov Disord. 2008;23(5):755760. doi:10.1002/mds.21936Google Scholar
Benezet-Mazuecos, J, Benezet, J, Ortega-Carnicer, J. Pacemaker twiddler syndrome. Eur Heart J. 2007;28(16):2000. doi:10.1093/eurheartj/ehl558Google Scholar
Yianni, J, Nandi, D, Shad, A, Bain, P, Gregory, R, Aziz, T. Increased risk of lead fracture and migration in dystonia compared with other movement disorders following deep brain stimulation. J Clin Neurosci. 2004;11(3):243245. doi:10.1016/j.jocn.2003.10.003Google Scholar
Favre, J, Taha, JM, Steel, T, Burchiel, KJ. Anchoring of deep brain stimulation electrodes using a microplate. Technical note. J Neurosurg. 1996;85(6):11811183. doi:10.3171/jns.1996.85.6.1181Google Scholar
Fakhar, K, Hastings, E, Butson, CR, Foote, KD, Zeilman, P, Okun, MS. Management of deep brain stimulator battery failure: Battery estimators, charge density, and importance of clinical symptoms. PLoS One. 2013;8(3):e58665. doi:10.1371/journal.pone.0058665Google Scholar
Montuno, MA, Kohner, AB, Foote, KD, Okun, MS. An algorithm for management of deep brain stimulation battery replacements: Devising a web-based battery estimator and clinical symptom approach. Neuromodulation. 2013;16(2):147153. doi:10.1111/j.1525-1403.2012.00457.xGoogle Scholar
Kiss, ZHT, Anderson, T, Hansen, T, Kirstein, D, Suchowersky, O, Hu, B. Neural substrates of microstimulation-evoked tingling: A chronaxie study in human somatosensory thalamus. Eur J Neurosci. 2003;18(3):728732. doi:10.1046/j.1460-9568.2003.02793.xGoogle Scholar
Ashby, P, Kim, YJ, Kumar, R, Lang, AE, Lozano, AM. Neurophysiological effects of stimulation through electrodes in the human subthalamic nucleus. Brain. 1999;122. Pt 1:19191931. doi:10.1093/brain/122.10.1919Google Scholar
Krack, P, Fraix, V, Mendes, A, Benabid, A-L, Pollak, P. Postoperative management of subthalamic nucleus stimulation for Parkinson’s disease. Mov Disord. 2002;17 Suppl 3:S188S197. doi:10.1002/mds.10163Google Scholar
Tamma, F, Caputo, E, Chiesa, V, et al. Anatomo-clinical correlation of intraoperative stimulation-induced side-effects during HF-DBS of the subthalamic nucleus. Neurol Sci. 2002;23 Suppl 2:S109S110. doi:10.1007/s100720200093Google Scholar
Baizabal-Carvallo, JF, Kagnoff, MN, Jimenez-Shahed, J, Fekete, R, Jankovic, J. The safety and efficacy of thalamic deep brain stimulation in essential tremor: 10 years and beyond. J Neurol Neurosurg Psychiatry. 2014;85(5):567572. doi:10.1136/jnnp-2013-304943Google Scholar
Sriram, A, Ward, HE, Hassan, A, et al. Valproate as a treatment for dopamine dysregulation syndrome (DDS) in Parkinson’s disease. J Neurol. 2013;260(2):521527. doi:10.1007/s00415-012-6669-1Google Scholar
Martinez-Ramirez, D, Giugni, J, Vedam-Mai, V, et al. The “brittle response” to Parkinson’s disease medications: Characterization and response to deep brain stimulation. PLoS One. 2014;9(4):e94856. doi:10.1371/journal.pone.0094856Google Scholar
Pinto, S, Gentil, M, Krack, P, et al. Changes induced by levodopa and subthalamic nucleus stimulation on parkinsonian speech. Mov Disord. 2005;20(11):15071515. doi:10.1002/mds.20601Google Scholar
Ramig, LO, Sapir, S, Fox, C, Countryman, S. Changes in vocal loudness following intensive voice treatment (LSVT) in individuals with Parkinson’s disease: A comparison with untreated patients and normal age-matched controls. Mov Disord. 2001;16(1):7983. doi:10.1002/1531-8257(200101)16:1<79::aid-mds1013>3.0.co;2-hGoogle Scholar
Ramig, LO, Sapir, S, Countryman, S, et al. Intensive voice treatment (LSVT) for patients with Parkinson’s disease: A 2 year follow up. J Neurol Neurosurg Psychiatry. 2001;71(4):493498. doi:10.1136/jnnp.71.4.493Google Scholar
Sapir, S, Ramig, LO, Hoyt, P, Countryman, S, O’Brien, C, Hoehn, M. Speech loudness and quality 12 months after intensive voice treatment (LSVT) for Parkinson’s disease: A comparison with an alternative speech treatment. Folia Phoniatr Logop. 54(6):296–303. doi:10.1159/000066148Google Scholar
St George, RJ, Nutt, JG, Burchiel, KJ, Horak, FB. A meta-regression of the long-term effects of deep brain stimulation on balance and gait in PD. Neurology. 2010;75(14):12921299. doi:10.1212/WNL.0b013e3181f61329Google Scholar
Felice, KJ, Keilson, GR, Schwartz, WJ. “Rubral” gait ataxia. Neurology. 1990;40(6):10041005. doi:10.1212/wnl.40.6.1004-aGoogle Scholar
Limousin, P, Krack, P, Pollak, P, et al. Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med. 1998;339(16):11051111. doi:10.1056/NEJM199810153391603Google Scholar
Voon, V, Kubu, C, Krack, P, Houeto, J-L, Tröster, AI. Deep brain stimulation: Neuropsychological and neuropsychiatric issues. Mov Disord. 2006;21(S14):S305S327. doi:10.1002/mds.20963Google Scholar
Castrioto, A, Lhommée, E, Moro, E, Krack, P. Mood and behavioural effects of subthalamic stimulation in Parkinson’s disease. Lancet Neurol. 2014;13(3):287305. doi:10.1016/S1474-4422(13)70294-1Google Scholar
Massano, J, Garrett, C. Deep brain stimulation and cognitive decline in Parkinson’s disease: S clinical review. Front Neurol. 2012;3:66. doi:10.3389/fneur.2012.00066Google Scholar
Perestelo-Pérez, L, Rivero-Santana, A, Pérez-Ramos, J, Serrano-Pérez, P, Panetta, J, Hilarion, P. Deep brain stimulation in Parkinson’s disease: Meta-analysis of randomized controlled trials. J Neurol. 2014;261(11):110. doi:10.1007/s00415-014-7254-6Google Scholar
Molinuevo, JL, Valldeoriola, F, Tolosa, E, et al. Levodopa withdrawal after bilateral subthalamic nucleus stimulation in advanced Parkinson disease. Arch Neurol. 2000;57(7):983988. doi:10.1001/archneur.57.7.983Google Scholar
Higuchi, M, Tsuboi, Y, Inoue, T, et al. Predictors of the emergence of apathy after bilateral stimulation of the subthalamic nucleus in patients with Parkinson’s disease. Neuromodulation. 2015;18(2):113117. doi:10.1111/ner.12183Google Scholar
Kim, YE, Kim, HJ, Kim, H-J, et al. Impulse control and related behaviors after bilateral subthalamic stimulation in patients with Parkinson’s disease. J Clin Neurosci. 2013;20(7):964969. doi:10.1016/j.jocn.2012.07.020Google Scholar
Moum, SJ, Price, CC, Limotai, N, et al. Effects of STN and GPi deep brain stimulation on impulse control disorders and dopamine dysregulation syndrome. PLoS One. 2012;7(1):e29768. doi:10.1371/journal.pone.0029768Google Scholar
Weintraub, D, Koester, J, Potenza, MN, et al. Impulse control disorders in Parkinson disease: A cross-sectional study of 3090 patients. Arch Neurol. 2010;67(5):589595. doi:10.1001/archneurol.2010.65Google Scholar
Albin, RL, Young, AB, Penney, JB. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12(10):366375. doi:10.1016/0166-2236(89)90074-xGoogle Scholar
Pazo, JH, Belforte, JE. Basal ganglia and functions of the autonomic nervous system. Cell Mol Neurobiol. 2002;22(5–6):645654. doi:10.1023/a:1021844605250Google Scholar
Sauleau, P, Raoul, S, Lallement, F, et al. Motor and non motor effects during intraoperative subthalamic stimulation for Parkinson’s disease. J Neurol. 2005;252(4):457464. doi:10.1007/s00415-005-0675-5Google Scholar
Kaufmann, H, Bhattacharya, KF, Voustianiouk, A, Gracies, JM. Stimulation of the subthalamic nucleus increases heart rate in patients with Parkinson disease. Neurology. 2002;59(10):16571658. doi:10.1212/01.wnl.0000034180.21308.c0Google Scholar
Ashkan, K, Samuel, M, Reddy, P, Ray Chaudhuri, K. The impact of deep brain stimulation on the nonmotor symptoms of Parkinson’s disease. J Neural Transm. 2013;120(4):639642. doi:10.1007/s00702-012-0912-xGoogle Scholar
Hwynn, N, Ul Haq, I, Malaty, IA, et al. Effect of deep brain stimulation on Parkinson’s nonmotor symptoms following unilateral DBS: A pilot study. Parkinsons Dis. 2011;2011:507416. doi:10.4061/2011/507416Google Scholar
Seif, C, Herzog, J, Van der Horst, C, et al. Effect of subthalamic deep brain stimulation on the function of the urinary bladder. Ann Neurol. 2004;55(1):118120. doi:10.1002/ana.10806Google Scholar
Winge, K, Nielsen, KK. Bladder dysfunction in advanced Parkinson’s disease. Neurourol Urodyn. 2012;31(8):12791283. doi:10.1002/nau.22237Google Scholar
Fritsche, H-M, Ganzer, R, Schlaier, J, Wieland, WF, Brawanski, A, Lange, M. Acute urinary retention in two patients after subthalamic nucleus deep brain stimulation (STN-DBS) for the treatment of advanced Parkinson’s disease. Mov Disord. 2009;24(10):15531554. doi:10.1002/mds.22631Google Scholar
Thobois, S, Mertens, P, Guenot, M, et al. Subthalamic nucleus stimulation in Parkinson’s disease: Clinical evaluation of 18 patients. J Neurol. 2002;249(5):529534. doi:10.1007/s004150200059Google Scholar
Esselink, RAJ, De Bie, RMA, de Haan, RJ, et al. Unilateral pallidotomy versus bilateral subthalamic nucleus stimulation in PD: A randomized trial. Neurology. 2004;62(2):201207. doi:10.1212/01.wnl.0000103235.12621.c3Google Scholar
Troche, MS, Brandimore, AE, Foote, KD, Okun, MS. Swallowing and deep brain stimulation in Parkinson’s disease: A systematic review. Parkinsonism Relat Disord. 2013;19(9):783788. doi:10.1016/j.parkreldis.2013.05.001Google Scholar
Troche, MS, Brandimore, AE, Foote, KD, et al. Swallowing outcomes following unilateral STN vs. GPi surgery: A retrospective analysis. Dysphagia. 2014;29(4):425431. doi:10.1007/s00455-014-9522-0Google Scholar
Bejjani, BP, Gervais, D, Arnulf, I, et al. Axial parkinsonian symptoms can be improved: The role of levodopa and bilateral subthalamic stimulation. J Neurol Neurosurg Psychiatry. 2000;68(5):595600. doi:10.1136/jnnp.68.5.595Google Scholar
Castelli, L, Perozzo, P, Genesia, ML, et al. Sexual well being in parkinsonian patients after deep brain stimulation of the subthalamic nucleus. J Neurol Neurosurg Psychiatry. 2004;75(9):12601264. doi:10.1136/jnnp.2003.034579Google Scholar
Romito, LM, Raja, M, Daniele, A, et al. Transient mania with hypersexuality after surgery for high frequency stimulation of the subthalamic nucleus in Parkinson’s disease. Mov Disord. 2002;17(6):13711374. doi:10.1002/mds.10265CrossRefGoogle ScholarPubMed
Jiménez-Jiménez, FJ, Sayed, Y, García-Soldevilla, MA, Barcenilla, B. Possible zoophilia associated with dopaminergic therapy in Parkinson disease. Ann Pharmacother. 36(7–8):1178–1179. doi:10.1345/aph.1ph.1A277Google Scholar
Klos, KJ, Bower, JH, Josephs, KA, Matsumoto, JY, Ahlskog, JE. Pathological hypersexuality predominantly linked to adjuvant dopamine agonist therapy in Parkinson’s disease and multiple system atrophy. Parkinsonism Relat Disord. 2005;11(6):381386. doi:10.1016/j.parkreldis.2005.06.005Google Scholar
Ivanco, LS, Bohnen, NI. Effects of donepezil on compulsive hypersexual behavior in Parkinson disease: A single case study. Am J Ther. 12(5):467–468. doi:10.1097/01.mjt.0000151861.59698.26Google Scholar
Barichella, M, Marczewska, AM, Mariani, C, Landi, A, Vairo, A, Pezzoli, G. Body weight gain rate in patients with Parkinson’s disease and deep brain stimulation. Mov Disord. 2003;18(11):13371340. doi:10.1002/mds.10543Google Scholar
Macia, F, Perlemoine, C, Coman, I, et al. Parkinson’s disease patients with bilateral subthalamic deep brain stimulation gain weight. Mov Disord. 2004;19(2):206212. doi:10.1002/mds.10630Google Scholar
Montaurier, C, Morio, B, Bannier, S, et al. Mechanisms of body weight gain in patients with Parkinson’s disease after subthalamic stimulation. Brain. 2007;130(Pt 7):18081818. doi:10.1093/brain/awm113Google Scholar
Kirschman, DL, Milligan, B, Wilkinson, S, et al. Pallidotomy microelectrode targeting: neurophysiology-based target refinement. Neurosurgery. 2000;46(3):613622; discussion 622–624. doi:10.1097/00006123-200003000-00018Google Scholar
Biousse, V, Newman, NJ, Carroll, C, et al. Visual fields in patients with posterior GPi pallidotomy. Neurology. 1998;50(1):258265. doi:10.1212/wnl.50.1.258Google Scholar
Favilla, CG, Ullman, D, Wagle Shukla, A, Foote, KD, Jacobson, CE, Okun, MS. Worsening essential tremor following deep brain stimulation: Disease progression versus tolerance. Brain. 2012;135(Pt 5):14551462. doi:10.1093/brain/aws026Google Scholar
Lang, AE, Houeto, J-L, Krack, P, et al. Deep brain stimulation: Preoperative issues. Mov Disord. 2006;21(S14):S171S196. doi:10.1002/mds.20955Google Scholar
Moro, E, Lang, AE. Criteria for deep-brain stimulation in Parkinson’s disease: Review and analysis. Expert Rev Neurother. 2006;6(11):16951705. doi:10.1586/14737175.6.11.1695Google Scholar
Hughes, AJ, Daniel, SE, Ben-Shlomo, Y, Lees, AJ. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain. 2002;125(Pt 4):861870. doi:10.1093/brain/awf080Google Scholar
Charles, PD, Van Blercom, N, Krack, P, et al. Predictors of effective bilateral subthalamic nucleus stimulation for PD. Neurology. 2002;59(6):932934. doi:10.1212/wnl.59.6.932Google Scholar
Schuepbach, WMM, Rau, J, Knudsen, K, et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med. 2013;368(7):610622. doi:10.1056/NEJMoa1205158Google Scholar
Mestre, TA, Shah, P, Marras, C, Tomlinson, G, Lang, AE. Another face of placebo: The lessebo effect in Parkinson disease: Meta-analyses. Neurology. 2014;82(16):14021409. doi:10.1212/WNL.0000000000000340Google Scholar
Okun, MS, Fernandez, HH, Pedraza, O, et al. Development and initial validation of a screening tool for Parkinson disease surgical candidates. Neurology. 2004;63(1):161163. doi:10.1212/01.wnl.0000133122.14824.25Google Scholar
Marjama-Lyons, JOM. Parkinson Disease: Guide to Deep Brain Stimulation. Hagerstown, MD: National Parkinson Foundation; 2007.Google Scholar
Martinez-Ramirez, D, Morishita, T, Zeilman, PR, Peng-Chen, Z, Foote, KD, Okun, MS. Atrophy and other potential factors affecting long term deep brain stimulation response: A case series. PLoS One. 2014;9(10):e111561. doi:10.1371/journal.pone.0111561Google Scholar
Kronenbuerger, M, Fromm, C, Block, F, et al. On-demand deep brain stimulation for essential tremor: A report on four cases. Mov Disord. 2006;21(3):401405. doi:10.1002/mds.20714Google Scholar
Guridi, J, Rodriguez-Oroz, MC, Alegre, M, Obeso, JA. Hardware complications in deep brain stimulation: Electrode impedance and loss of clinical benefit. Parkinsonism Relat Disord. 2012;18(6):765769. doi:10.1016/j.parkreldis.2012.03.014Google Scholar
Elkouzi, A, Ramirez-Zamora, A, Zeilman, P, et al. Rescue levodopa-carbidopa intestinal gel (LCIG) therapy in Parkinson’s disease patients with suboptimal response to deep brain stimulation. Ann Clin Transl Neurol. 2019;6(10). doi:10.1002/acn3.50889Google Scholar
Nagao, KJ, Patel, NJ. From medications to surgery: Advances in the treatment of motor complications in Parkinson’s disease. Drugs Context. 2019;8:212592. doi:10.7573/dic.212592Google Scholar
Tambasco, N, Romoli, M, Calabresi, P. Levodopa in Parkinson’s disease: Current status and future developments. Curr Neuropharmacol. 2018;16(8):12391252. doi:10.2174/1570159X15666170510143821Google Scholar
Walters, H, Shah, BB. Focused ultrasound and other lesioning therapies in movement disorders. Curr Neurol Neurosci Rep. 2019;19(9):66. doi:10.1007/s11910-019-0975-2Google Scholar
Levi, V, Eleopra, R, Franzini, A, Romito, L. Is deep brain stimulation still an option for tremor recurrence after focused ultrasound thalamotomy? A case report. J Clin Neurosci. 2019;68:344346. doi:10.1016/j.jocn.2019.07.035Google Scholar
Fernandez-Garcia, C, Alonso-Frech, F, Monje, MHG, Matias-Guiu, J. Role of deep brain stimulation therapy in the magnetic resonance-guided high-frequency focused ultrasound era: Current situation and future prospects. Expert Rev Neurother. 2020;20(1):721. doi:10.1080/14737175.2020.1677465Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×