Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T02:18:25.544Z Has data issue: false hasContentIssue false

Chapter 2 - Physiologic Basis of Epileptic EEG Patterns

Published online by Cambridge University Press:  11 October 2019

Vibhangini S. Wasade
Affiliation:
Henry Ford Medical Group HFHS, Michigan
Marianna V. Spanaki
Affiliation:
Wayne State University, Michigan
Get access

Summary

Much of our attention as electroencephalographers is devoted to the identification and localization of spikes and seizures. Atlases, primers, and texts of electroencephalogram (EEG) interpretation provide a wealth of information to guide seizure identification, but often the diagnosis is based on the same principle as Justice Potter Stewart’s maxim for identifying obscenity in Jacobellis v. Ohio: “I know it when I see it.”1 Virtually all of the mathematical seizure detection algorithms currently in use are based on empiric observations of EEG activity that occurs contemporaneously with behavioral seizures, or resembles the electrical activity we see during such behaviors. Ideally, we should be able to derive the parameters for identifying electrographic seizures from a detailed understanding of the underlying neuronal pathophysiology that generates abnormal rhythmic activity, disrupting normal brain circuit functions and behaviors. Unfortunately, we are not there yet. In many cases, however, we have at least a rudimentary knowledge of the neurons and brain structures involved in seizure generation. This chapter will review what we know about how seizures are generated and how that translates into the patterns we observe in EEG recordings.

Type
Chapter
Information
Understanding Epilepsy
A Study Guide for the Boards
, pp. 19 - 38
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gewirtz, P. On “I know it when I see it”. The Yale Law Journal. 1996;105(4):1023.Google Scholar
Buzsaki, G. Rhythms of the Brain. Oxford: Oxford University Press; 2006.Google Scholar
Grundfest, H, Purpura, DP. Nature of dendritic potentials and synaptic mechanisms in cerebral cortex of cat. J Neurophysiol. 1956;19(6):573595.Google Scholar
Li, CL, Jasper, H. Microelectrode studies of the electrical activity of the cerebral cortex in the cat. J Physiol. 1953;121(1):117140.Google Scholar
Hughes, SW, Crunelli, V. Thalamic mechanisms of EEG alpha rhythms and their pathological implications. Neuroscientist. 2005;11(4):357372.Google Scholar
van Strien, NM, Cappaert, NL, Witter, MP. The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network. Nat Rev Neurosci. 2009;10(4):272282.Google Scholar
Heinemann, U, Beck, H, Dreier, JP, et al. The dentate gyrus as a regulated gate for the propagation of epileptiform activity. Epilepsy Res Suppl. 1992;7:273280.Google ScholarPubMed
Lothman, EW, Stringer, JL, Bertram, EH. The dentate gyrus as a control point for seizures in the hippocampus and beyond. Epilepsy Res Suppl. 1992;7:301313.Google Scholar
Krook-Magnuson, E, Armstrong, C, Bui, A, et al. In vivo evaluation of the dentate gate theory in epilepsy. J Physiol. 2015;593(10):23792388.Google Scholar
Liu, YQ, Yu, F, Liu, WH, He, XH, Peng, BW. Dysfunction of hippocampal interneurons in epilepsy. Neurosci Bull. 2014;30(6):985998.Google Scholar
Buzsaki, G. Theta oscillations in the hippocampus. Neuron. 2002;33(3):325340.Google Scholar
Allen, K, Monyer, H. Interneuron control of hippocampal oscillations. Curr Opin Neurobiol. 2015;31:8187.Google Scholar
Lever, C, Wills, T, Cacucci, F, Burgess, N, O’Keefe, J. Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature. 2002;416(6876):9094.Google Scholar
Moser, EI, Paulsen, O. New excitement in cognitive space: between place cells and spatial memory. Curr Opin Neurobiol. 2001;11(6):745751.Google Scholar
Zhang, SJ, Ye, J, Miao, C, et al. Optogenetic dissection of entorhinal-hippocampal functional connectivity. Science. 2013;340(6128):1232627.Google Scholar
Csicsvari, J, Dupret, D. Sharp wave/ripple network oscillations and learning-associated hippocampal maps. Philos Trans R Soc Lond B Biol Sci. 2014;369(1635):20120528.Google Scholar
Buzsaki, G. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus. 2015;25(10):10731188.Google Scholar
Buzsaki, G, Horvath, Z, Urioste, R, Hetke, J, Wise, K. High-frequency network oscillation in the hippocampus. Science. 1992;256(5059):10251027.Google Scholar
Ylinen, A, Bragin, A, Nadasdy, Z, et al. Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci. 1995;15(1 Pt 1):3046.Google Scholar
Averkin, RG, Szemenyei, V, Borde, S, Tamas, G. Identified cellular correlates of neocortical ripple and high-gamma oscillations during spindles of natural sleep. Neuron. 2016;92(4):916928.Google Scholar
Jadhav, SP, Kemere, C, German, PW, Frank, LM. Awake hippocampal sharp-wave ripples support spatial memory. Science. 2012;336(6087):14541458.Google Scholar
Ayala, GF, Matsumoto, H, Gumnit, RJ. Excitability changes and inhibitory mechanisms in neocortical neurons during seizures. J Neurophysiol. 1970;33(1):7385.Google Scholar
McCormick, DA, Contreras, D. On the cellular and network bases of epileptic seizures. Annu Rev Physiol. 2001;63(1):815846.Google Scholar
Johnston, D, Brown, TH. The synaptic nature of the paroxysmal depolarizing shift in hippocampal neurons. Ann Neurol. 1984;16 (Suppl):S65–71.Google Scholar
Ayala, GF. The paroxysmal depolarizing shift. Prog Clin Biol Res. 1983;124:1521.Google Scholar
Witte, OW. Physiological basis of pathophysiological brain rhythms. Acta Neurobiol Exp (Wars). 2000;60(2):289297.Google Scholar
Cooper, R, Winter, AL, Crow, HJ, Walter, WG. Comparison of subcortical, cortical and scalp activity using chronically indwelling electrodes in man. Electroencephalogr Clin Neurophysiol. 1965;18:217228.Google Scholar
Tao, JX, Baldwin, M, Hawes-Ebersole, S, Ebersole, JS. Cortical substrates of scalp EEG epileptiform discharges. J Clin Neurophysiol. 2007;24(2):96100.Google Scholar
Reiher, J, Beaudry, M, Leduc, CP. Temporal intermittent rhythmic delta activity (TIRDA) in the diagnosis of complex partial epilepsy: sensitivity, specificity and predictive value. Can J Neurol Sci. 1989;16(4):398401.Google Scholar
Normand, MM, Wszolek, ZK, Klass, DW. Temporal intermittent rhythmic delta activity in electroencephalograms. J Clin Neurophysiol. 1995;12(3):280284.Google Scholar
Di Gennaro, G, Quarato, PP, Onorati, P, et al. Localizing significance of temporal intermittent rhythmic delta activity (TIRDA) in drug-resistant focal epilepsy. Clin Neurophysiol. 2003;114(1):7078.Google Scholar
Gullapalli, D, Fountain, NB. Clinical correlation of occipital intermittent rhythmic delta activity. J Clin Neurophysiol. 2003;20(1):3541.Google Scholar
Watemberg, N, Linder, I, Dabby, R, Blumkin, L, Lerman-Sagie, T. Clinical correlates of occipital intermittent rhythmic delta activity (OIRDA) in children. Epilepsia. 2007;48(2):330334.Google Scholar
Accolla, EA, Kaplan, PW, Maeder-Ingvar, M, Jukopila, S, Rossetti, AO. Clinical correlates of frontal intermittent rhythmic delta activity (FIRDA). Clin Neurophysiol. 2011;122(1):2731.Google Scholar
Brigo, F. Intermittent rhythmic delta activity patterns. Epilepsy Behav. 2011;20(2):254256.Google Scholar
Westmoreland, BF, Klass, DW, Sharbrough, FW. Chronic periodic lateralized epileptiform discharges. Arch Neurol. 1986;43(5):494496.Google Scholar
Sen-Gupta, I, Schuele, SU, Macken, MP, Kwasny, MJ, Gerard, EE. “Ictal” lateralized periodic discharges. Epilepsy Behav. 2014;36:165170.Google Scholar
Ali, II, Pirzada, NA, Vaughn, BV. Periodic lateralized epileptiform discharges after complex partial status epilepticus associated with increased focal cerebral blood flow. J Clin Neurophysiol. 2001;18(6):565569.Google Scholar
Garzon, E, Fernandes, RM, Sakamoto, AC. Serial EEG during human status epilepticus: evidence for PLED as an ictal pattern. Neurology. 2001;57(7):11751183.Google Scholar
Hirsch, LJ, LaRoche, SM, Gaspard, N, et al. American Clinical Neurophysiology Society’s standardized critical care EEG terminology: 2012 version. J Clin Neurophysiol. 2013;30(1):127.Google Scholar
Fisch, BJ, Klass, DW. The diagnostic specificity of triphasic wave patterns. Electroencephalogr Clin Neurophysiol. 1988;70(1):18.Google Scholar
van Putten, MJ, Hofmeijer, J. Generalized periodic discharges: pathophysiology and clinical considerations. Epilepsy Behav. 2015;49:228233.Google Scholar
Tjepkema-Cloostermans, MC, Hindriks, R, Hofmeijer, J, van Putten, MJ. Generalized periodic discharges after acute cerebral ischemia: reflection of selective synaptic failure? Clin Neurophysiol. 2014;125(2):255262.Google Scholar
San-Juan, OD, Chiappa, KH, Costello, DJ, Cole, AJ. Periodic epileptiform discharges in hypoxic encephalopathy: BiPLEDs and GPEDs as a poor prognosis for survival. Seizure. 2009;18(5):365368.Google Scholar
Racine, RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol. 1972;32(3):281294.Google Scholar
de Curtis, M, Gnatkovsky, V. Reevaluating the mechanisms of focal ictogenesis: the role of low-voltage fast activity. Epilepsia. 2009;50(12):25142525.Google Scholar
Wendling, F, Bartolomei, F, Bellanger, JJ, Bourien, J, Chauvel, P. Epileptic fast intracerebral EEG activity: evidence for spatial decorrelation at seizure onset. Brain. 2003;126(Pt 6):14491459.Google Scholar
Timofeev, I, Steriade, M. Neocortical seizures: initiation, development and cessation. Neuroscience. 2004;123(2):299336.Google Scholar
Jiruska, P, de Curtis, M, Jefferys, JG, et al. Synchronization and desynchronization in epilepsy: controversies and hypotheses. J Physiol. 2013;591(4):787797.Google Scholar
Ward, AA, Thomas, LB. The electrical activity of single units in the cerebral cortex of man. Electroencephalogr Clin Neurophysiol. 1955;7(1):135136.Google Scholar
Tankus, A. Exploring human epileptic activity at the single-neuron level. Epilepsy Behav. 2016;58:1117.Google Scholar
Verzeano, M, Crandall, PH, Dymond, A. Neuronal activity of the amygdala in patients with psychomotor epilepsy. Neuropsychologia. 1971;9(3):331344.Google Scholar
Ishijima, B, Hori, T, Yoshimasu, N, Fukushima, T, Hirakawa, K. Neuronal activities in human epileptic foci and surrounding areas. Electroencephalogr Clin Neurophysiol. 1975;39(6):643650.Google Scholar
Fried, I, Wilson, CL, Maidment, NT, et al. Cerebral microdialysis combined with single-neuron and electroencephalographic recording in neurosurgical patients: technical note. J Neurosurg. 1999;91(4):697705.Google Scholar
Schevon, CA, Ng, SK, Cappell, J, et al. Microphysiology of epileptiform activity in human neocortex. J Clin Neurophysiol. 2008;25(6):321330.Google Scholar
Bower, MR, Stead, M, Meyer, FB, Marsh, WR, Worrell, GA. Spatiotemporal neuronal correlates of seizure generation in focal epilepsy. Epilepsia. 2012;53(5):807816.Google Scholar
Matsumoto, H, Marsan, CA. Cortical cellular phenomena in experimental epilepsy: interictal manifestations. Exp Neurol. 1964;9(4):286304.Google Scholar
Chatrian, GE, Bickford, RG, Uihlein, A. Depth electrographic study of a fast rhythm evoked from the human calcarine region by steady illumination. Electroencephalogr Clin Neurophysiol. 1960;12(1):167176.Google Scholar
Weiergraber, M, Papazoglou, A, Broich, K, Muller, R. Sampling rate, signal bandwidth and related pitfalls in EEG analysis. J Neurosci Methods. 2016;268:5355.Google Scholar
Belluscio, MA, Mizuseki, K, Schmidt, R, Kempter, R, Buzsaki, G. Cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. J Neurosci. 2012;32(2):423435.Google Scholar
Jiruska, P, Alvarado-Rojas, C, Schevon, CA, et al. Update on the mechanisms and roles of high-frequency oscillations in seizures and epileptic disorders. Epilepsia. 2017;58(8):13301339.Google Scholar
Hughes, JR. Gamma, fast, and ultrafast waves of the brain: their relationships with epilepsy and behavior. Epilepsy Behav. 2008;13(1):2531.Google Scholar
Axmacher, N, Mormann, F, Fernandez, G, Elger, CE, Fell, J. Memory formation by neuronal synchronization. Brain Res Rev. 2006;52(1):170182.Google Scholar
Levy, WB, Steward, O. Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience. 1983;8(4):791797.Google Scholar
Dan, Y, Poo, MM. Spike timing-dependent plasticity: from synapse to perception. Physiol Rev. 2006;86(3):10331048.Google Scholar
Staba, RJ. Normal and pathological high-frequency oscillations. In: Noebels, JL, Avoli, M, Rogawski, MA, Olsen, RW, Delgado-Escueta, AV, eds., Jasper’s Basic Mechanisms of the Epilepsies. Oxford: Oxford University Press; 2012:202212.Google Scholar
Frauscher, B, Bartolomei, F, Kobayashi, K, et al. High-frequency oscillations: the state of clinical research. Epilepsia. 2017;58(8):13161329.Google Scholar
Brazdil, M, Pail, M, Halamek, J, et al. Very high-frequency oscillations: novel biomarkers of the epileptogenic zone. Ann Neurol. 2017;82(2):299310.Google Scholar
Bragin, A, Engel, J Jr., Wilson, CL, Fried, I, Mathern, GW. Hippocampal and entorhinal cortex high-frequency oscillations (100–500 Hz) in human epileptic brain and in kainic acid-treated rats with chronic seizures. Epilepsia. 1999;40(2):127137.Google Scholar
Fisher, RS, Webber, WR, Lesser, RP, Arroyo, S, Uematsu, S. High-frequency EEG activity at the start of seizures. J Clin Neurophysiol. 1992;9(3):441448.Google Scholar
Bragin, A, Wilson, CL, Staba, RJ, et al. Interictal high-frequency oscillations (80–500 Hz) in the human epileptic brain: entorhinal cortex. Ann Neurol. 2002;52(4):407415.Google Scholar
Jacobs, J, Zijlmans, M, Zelmann, R, et al. High-frequency electroencephalographic oscillations correlate with outcome of epilepsy surgery. Ann Neurol. 2010;67(2):209220.Google Scholar
Haegelen, C, Perucca, P, Chatillon, CE, et al. High-frequency oscillations, extent of surgical resection, and surgical outcome in drug-resistant focal epilepsy. Epilepsia. 2013;54(5):848857.Google Scholar
Fedele, T, Burnos, S, Boran, E, et al. Resection of high frequency oscillations predicts seizure outcome in the individual patient. Sci Rep. 2017;7(1):13836.Google Scholar
Holler, Y, Kutil, R, Klaffenbock, L, et al. High-frequency oscillations in epilepsy and surgical outcome: a meta-analysis. Front Hum Neurosci. 2015;9:574.Google Scholar
Akiyama, T, McCoy, B, Go, CY, et al. Focal resection of fast ripples on extraoperative intracranial EEG improves seizure outcome in pediatric epilepsy. Epilepsia. 2011;52(10):18021811.Google Scholar
Fujiwara, H, Leach, JL, Greiner, HM, et al. Resection of ictal high frequency oscillations is associated with favorable surgical outcome in pediatric drug resistant epilepsy secondary to tuberous sclerosis complex. Epilepsy Res. 2016;126:9097.Google Scholar
Jones, MS, Barth, DS. Spatiotemporal organization of fast (>200 Hz) electrical oscillations in rat Vibrissa/Barrel cortex. J Neurophysiol. 1999;82(3):15991609.Google Scholar
Kandel, A, Buzsaki, G. Cellular-synaptic generation of sleep spindles, spike-and-wave discharges, and evoked thalamocortical responses in the neocortex of the rat. J Neurosci. 1997;17(17):67836797.Google Scholar
Worrell, GA, Parish, L, Cranstoun, SD, et al. High-frequency oscillations and seizure generation in neocortical epilepsy. Brain. 2004;127(Pt 7):14961506.Google Scholar
Bragin, A, Benassi, SK, Kheiri, F, Engel, J Jr. Further evidence that pathologic high-frequency oscillations are bursts of population spikes derived from recordings of identified cells in dentate gyrus. Epilepsia. 2011;52(1):4552.Google Scholar
Draguhn, A, Traub, RD, Schmitz, D, Jefferys, JG. Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature. 1998;394(6689):189192.Google Scholar
Traub, RD, Draguhn, A, Whittington, MA, et al. Axonal gap junctions between principal neurons: a novel source of network oscillations, and perhaps epileptogenesis. Rev Neurosci. 2002;13(1):130.Google Scholar
Jefferys, JG. Nonsynaptic modulation of neuronal activity in the brain: electric currents and extracellular ions. Physiol Rev. 1995;75(4):689723.Google Scholar
Greenfield, LJ, Geyer, JD, Carney, PR. Reading EEGs: A Practical Approach. Philadelphia: Lippincott Williams & Wilkins; 2010.Google Scholar
Andrade-Valenca, LP, Dubeau, F, Mari, F, Zelmann, R, Gotman, J. Interictal scalp fast oscillations as a marker of the seizure onset zone. Neurology. 2011;77(6):524531.Google Scholar
von Ellenrieder, N, Andrade-Valenca, LP, Dubeau, F, Gotman, J. Automatic detection of fast oscillations (40–200 Hz) in scalp EEG recordings. Clin Neurophysiol. 2012;123(4):670680.Google Scholar
Chen, Y, Parker, WD, Wang, K. The role of T-type calcium channel genes in absence seizures. Front Neurol. 2014;5:45.Google Scholar
Cheong, E, Shin, HS. T-type Ca2+ channels in absence epilepsy. Pflugers Arch. 2014;466(4):719734.Google Scholar
Cain, SM, Snutch, TP. T-type calcium channels in burst-firing, network synchrony, and epilepsy. Biochim Biophys Acta. 2013;1828(7):15721578.Google Scholar
Bal, T, McCormick, DA. What stops synchronized thalamocortical oscillations? Neuron. 1996;17(2):297308.Google Scholar
Blumenfeld, H. From molecules to networks: cortical/subcortical interactions in the pathophysiology of idiopathic generalized epilepsy. Epilepsia. 2003;44 (Suppl 2):715.Google Scholar
Kim, U, Sanchez-Vives, MV, McCormick, DA. Functional dynamics of GABAergic inhibition in the thalamus. Science. 1997;278(5335):130134.Google Scholar
Blumenfeld, H, McCormick, DA. Corticothalamic inputs control the pattern of activity generated in thalamocortical networks. J Neurosci. 2000;20(13):51535162.Google Scholar
Kang, JQ, Macdonald, RL. The GABAA receptor gamma2 subunit R43Q mutation linked to childhood absence epilepsy and febrile seizures causes retention of alpha1beta2gamma2S receptors in the endoplasmic reticulum. J Neurosci. 2004;24(40):86728677.Google Scholar
Imbrici, P, Jaffe, SL, Eunson, LH, et al. Dysfunction of the brain calcium channel CaV2.1 in absence epilepsy and episodic ataxia. Brain. 2004;127(Pt 12):26822692.Google Scholar
Jouvenceau, A, Eunson, LH, Spauschus, A, et al. Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel. Lancet. 2001;358(9284):801807.Google Scholar
Liang, J, Zhang, Y, Wang, J, et al. New variants in the CACNA1H gene identified in childhood absence epilepsy. Neurosci Lett. 2006;406(1–2):2732.Google Scholar
Chen, Y, Lu, J, Pan, H, et al. Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol. 2003;54(2):239243.Google Scholar
Crunelli, V, Leresche, N. Childhood absence epilepsy: genes, channels, neurons and networks. Nat Rev Neurosci. 2002;3(5):371382.Google Scholar
Hallett, M. Physiology of human posthypoxic myoclonus. Mov Disord. 2000;15(Suppl 1):813.Google Scholar
Escayg, A, De Waard, M, Lee, DD, et al. Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet. 2000;66(5):15311539.Google Scholar
Kapoor, A, Satishchandra, P, Ratnapriya, R, et al. An idiopathic epilepsy syndrome linked to 3q13.3-q21 and missense mutations in the extracellular calcium sensing receptor gene. Ann Neurol. 2008;64(2):158167.Google Scholar
Suzuki, T, Delgado-Escueta, AV, Aguan, K, et al. Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nat Genet. 2004;36(8):842849.Google Scholar
Medina, MT, Suzuki, T, Alonso, ME, et al. Novel mutations in Myoclonin1/EFHC1 in sporadic and familial juvenile myoclonic epilepsy. Neurology. 2008;70(22 Pt 2):21372144.Google Scholar
Cossette, P, Liu, L, Brisebois, K, et al. Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet. 2002;31(2):184189.Google Scholar
Dibbens, LM, Feng, HJ, Richards, MC, et al. GABRD encoding a protein for extra- or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Hum Mol Genet. 2004;13(13):13151319.Google Scholar
Halasz, P, Janszky, J, Barcs, G, Szucs, A. Generalised paroxysmal fast activity (GPFA) is not always a sign of malignant epileptic encephalopathy. Seizure. 2004;13(4):270276.Google Scholar
Timofeev, I, Grenier, F, Steriade, M. Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons. J Neurophysiol. 1998;80(3):14951513.Google Scholar
Poleon, S, Szaflarski, JP. Photosensitivity in generalized epilepsies. Epilepsy Behav. 2017;68:225233.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×