Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-11T18:20:57.519Z Has data issue: false hasContentIssue false

Chapter 14 - Neonatal and Pediatric Electroencephalogram

Published online by Cambridge University Press:  11 October 2019

Vibhangini S. Wasade
Affiliation:
Henry Ford Medical Group HFHS, Michigan
Marianna V. Spanaki
Affiliation:
Wayne State University, Michigan
Get access

Summary

Interpretation of the pediatric electroencephalogram (EEG) is challenging due to the dramatic changes in EEG patterns that occur in neonates, infants, and children secondary to rapid anatomic and physiological development of the brain. Knowledge of orderly maturational changes in the EEG is an essential skill for proper interpretation in this age group.

Type
Chapter
Information
Understanding Epilepsy
A Study Guide for the Boards
, pp. 251 - 289
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lamblin, MD, de Villepin-Touzery, A. EEG in the neonatal unit. Neurophysiol Clin. 2015;45(1):8795.CrossRefGoogle ScholarPubMed
Selton, D, Andre, M, Hascoet, JM. Normal EEG in very premature infants: reference criteria. Clin Neurophysiol. 2000;111(12):21162124.Google Scholar
Peters, JF, Varner, JL, Ellingson, RJ. Interhemispheric amplitude symmetry in the EEGs of normal full term, low risk premature, and trisomy-21 infants. Electroencephalogr Clin Neurophysiol. 1981;51(2):165169.CrossRefGoogle ScholarPubMed
Lombroso, CT. Neonatal polygraphy in full-term and premature infants: a review of normal and abnormal findings. J Clin Neurophysiol. 1985;2(2):105155.Google Scholar
Holmes, GL, Lombroso, CT. Prognostic value of background patterns in the neonatal EEG. J Clin Neurophysiol. 1993;10(3):323352.Google Scholar
Hahn, JS, Monyer, H, Tharp, BR. Interburst interval measurements in the EEGs of premature infants with normal neurological outcome. Electroencephalogr Clin Neurophysiol. 1989;73(5):410418.Google Scholar
Grigg-Damberger, MM, Coker, SB, Halsey, CL, Anderson, CL. Neonatal burst suppression: its developmental significance. Pediatr Neurol. 1989;5(2):8492.CrossRefGoogle ScholarPubMed
American Electroencephalographic Society Guidelines in electroencephalography, evoked potentials, and polysomnography. J Clin Neurophysiol. 1994;11(1):1147.Google Scholar
Lombroso, CT. Neurophysiological observations in diseased newborns. Biol Psychiatry. 1975;10(5):527558.Google ScholarPubMed
Almubarak, S, Wong, PK. Long-term clinical outcome of neonatal EEG findings. J Clin Neurophysiol. 2011;28(2):185189.Google Scholar
Clancy, RR, Tharp, BR. Positive rolandic sharp waves in the electroencephalograms of premature neonates with intraventricular hemorrhage. Electroencephalogr Clin Neurophysiol. 1984;57(5):395404.Google Scholar
Mizrahi, EM, Kellaway, P. Characterization and classification of neonatal seizures. Neurology. 1987;37(12):18371844.CrossRefGoogle ScholarPubMed
Clancy, RR, Legido, A. The exact ictal and interictal duration of electroencephalographic neonatal seizures. Epilepsia. 1987;28(5):537541.Google Scholar
Tsuchida, TN, Wusthoff, CJ, Shellhaas, RA, et al. American clinical neurophysiology society standardized EEG terminology and categorization for the description of continuous EEG monitoring in neonates: report of the American Clinical Neurophysiology Society Critical Care Monitoring Committee. J Clin Neurophysiol. 2013;30(2):161173.Google Scholar
Clancy, R, Malin, S, Laraque, D, Baumgart, S, Younkin, D. Focal motor seizures heralding stroke in full-term neonates. Am J Dis Child. 1985;139(6):601606.Google Scholar
Scher, MS, Painter, MJ, Bergman, I, Barmada, MA, Brunberg, J. EEG diagnoses of neonatal seizures: clinical correlations and outcome. Pediatr Neurol. 1989;5(1):1724.CrossRefGoogle ScholarPubMed
Dehan, M, Quillerou, D, Navelet, Y, et al. [Convulsions in the fifth day of life: a new syndrome?]. Arch Fr Pediatr. 1977;34(8):730742.Google Scholar
Kato, M, Yamagata, T, Kubota, M, et al. Clinical spectrum of early onset epileptic encephalopathies caused by KCNQ2 mutation. Epilepsia. 2013;54(7):12821287.CrossRefGoogle ScholarPubMed
Miles, DK, Holmes, GL. Benign neonatal seizures. J Clin Neurophysiol. 1990;7(3):369379.Google Scholar
Aicardi, J, Goutieres, F. [Neonatal myoclonic encephalopathy (author’s transl)]. Rev Electroencephalogr Neurophysiol Clin. 1978;8(1):99101.Google Scholar
Ohtahara, S, Ohtsuka, Y, Yamatogi, Y, Oka, E. The early-infantile epileptic encephalopathy with suppression-burst: developmental aspects. Brain Dev. 1987;9(4):371376.CrossRefGoogle ScholarPubMed
Westmoreland, BF, Klass, DW. Unusual EEG patterns. J Clin Neurophysiol. 1990;7(2):209228.CrossRefGoogle ScholarPubMed
Mizrahi, EM. Avoiding the pitfalls of EEG interpretation in childhood epilepsy. Epilepsia. 1996;37 Suppl 1(s1):S41–51.Google Scholar
Arroyo, S, Lesser, RP, Gordon, B, et al. Functional significance of the mu rhythm of human cortex: an electrophysiologic study with subdural electrodes. Electroencephalogr Clin Neurophysiol. 1993;87(3):7687.Google Scholar
Evans, CC. Spontaneous excitation of the visual cortex and association areas; lambda waves. Electroencephalogr Clin Neurophysiol. 1953;5(1):6974.Google Scholar
Scott, DF, Groethuysen, UC, Bickford, RG. Lambda responses in the human electroencephalogram. Neurology. 1967;17(8 Pt 1):770778.CrossRefGoogle ScholarPubMed
Vignaendra, V, Matthews, RL, Chatrian, GE. Positive occipital sharp transients of sleep: relationships to nocturnal sleep cycle in man. Electroencephalogr Clin Neurophysiol. 1974;37(3):239246.Google Scholar
Brenner, RP, Zauel, DW, Carlow, TJ. Positive occipital sharp transients of sleep in the blind. Neurology. 1978;28(6):609612.Google Scholar
White, JC, Tharp, BR. An arousal pattern in children with organic cerebral dysfunction. Electroencephalogr Clin Neurophysiol. 1974;37(3):265268.CrossRefGoogle ScholarPubMed
Gibbs, FA, Rich, CL, Gibbs, EL. Psychomotor variant type of seizure discharge. Neurology. 1963;13(12):991998.CrossRefGoogle ScholarPubMed
Westmoreland, BF, Klass, DW. Midline theta rhythm. Arch Neurol. 1986;43(2):139141.CrossRefGoogle ScholarPubMed
Lombroso, CT, Schwartz, IH, Clark, DM, et al. Ctenoids in healthy youths. Controlled study of 14- and 6-per-second positive spiking. Neurology. 1966;16(12):11521158.Google Scholar
Silverman, D. Fourteen and six per second positive spike pattern in a patient with hepatic coma. Electroencephalogr Clin Neurophysiol. 1964;16(4):395398.Google Scholar
Yamada, T, Young, S, Kimura, J. Significance of positive spike burst in Reye syndrome. Arch Neurol. 1977;34(6):376-380.CrossRefGoogle ScholarPubMed
Tharp, BR. The 6-per-second spike and wave complex. The wave and spike phantom. Arch Neurol. 1966;15(5):533537.Google Scholar
Westmoreland, BF. Epileptiform electroencephalographic patterns. Mayo Clin Proc. 1996;71(5):501511.CrossRefGoogle ScholarPubMed
Brigo, F, Cicero, R, Fiaschi, A, Bongiovanni, LG. The breach rhythm. Clin Neurophysiol. 2011;122(11):21162120.Google Scholar
Mendez, OE, Brenner, RP. Increasing the yield of EEG. J Clin Neurophysiol. 2006;23(4):282293.Google Scholar
de Stegge, BM, van Putten, MJ. A patient with a transient photomyogenic response. Clin Neurophysiol. 2010;121(1):118120.Google Scholar
Harding, GF, Herrick, CE, Jeavons, PM. A controlled study of the effect of sodium valproate on photosensitive epilepsy and its prognosis. Epilepsia. 1978;19(6):555565.Google Scholar
Verrotti, A, Beccaria, F, Fiori, F, Montagnini, A, Capovilla, G. Photosensitivity: epidemiology, genetics, clinical manifestations, assessment, and management. Epileptic Disord. 2012;14(4):349362.CrossRefGoogle ScholarPubMed
Glick, TH. The sleep-deprived electroencephalogram: evidence and practice. Arch Neurol. 2002;59(8):12351239.Google Scholar
Guilhoto, LM, Manreza, ML, Yacubian, EM. Occipital intermittent rhythmic delta activity in absence epilepsy. Arq Neuropsiquiatr. 2006;64(2A):193197.Google Scholar
Desai, J, Mitchell, WG, Rosser, T, et al. Clinical associations of occipital intermittent rhythmic delta activity. J Child Neurol. 2012;27(4):503506.Google Scholar
Desai, JD, Toczek, MT, Mitchell, WG. Frontal intermittent rhythmic delta activity (FIRDA): is there a clinical significance in children and adolescents? Eur J Paediatr Neurol. 2012;16(2):138141.Google Scholar
Sunwoo, JS, Byun, JI, Moon, J, et al. Unfavorable surgical outcomes in partial epilepsy with secondary bilateral synchrony: intracranial electroencephalography study. Epilepsy Res. 2016;122:102109.CrossRefGoogle ScholarPubMed
Lombroso, CT, Erba, G. Primary and secondary bilateral synchrony in epilepsy; a clinical and electroencephalographic study. Arch Neurol. 1970;22(4):321334.CrossRefGoogle ScholarPubMed
Scheffer, IE, Berkovic, S, Capovilla, G, et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58(4):512521.CrossRefGoogle ScholarPubMed
Masur, D, Shinnar, S, Cnaan, A, et al. Pretreatment cognitive deficits and treatment effects on attention in childhood absence epilepsy. Neurology. 2013;81(18):15721580.CrossRefGoogle ScholarPubMed
Glauser, TA, Cnaan, A, Shinnar, S, et al. Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy. N Engl J Med. 2010;362(9):790799.Google Scholar
Guilhoto, LM. Absence epilepsy: continuum of clinical presentation and epigenetics? Seizure. 2017;44:5357.CrossRefGoogle ScholarPubMed
Janz, D. The idiopathic generalized epilepsies of adolescence with childhood and juvenile age of onset. Epilepsia. 1997;38(1):411.Google Scholar
Beghi, M, Beghi, E, Cornaggia, CM, Gobbi, G. Idiopathic generalized epilepsies of adolescence. Epilepsia. 2006;47 Suppl 2(s2):107110.Google Scholar
Guerrini, R, Pellacani, S. Benign childhood focal epilepsies. Epilepsia. 2012;53 Suppl 4:918.CrossRefGoogle ScholarPubMed
Vannest, J, Tenney, JR, Gelineau-Morel, R, Maloney, T, Glauser, TA. Cognitive and behavioral outcomes in benign childhood epilepsy with centrotemporal spikes. Epilepsy Behav. 2015;45:8591.Google Scholar
Pavone, P, Striano, P, Falsaperla, R, Pavone, L, Ruggieri, M. Infantile spasms syndrome, West syndrome and related phenotypes: what we know in 2013. Brain Dev. 2014;36(9):739751.Google Scholar
Go, CY, Mackay, MT, Weiss, SK, et al. Evidence-based guideline update: medical treatment of infantile spasms. Report of the Guideline Development Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2012;78(24):19741980.Google Scholar
Widjaja, E, Go, C, McCoy, B, Snead, OC. Neurodevelopmental outcome of infantile spasms: a systematic review and meta-analysis. Epilepsy Res. 2015;109:155162.Google Scholar
Mastrangelo, M. Lennox-Gastaut syndrome: a state of the art review. Neuropediatrics. 2017;48(3):143151.Google Scholar
Hughes, JR. A review of the relationships between Landau-Kleffner syndrome, electrical status epilepticus during sleep, and continuous spike-waves during sleep. Epilepsy Behav. 2011;20(2):247253.CrossRefGoogle ScholarPubMed
Moser, SJ, Weber, P, Lutschg, J. Rett syndrome: clinical and electrophysiologic aspects. Pediatr Neurol. 2007;36(2):95100.CrossRefGoogle ScholarPubMed
Nissenkorn, A, Gak, E, Vecsler, M, et al. Epilepsy in Rett syndrome – the experience of a National Rett Center. Epilepsia. 2010;51(7):12521258.CrossRefGoogle ScholarPubMed
Glaze, DG. Neurophysiology of Rett syndrome. J Child Neurol. 2005;20(9):740746.Google Scholar
Weber, AR, Ostendorf, A. Teaching NeuroImages: a central theta EEG rhythm in Rett syndrome can masquerade as seizure. Neurology. 2016;87(3):e29–30.CrossRefGoogle ScholarPubMed
Valente, KD, Andrade, JQ, Grossmann, RM, et al. Angelman syndrome: difficulties in EEG pattern recognition and possible misinterpretations. Epilepsia. 2003;44(8):10511063.CrossRefGoogle ScholarPubMed
Thibert, RL, Larson, AM, Hsieh, DT, Raby, AR, Thiele, EA. Neurologic manifestations of Angelman syndrome. Pediatr Neurol. 2013;48(4):271279.CrossRefGoogle ScholarPubMed
Satishchandra, P, Sinha, S. Progressive myoclonic epilepsy. Neurol India. 2010;58(4):514522.Google Scholar
Demir, N, Cokar, O, Bolukbasi, F, et al. A close look at EEG in subacute sclerosing panencephalitis. J Clin Neurophysiol. 2013;30(4):348356.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×