Skip to main content Accessibility help
  • Print publication year: 2019
  • Online publication date: October 2019

Chapter 2 - Physiologic Basis of Epileptic EEG Patterns


Much of our attention as electroencephalographers is devoted to the identification and localization of spikes and seizures. Atlases, primers, and texts of electroencephalogram (EEG) interpretation provide a wealth of information to guide seizure identification, but often the diagnosis is based on the same principle as Justice Potter Stewart’s maxim for identifying obscenity in Jacobellis v. Ohio: “I know it when I see it.”1 Virtually all of the mathematical seizure detection algorithms currently in use are based on empiric observations of EEG activity that occurs contemporaneously with behavioral seizures, or resembles the electrical activity we see during such behaviors. Ideally, we should be able to derive the parameters for identifying electrographic seizures from a detailed understanding of the underlying neuronal pathophysiology that generates abnormal rhythmic activity, disrupting normal brain circuit functions and behaviors. Unfortunately, we are not there yet. In many cases, however, we have at least a rudimentary knowledge of the neurons and brain structures involved in seizure generation. This chapter will review what we know about how seizures are generated and how that translates into the patterns we observe in EEG recordings.

Related content

Powered by UNSILO
1.Gewirtz, P. On “I know it when I see it”. The Yale Law Journal. 1996;105(4):1023.
2.Buzsaki, G. Rhythms of the Brain. Oxford: Oxford University Press; 2006.
3.Grundfest, H, Purpura, DP. Nature of dendritic potentials and synaptic mechanisms in cerebral cortex of cat. J Neurophysiol. 1956;19(6):573595.
4.Li, CL, Jasper, H. Microelectrode studies of the electrical activity of the cerebral cortex in the cat. J Physiol. 1953;121(1):117140.
5.Hughes, SW, Crunelli, V. Thalamic mechanisms of EEG alpha rhythms and their pathological implications. Neuroscientist. 2005;11(4):357372.
6.van Strien, NM, Cappaert, NL, Witter, MP. The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network. Nat Rev Neurosci. 2009;10(4):272282.
7.Heinemann, U, Beck, H, Dreier, JP, et al. The dentate gyrus as a regulated gate for the propagation of epileptiform activity. Epilepsy Res Suppl. 1992;7:273280.
8.Lothman, EW, Stringer, JL, Bertram, EH. The dentate gyrus as a control point for seizures in the hippocampus and beyond. Epilepsy Res Suppl. 1992;7:301313.
9.Krook-Magnuson, E, Armstrong, C, Bui, A, et al. In vivo evaluation of the dentate gate theory in epilepsy. J Physiol. 2015;593(10):23792388.
10.Liu, YQ, Yu, F, Liu, WH, He, XH, Peng, BW. Dysfunction of hippocampal interneurons in epilepsy. Neurosci Bull. 2014;30(6):985998.
11.Buzsaki, G. Theta oscillations in the hippocampus. Neuron. 2002;33(3):325340.
12.Allen, K, Monyer, H. Interneuron control of hippocampal oscillations. Curr Opin Neurobiol. 2015;31:8187.
13.Lever, C, Wills, T, Cacucci, F, Burgess, N, O’Keefe, J. Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature. 2002;416(6876):9094.
14.Moser, EI, Paulsen, O. New excitement in cognitive space: between place cells and spatial memory. Curr Opin Neurobiol. 2001;11(6):745751.
15.Zhang, SJ, Ye, J, Miao, C, et al. Optogenetic dissection of entorhinal-hippocampal functional connectivity. Science. 2013;340(6128):1232627.
16.Csicsvari, J, Dupret, D. Sharp wave/ripple network oscillations and learning-associated hippocampal maps. Philos Trans R Soc Lond B Biol Sci. 2014;369(1635):20120528.
17.Buzsaki, G. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus. 2015;25(10):10731188.
18.Buzsaki, G, Horvath, Z, Urioste, R, Hetke, J, Wise, K. High-frequency network oscillation in the hippocampus. Science. 1992;256(5059):10251027.
19.Ylinen, A, Bragin, A, Nadasdy, Z, et al. Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci. 1995;15(1 Pt 1):3046.
20.Averkin, RG, Szemenyei, V, Borde, S, Tamas, G. Identified cellular correlates of neocortical ripple and high-gamma oscillations during spindles of natural sleep. Neuron. 2016;92(4):916928.
21.Jadhav, SP, Kemere, C, German, PW, Frank, LM. Awake hippocampal sharp-wave ripples support spatial memory. Science. 2012;336(6087):14541458.
22.Ayala, GF, Matsumoto, H, Gumnit, RJ. Excitability changes and inhibitory mechanisms in neocortical neurons during seizures. J Neurophysiol. 1970;33(1):7385.
23.McCormick, DA, Contreras, D. On the cellular and network bases of epileptic seizures. Annu Rev Physiol. 2001;63(1):815846.
24.Johnston, D, Brown, TH. The synaptic nature of the paroxysmal depolarizing shift in hippocampal neurons. Ann Neurol. 1984;16 (Suppl):S65–71.
25.Ayala, GF. The paroxysmal depolarizing shift. Prog Clin Biol Res. 1983;124:1521.
26.Witte, OW. Physiological basis of pathophysiological brain rhythms. Acta Neurobiol Exp (Wars). 2000;60(2):289297.
27.Cooper, R, Winter, AL, Crow, HJ, Walter, WG. Comparison of subcortical, cortical and scalp activity using chronically indwelling electrodes in man. Electroencephalogr Clin Neurophysiol. 1965;18:217228.
28.Tao, JX, Baldwin, M, Hawes-Ebersole, S, Ebersole, JS. Cortical substrates of scalp EEG epileptiform discharges. J Clin Neurophysiol. 2007;24(2):96100.
29.Reiher, J, Beaudry, M, Leduc, CP. Temporal intermittent rhythmic delta activity (TIRDA) in the diagnosis of complex partial epilepsy: sensitivity, specificity and predictive value. Can J Neurol Sci. 1989;16(4):398401.
30.Normand, MM, Wszolek, ZK, Klass, DW. Temporal intermittent rhythmic delta activity in electroencephalograms. J Clin Neurophysiol. 1995;12(3):280284.
31.Di Gennaro, G, Quarato, PP, Onorati, P, et al. Localizing significance of temporal intermittent rhythmic delta activity (TIRDA) in drug-resistant focal epilepsy. Clin Neurophysiol. 2003;114(1):7078.
32.Gullapalli, D, Fountain, NB. Clinical correlation of occipital intermittent rhythmic delta activity. J Clin Neurophysiol. 2003;20(1):3541.
33.Watemberg, N, Linder, I, Dabby, R, Blumkin, L, Lerman-Sagie, T. Clinical correlates of occipital intermittent rhythmic delta activity (OIRDA) in children. Epilepsia. 2007;48(2):330334.
34.Accolla, EA, Kaplan, PW, Maeder-Ingvar, M, Jukopila, S, Rossetti, AO. Clinical correlates of frontal intermittent rhythmic delta activity (FIRDA). Clin Neurophysiol. 2011;122(1):2731.
35.Brigo, F. Intermittent rhythmic delta activity patterns. Epilepsy Behav. 2011;20(2):254256.
36.Westmoreland, BF, Klass, DW, Sharbrough, FW. Chronic periodic lateralized epileptiform discharges. Arch Neurol. 1986;43(5):494496.
37.Sen-Gupta, I, Schuele, SU, Macken, MP, Kwasny, MJ, Gerard, EE. “Ictal” lateralized periodic discharges. Epilepsy Behav. 2014;36:165170.
38.Ali, II, Pirzada, NA, Vaughn, BV. Periodic lateralized epileptiform discharges after complex partial status epilepticus associated with increased focal cerebral blood flow. J Clin Neurophysiol. 2001;18(6):565569.
39.Garzon, E, Fernandes, RM, Sakamoto, AC. Serial EEG during human status epilepticus: evidence for PLED as an ictal pattern. Neurology. 2001;57(7):11751183.
40.Hirsch, LJ, LaRoche, SM, Gaspard, N, et al. American Clinical Neurophysiology Society’s standardized critical care EEG terminology: 2012 version. J Clin Neurophysiol. 2013;30(1):127.
41.Fisch, BJ, Klass, DW. The diagnostic specificity of triphasic wave patterns. Electroencephalogr Clin Neurophysiol. 1988;70(1):18.
42.van Putten, MJ, Hofmeijer, J. Generalized periodic discharges: pathophysiology and clinical considerations. Epilepsy Behav. 2015;49:228233.
43.Tjepkema-Cloostermans, MC, Hindriks, R, Hofmeijer, J, van Putten, MJ. Generalized periodic discharges after acute cerebral ischemia: reflection of selective synaptic failure? Clin Neurophysiol. 2014;125(2):255262.
44.San-Juan, OD, Chiappa, KH, Costello, DJ, Cole, AJ. Periodic epileptiform discharges in hypoxic encephalopathy: BiPLEDs and GPEDs as a poor prognosis for survival. Seizure. 2009;18(5):365368.
45.Racine, RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol. 1972;32(3):281294. Curtis, M, Gnatkovsky, V. Reevaluating the mechanisms of focal ictogenesis: the role of low-voltage fast activity. Epilepsia. 2009;50(12):25142525.
47.Wendling, F, Bartolomei, F, Bellanger, JJ, Bourien, J, Chauvel, P. Epileptic fast intracerebral EEG activity: evidence for spatial decorrelation at seizure onset. Brain. 2003;126(Pt 6):14491459.
48.Timofeev, I, Steriade, M. Neocortical seizures: initiation, development and cessation. Neuroscience. 2004;123(2):299336.
49.Jiruska, P, de Curtis, M, Jefferys, JG, et al. Synchronization and desynchronization in epilepsy: controversies and hypotheses. J Physiol. 2013;591(4):787797.
50.Ward, AA, Thomas, LB. The electrical activity of single units in the cerebral cortex of man. Electroencephalogr Clin Neurophysiol. 1955;7(1):135136.
51.Tankus, A. Exploring human epileptic activity at the single-neuron level. Epilepsy Behav. 2016;58:1117.
52.Verzeano, M, Crandall, PH, Dymond, A. Neuronal activity of the amygdala in patients with psychomotor epilepsy. Neuropsychologia. 1971;9(3):331344.
53.Ishijima, B, Hori, T, Yoshimasu, N, Fukushima, T, Hirakawa, K. Neuronal activities in human epileptic foci and surrounding areas. Electroencephalogr Clin Neurophysiol. 1975;39(6):643650.
54.Fried, I, Wilson, CL, Maidment, NT, et al. Cerebral microdialysis combined with single-neuron and electroencephalographic recording in neurosurgical patients: technical note. J Neurosurg. 1999;91(4):697705.
55.Schevon, CA, Ng, SK, Cappell, J, et al. Microphysiology of epileptiform activity in human neocortex. J Clin Neurophysiol. 2008;25(6):321330.
56.Bower, MR, Stead, M, Meyer, FB, Marsh, WR, Worrell, GA. Spatiotemporal neuronal correlates of seizure generation in focal epilepsy. Epilepsia. 2012;53(5):807816.
57.Matsumoto, H, Marsan, CA. Cortical cellular phenomena in experimental epilepsy: interictal manifestations. Exp Neurol. 1964;9(4):286304.
58.Chatrian, GE, Bickford, RG, Uihlein, A. Depth electrographic study of a fast rhythm evoked from the human calcarine region by steady illumination. Electroencephalogr Clin Neurophysiol. 1960;12(1):167176.
59.Weiergraber, M, Papazoglou, A, Broich, K, Muller, R. Sampling rate, signal bandwidth and related pitfalls in EEG analysis. J Neurosci Methods. 2016;268:5355.
60.Belluscio, MA, Mizuseki, K, Schmidt, R, Kempter, R, Buzsaki, G. Cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. J Neurosci. 2012;32(2):423435.
61.Jiruska, P, Alvarado-Rojas, C, Schevon, CA, et al. Update on the mechanisms and roles of high-frequency oscillations in seizures and epileptic disorders. Epilepsia. 2017;58(8):13301339.
62.Hughes, JR. Gamma, fast, and ultrafast waves of the brain: their relationships with epilepsy and behavior. Epilepsy Behav. 2008;13(1):2531.
63.Axmacher, N, Mormann, F, Fernandez, G, Elger, CE, Fell, J. Memory formation by neuronal synchronization. Brain Res Rev. 2006;52(1):170182.
64.Levy, WB, Steward, O. Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience. 1983;8(4):791797.
65.Dan, Y, Poo, MM. Spike timing-dependent plasticity: from synapse to perception. Physiol Rev. 2006;86(3):10331048.
66.Staba, RJ. Normal and pathological high-frequency oscillations. In: Noebels, JL, Avoli, M, Rogawski, MA, Olsen, RW, Delgado-Escueta, AV, eds., Jasper’s Basic Mechanisms of the Epilepsies. Oxford: Oxford University Press; 2012:202212.
67.Frauscher, B, Bartolomei, F, Kobayashi, K, et al. High-frequency oscillations: the state of clinical research. Epilepsia. 2017;58(8):13161329.
68.Brazdil, M, Pail, M, Halamek, J, et al. Very high-frequency oscillations: novel biomarkers of the epileptogenic zone. Ann Neurol. 2017;82(2):299310.
69.Bragin, A, Engel, J Jr., Wilson, CL, Fried, I, Mathern, GW. Hippocampal and entorhinal cortex high-frequency oscillations (100–500 Hz) in human epileptic brain and in kainic acid-treated rats with chronic seizures. Epilepsia. 1999;40(2):127137.
70.Fisher, RS, Webber, WR, Lesser, RP, Arroyo, S, Uematsu, S. High-frequency EEG activity at the start of seizures. J Clin Neurophysiol. 1992;9(3):441448.
71.Bragin, A, Wilson, CL, Staba, RJ, et al. Interictal high-frequency oscillations (80–500 Hz) in the human epileptic brain: entorhinal cortex. Ann Neurol. 2002;52(4):407415.
72.Jacobs, J, Zijlmans, M, Zelmann, R, et al. High-frequency electroencephalographic oscillations correlate with outcome of epilepsy surgery. Ann Neurol. 2010;67(2):209220.
73.Haegelen, C, Perucca, P, Chatillon, CE, et al. High-frequency oscillations, extent of surgical resection, and surgical outcome in drug-resistant focal epilepsy. Epilepsia. 2013;54(5):848857.
74.Fedele, T, Burnos, S, Boran, E, et al. Resection of high frequency oscillations predicts seizure outcome in the individual patient. Sci Rep. 2017;7(1):13836.
75.Holler, Y, Kutil, R, Klaffenbock, L, et al. High-frequency oscillations in epilepsy and surgical outcome: a meta-analysis. Front Hum Neurosci. 2015;9:574.
76.Akiyama, T, McCoy, B, Go, CY, et al. Focal resection of fast ripples on extraoperative intracranial EEG improves seizure outcome in pediatric epilepsy. Epilepsia. 2011;52(10):18021811.
77.Fujiwara, H, Leach, JL, Greiner, HM, et al. Resection of ictal high frequency oscillations is associated with favorable surgical outcome in pediatric drug resistant epilepsy secondary to tuberous sclerosis complex. Epilepsy Res. 2016;126:9097.
78.Jones, MS, Barth, DS. Spatiotemporal organization of fast (>200 Hz) electrical oscillations in rat Vibrissa/Barrel cortex. J Neurophysiol. 1999;82(3):15991609.
79.Kandel, A, Buzsaki, G. Cellular-synaptic generation of sleep spindles, spike-and-wave discharges, and evoked thalamocortical responses in the neocortex of the rat. J Neurosci. 1997;17(17):67836797.
80.Worrell, GA, Parish, L, Cranstoun, SD, et al. High-frequency oscillations and seizure generation in neocortical epilepsy. Brain. 2004;127(Pt 7):14961506.
81.Bragin, A, Benassi, SK, Kheiri, F, Engel, J Jr. Further evidence that pathologic high-frequency oscillations are bursts of population spikes derived from recordings of identified cells in dentate gyrus. Epilepsia. 2011;52(1):4552.
82.Draguhn, A, Traub, RD, Schmitz, D, Jefferys, JG. Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature. 1998;394(6689):189192.
83.Traub, RD, Draguhn, A, Whittington, MA, et al. Axonal gap junctions between principal neurons: a novel source of network oscillations, and perhaps epileptogenesis. Rev Neurosci. 2002;13(1):130.
84.Jefferys, JG. Nonsynaptic modulation of neuronal activity in the brain: electric currents and extracellular ions. Physiol Rev. 1995;75(4):689723.
85.Greenfield, LJ, Geyer, JD, Carney, PR. Reading EEGs: A Practical Approach. Philadelphia: Lippincott Williams & Wilkins; 2010.
86.Andrade-Valenca, LP, Dubeau, F, Mari, F, Zelmann, R, Gotman, J. Interictal scalp fast oscillations as a marker of the seizure onset zone. Neurology. 2011;77(6):524531.
87.von Ellenrieder, N, Andrade-Valenca, LP, Dubeau, F, Gotman, J. Automatic detection of fast oscillations (40–200 Hz) in scalp EEG recordings. Clin Neurophysiol. 2012;123(4):670680.
88.Chen, Y, Parker, WD, Wang, K. The role of T-type calcium channel genes in absence seizures. Front Neurol. 2014;5:45.
89.Cheong, E, Shin, HS. T-type Ca2+ channels in absence epilepsy. Pflugers Arch. 2014;466(4):719734.
90.Cain, SM, Snutch, TP. T-type calcium channels in burst-firing, network synchrony, and epilepsy. Biochim Biophys Acta. 2013;1828(7):15721578.
91.Bal, T, McCormick, DA. What stops synchronized thalamocortical oscillations? Neuron. 1996;17(2):297308.
92.Blumenfeld, H. From molecules to networks: cortical/subcortical interactions in the pathophysiology of idiopathic generalized epilepsy. Epilepsia. 2003;44 (Suppl 2):715.
93.Kim, U, Sanchez-Vives, MV, McCormick, DA. Functional dynamics of GABAergic inhibition in the thalamus. Science. 1997;278(5335):130134.
94.Blumenfeld, H, McCormick, DA. Corticothalamic inputs control the pattern of activity generated in thalamocortical networks. J Neurosci. 2000;20(13):51535162.
95.Kang, JQ, Macdonald, RL. The GABAA receptor gamma2 subunit R43Q mutation linked to childhood absence epilepsy and febrile seizures causes retention of alpha1beta2gamma2S receptors in the endoplasmic reticulum. J Neurosci. 2004;24(40):86728677.
96.Imbrici, P, Jaffe, SL, Eunson, LH, et al. Dysfunction of the brain calcium channel CaV2.1 in absence epilepsy and episodic ataxia. Brain. 2004;127(Pt 12):26822692.
97.Jouvenceau, A, Eunson, LH, Spauschus, A, et al. Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel. Lancet. 2001;358(9284):801807.
98.Liang, J, Zhang, Y, Wang, J, et al. New variants in the CACNA1H gene identified in childhood absence epilepsy. Neurosci Lett. 2006;406(1–2):2732.
99.Chen, Y, Lu, J, Pan, H, et al. Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol. 2003;54(2):239243.
100.Crunelli, V, Leresche, N. Childhood absence epilepsy: genes, channels, neurons and networks. Nat Rev Neurosci. 2002;3(5):371382.
101.Hallett, M. Physiology of human posthypoxic myoclonus. Mov Disord. 2000;15(Suppl 1):813.
102.Escayg, A, De Waard, M, Lee, DD, et al. Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet. 2000;66(5):15311539.
103.Kapoor, A, Satishchandra, P, Ratnapriya, R, et al. An idiopathic epilepsy syndrome linked to 3q13.3-q21 and missense mutations in the extracellular calcium sensing receptor gene. Ann Neurol. 2008;64(2):158167.
104.Suzuki, T, Delgado-Escueta, AV, Aguan, K, et al. Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nat Genet. 2004;36(8):842849.
105.Medina, MT, Suzuki, T, Alonso, ME, et al. Novel mutations in Myoclonin1/EFHC1 in sporadic and familial juvenile myoclonic epilepsy. Neurology. 2008;70(22 Pt 2):21372144.
106.Cossette, P, Liu, L, Brisebois, K, et al. Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet. 2002;31(2):184189.
107.Dibbens, LM, Feng, HJ, Richards, MC, et al. GABRD encoding a protein for extra- or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Hum Mol Genet. 2004;13(13):13151319.
108.Halasz, P, Janszky, J, Barcs, G, Szucs, A. Generalised paroxysmal fast activity (GPFA) is not always a sign of malignant epileptic encephalopathy. Seizure. 2004;13(4):270276.
109.Timofeev, I, Grenier, F, Steriade, M. Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons. J Neurophysiol. 1998;80(3):14951513.
110.Poleon, S, Szaflarski, JP. Photosensitivity in generalized epilepsies. Epilepsy Behav. 2017;68:225233.