Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T12:58:46.464Z Has data issue: false hasContentIssue false

19 - Planning for Coexistence in a Complex Human-Dominated World

Published online by Cambridge University Press:  19 April 2019

Beatrice Frank
Affiliation:
Capital Regional District of Victoria Regional Parks
Jenny A. Glikman
Affiliation:
Institute for Conservation Research, San Diego Zoo Global
Silvio Marchini
Affiliation:
Universidade de São Paulo
Get access

Summary

Conservation planning, with its emphasis on nature reserves, provides a basis for the development of spatial plans, usually at regional scale, that explicitly state objectives and then provide options for achieving them, despite limited financial resources. Conservation planning, however, is still an imperfect science that places more importance on ecological considerations than on social ones. Complementing social considerations with an integrated understanding of the ecology of a region, and obtaining enough social data in a cost-effective manner, are recurrent challenges. Here, we address the potential of systematic planning to improve human–wildlife interactions. Mapping risks and opportunities with behavioural, social and economic data, e.g., would greatly facilitate management decisions. While data collection through conventional field methods is a constraint at large spatial scales, the huge and fast-growing amount of social data in the 'big data' space remains largely unexplored. We describe new, promising approaches for big data visualization and analysis that could be used to inform wildlife managers through easy-to-interpret, data-intensive approaches.
Type
Chapter
Information
Human–Wildlife Interactions
Turning Conflict into Coexistence
, pp. 414 - 438
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

19.6 References

Adams, W. M. (2015). The political ecology of conservation conflicts. In Redpath, S. M., Gutiérrez, R. J., Wood, K. A. & Young, J. C., eds., Conflicts in Conservation: Navigating towards Solutions. Cambridge: Cambridge University Press, pp. 6475.CrossRefGoogle Scholar
Akcora, C. G. (2010). Using Microblogs for Crowdsourcing and Public Opinion Mining. Buffalo, NY: State University of New York.Google Scholar
Amit, R. & Jacobson, S. K. (2017). Stakeholder barriers and benefits associated with improving livestock husbandry to prevent jaguar and puma depredation. Human Dimensions of Wildlife, 22(3), 246–66.CrossRefGoogle Scholar
Ball, I. R., Possingham, H. P. & Watts, M. (2009). Marxan and relatives: Software for spatial conservation prioritisation. In Moilanen, A., Wilson, K. A. & Possingham, H. P., eds., Spatial Conservation Prioritisation: Quantitative Methods and Computational Tools. Oxford: Oxford University Press, pp. 185–95.Google Scholar
Batrinca, B. & Treleaven, P. C. (2015). Social media analytics: A survey of techniques, tools and platforms. AI & Society, 30(1), 89116.Google Scholar
Behr, D. M., Ozgul, A. & Cozzi, G. (2017). Combining human acceptance and habitat suitability in a unified socio‐ecological suitability model: A case study of the wolf in Switzerland. Journal of Applied Ecology, 54, 1919–29.Google Scholar
Bruskotter, J. T., Singh, A., Fulton, D. C. & Slagle, K. (2015). Assessing tolerance for wildlife: Clarifying relations between concepts and measures. Human Dimensions of Wildlife, 20(3), 255–70.Google Scholar
Bruskotter, J. T. & Wilson, R. S. (2014). Determining where the wild things will be: Using psychological theory to find tolerance for large carnivores. Conservation Letters, 7(3), 158–65.Google Scholar
Buesching, C. D., Slade, E., Newman, C., Riutta, T., Riordan, P. & Macdonald, D. W. (2015). Many hands make light work – but do they? A critical evaluation of citizen science. In Macdonald, D. W. & Feber, R. E., eds., Wildlife Conservation on Farmlands. 2 vols. Conflict in the Countryside. Oxford: Oxford University Press.Google Scholar
Bull, J. W., Verissimo, D. & Milner-Gulland, E. J. (2017). When a ripple becomes a flood – why we didn’t sign Ripple et al.’s ‘World Scientists’ Warning to Humanity: A Second Notice’. Conservation Optimism. Available from https://conservationoptimism.com/blog (accessed December 2017).Google Scholar
Bunnefeld, N., Hoshino, E. & Milner-Gulland, E. J. (2011). Management strategy evaluation: A powerful tool for conservation?. Trends in Ecology & Evolution, 26(9), 441–7.Google Scholar
Burgman, M. (2005). Risks and Decisions for Conservation and Environmental Management. Cambridge: Cambridge University Press.Google Scholar
Byers, O., Lees, C., Wilcken, J. & Schwitzer, C. (2013). The ‘One Plan Approach’: The philosophy and implementation of CBSG’s approach to integrated species conservation planning. WAZA Magazine, 14, 25.Google Scholar
Campbell, J. (2003). NBII Enterprise Architecture – Section 2 – Business Architecture. NBII Report Programme.Google Scholar
Carter, N. H. & Linnell, J. D. (2016). Co-adaptation is key to coexisting with large carnivores. Trends in Ecology & Evolution, 31(8), 575–8.Google Scholar
Carter, N. H., Riley, S. J., Shortridge, A., Shrestha, B. K. & Liu, J. (2014). Spatial assessment of attitudes toward tigers in Nepal. Ambio, 43(2), 125–37.Google Scholar
Carvalho, E. A., Zarco-González, M. M., Monroy-Vilchis, O. & Morato, R. G. (2015). Modeling the risk of livestock depredation by jaguar along the Trans-Amazon highway, Brazil. Basic & Applied Ecology, 16(5), 413–19.Google Scholar
Couvet, D., Jiguet, F., Julliard, R., Levrel, H. & Teyssedre, A. (2008). Enhancing citizen contributions to biodiversity science and public policy. Interdisciplinary Science Reviews, 33(1), 95103.Google Scholar
Cushman, S. A., Macdonald, E. A., Landguth, E. L., Malhi, Y. & Macdonald, D. W. (2017). Multiple-scale prediction of forest loss risk across Borneo. Landscape Ecology, 32, 1581–98.Google Scholar
Decker, D. J., Evensen, D. T., Siemer, W. F., Leong, K. M., Riley, S. J., Wild, M. A., Castle, K. T. & Higgins, C. L. (2010). Understanding risk perceptions to enhance communication about human–wildlife interactions and the impacts of zoonotic disease. ILAR Journal, 51(3), 255–61.Google Scholar
Dickman, A. J. (2010). Complexities of conflict: The importance of considering social factors for effectively resolving human–wildlife conflict. Animal Conservation, 13(5), 458–66.Google Scholar
Dickman, A. J., Macdonald, E. A. & Macdonald, D. W. (2011). A review of financial instruments to pay for predator conservation and encourage human–carnivore coexistence. Proceedings of the National Academy of Sciences, 108(34), 13937–44.CrossRefGoogle ScholarPubMed
Dickman, A. J., Marchini, S. & Manfredo, M. (2013). The human dimension in addressing conflict with large carnivores. Key Topics in Conservation Biology, 2, 110–26.Google Scholar
El Bizri, H., Morcatty, T., Lima, J. & Valsecchi, J. (2015). The thrill of the chase: Uncovering illegal sport hunting in Brazil through YouTube™ posts. Ecology & Society, 20(3), art. 30.CrossRefGoogle Scholar
Elith, J. & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, & Systematics, 40, 677–97.CrossRefGoogle Scholar
Fonseca, M. G., Aragão, L. E. O., Lima, A., Shimabukuro, Y. E., Arai, E. & Anderson, L. O. (2016). Modelling fire probability in the Brazilian Amazon using the maximum entropy method. International Journal of Wildland Fire, 25(9), 955–69.Google Scholar
Frank, B. (2016). Human–wildlife conflicts and the need to include tolerance and coexistence: An introductory comment. Society & Natural Resources, 29(6), 738–43.Google Scholar
Groves, C. R. (2003). Drafting a Conservation Blueprint: A Practitioner´s Guide to Planning for Biodiversity. Washington, DC: Island Press.Google Scholar
Guisan, A. & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8(9), 9931009.Google Scholar
Heinonen, J. P. M. & Travis, J. M. J. (2015). Modelling conservation conflicts. In Redpath, S. M., Gutiérrez, R. J., Wood, K. A. & Young, J. C., eds., Conflicts in Conservation: Navigating towards Solutions. Cambridge: Cambridge University Press, pp. 195211.Google Scholar
Hemson, G., Maclennan, S., Mills, G., Johnson, P. & Macdonald, D. (2009). Community, lions, livestock and money: A spatial and social analysis of attitudes to wildlife and the conservation value of tourism in a human–carnivore conflict in Botswana. Biological Conservation, 142(11), 2718–25.Google Scholar
Herda-Rapp, A. & Goedeke, T. L. (2005). Mad about Wildlife: Looking at Social Conflict over Wildlife. Leiden: Brill Academic.Google Scholar
Hoare, R. (2015). Lessons from 20 years of human–elephant conflict mitigation in Africa. Human Dimensions of Wildlife, 20(4), 289–95.Google Scholar
Infographic. (2015). The Data Explosion in 2014 Minute by Minute. Available from http://aci.info/2014/07/12/the-data-explosion-in-2014-minute-by-minute-infographic (accessed November 2018).Google Scholar
IUCN Species Survival Commission. (2017). Guidelines for Species Conservation Planning. Version 1.0. Gland, Switzerland.Google Scholar
Jacobs, M. H. (2012). Human emotions toward wildlife. Human Dimensions of Wildlife, 17(1), 13.Google Scholar
Justus, J. & Sarkar, S. (2002). The principle of complementarity in the design of reserve networks to conserve biodiversity: A preliminary history. Journal of Biosciences, 27(4), 421–35.CrossRefGoogle ScholarPubMed
Kansky, R., Kidd, M. & Knight, A. T. (2016). A wildlife tolerance model and case study for understanding human wildlife conflicts. Biological Conservation, 201, 137–45.Google Scholar
Kansky, R. & Knight, A. T. (2014). Key factors driving attitudes towards large mammals in conflict with humans. Biological Conservation, 179, 93105.Google Scholar
Khoury, M. J. & Ioannidis, J. P. (2014). Big data meets public health. Science, 346(6213), 1054–55.Google Scholar
Knight, A. T., Cowling, R. M. & Campbell, B. M. (2006). An operational model for implementing conservation action. Conservation Biology, 20, 408–19.Google Scholar
Knight, A. T., Cowling, R. M., Difford, M. & Campbell, B. M. (2010). Mapping human and social dimensions of conservation opportunity for the scheduling of conservation action on private land. Conservation Biology, 24(5), 1348–58.CrossRefGoogle ScholarPubMed
Knight, A. T., Rodrigues, A. S., Strange, N., Tew, T. & Wilson, K. A. (2013). Designing effective solutions to conservation planning problems. Key Topics in Conservation Biology, 2, 362–83.Google Scholar
Kuhnert, P. M., Martin, T. G. & Griffiths, S. P. (2010). A guide to eliciting and using expert knowledge in Bayesian ecological models. Ecology Letters, 13(7), 900–14.Google Scholar
Kyriazi, Z., Maes, F. & Degraer, S. (2016). Coexistence dilemmas in European marine spatial planning practices: The case of marine renewables and marine protected areas. Energy Policy, 97, 391–9.Google Scholar
Lacy, R. C. (2000). Structure of the VORTEX simulation model for population viability analysis. Ecological Bulletins, 48, 191203.Google Scholar
Loring, P. A. (2016). Toward a theory of coexistence in shared social-ecological systems: The case of Cook inlet salmon fisheries. Human Ecology, 44(2), 153–65.Google Scholar
Macdonald, D. W., Boitani, L., Dinerstein, E., Fritz, H. & Wrangham, R. (2013). Conserving large mammals. Key Topics in Conservation Biology, 2, 277312.CrossRefGoogle Scholar
MacMillan, D. C. & Marshall, K. (2006). The Delphi process: An expert‐based approach to ecological modelling in data‐poor environments. Animal Conservation, 9(1), 1119.Google Scholar
Madden, F. (2004). Creating coexistence between humans and wildlife: Global perspectives on local efforts to address human–wildlife conflict. Human Dimensions of Wildlife, 9(4), 247–57.Google Scholar
Madden, F. & McQuinn, B. (2014). Conservation’s blind spot: The case for conflict transformation in wildlife conservation. Biological Conservation, 178, 97106.CrossRefGoogle Scholar
Malleson, N. & Andresen, M. A. (2015). The impact of using social media data in crime rate calculations: Shifting hot spots and changing spatial patterns. Cartography and Geographic Information Science, 42(2), 112–21.CrossRefGoogle Scholar
Manfredo, M. J., Teel, T. L. & Dietsch, A. M. (2016). Implications of human value shift and persistence for biodiversity conservation. Conservation Biology, 30(2), 287–96.CrossRefGoogle ScholarPubMed
Manral, U., Sengupta, S., Hussain, S. A., Rana, S. & Badola, R. (2016). Human wildlife conflict in India: A review of economic implication of loss and preventive measures. Indian Forester, 142(10), 928–40.Google Scholar
Marchini, S. (2014). Who’s in conflict with whom? Human dimensions of the conflicts involving wildlife. In Verdade, L. M., Lyra-Jorge, M. C. & Piña, C. I., eds., Applied Ecology and Human Dimensions in Biological Conservation. New York: Springer Press, pp. 189209.Google Scholar
Marchini, S. & Crawshaw, P. G. Jr (2015). Human–wildlife conflicts in Brazil: A fast-growing issue. Human Dimensions of Wildlife, 20(4), 323–8.Google Scholar
Marchini, S. & Macdonald, D. W. (2012). Predicting ranchers’ intention to kill jaguars: Case studies in Amazonia and Pantanal. Biological Conservation, 147(1), 213–21.CrossRefGoogle Scholar
Margules, C. R. & Pressey, R. L. (2000). Systematic conservation planning. Nature, 405(6783), 243–53.Google Scholar
Mattmann, C. A. (2013). Computing: A vision for data science. Nature, 493(7433), 473–5.Google Scholar
McBride, M. F. & Burgman, M. A. (2012). What is expert knowledge, how is such knowledge gathered, and how do we use it to address questions in landscape ecology? In Perera, A. H., Drew, C. A. & Johnson, C. J., eds., Expert Knowledge and its Application in Landscape Ecology. New York: Springer, pp. 1138.CrossRefGoogle Scholar
McManus, J. S., Dickman, A. J., Gaynor, D., Smuts, B. H. & Macdonald, D. W. (2015). Dead or alive? Comparing costs and benefits of lethal and non-lethal human–wildlife conflict mitigation on livestock farms. Oryx, 49(4), 687–95.Google Scholar
Miller, J. R. (2015). Mapping attack hotspots to mitigate human–carnivore conflict: Approaches and applications of spatial predation risk modeling. Biodiversity & Conservation, 24(12), 2887–911.Google Scholar
Mintzberg, H. & Quinn, J. B. (1996). The Strategy Process: Concepts, Contexts, Cases. London: Prentice Hall.Google Scholar
Naidoo, R., Balmford, A., Ferraro, P. J., Polasky, S., Ricketts, T. H. & Rouget, M. (2006). Integrating economic costs into conservation planning. Trends in Ecology & Evolution, 21(12), 681–7.Google Scholar
Nghiem, L. T., Papworth, S. K., Lim, F. K. & Carrasco, L. R. (2016). Analysis of the capacity of Google Trends to measure interest in conservation topics and the role of online news. PLoS ONE, 11(3), e0152802.Google Scholar
Peterson, M. N., Birckhead, J. L., Leong, K., Peterson, M. J. & Peterson, T. R. (2010). Rearticulating the myth of human–wildlife conflict. Conservation Letters, 3(2), 7482.Google Scholar
Phillips, S. J. & Dudík, M. (2008). Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31(2), 161–75.CrossRefGoogle Scholar
Pigott, D. M., Golding, N., Mylne, A., Huang, Z., Henry, A. J., Weiss, D. J., Brady, O. J., Kraemer, M. U., Smith, D. L., Moyes, C. L. & Bhatt, S. (2014). Mapping the zoonotic niche of Ebola virus disease in Africa. Elife, 3, e04395.CrossRefGoogle ScholarPubMed
Pressey, R. L. & Nicholls, A. O. (1989). Efficiency in conservation evaluation: Scoring versus iterative approaches. Biological Conservation, 50(1–4), 199218.Google Scholar
Redpath, S. M., Bhatia, S. & Young, J. (2015). Tilting at wildlife: Reconsidering human–wildlife conflict. Oryx, 49(2), 222–5.Google Scholar
Redpath, S. M., Young, J., Evely, A., Adams, W. M., Sutherland, W. J., Whitehouse, A., Amar, A., Lambert, R. A., Linnell, J. D., Watt, A. & Gutierrez, R. J. (2013). Understanding and managing conservation conflicts. Trends in Ecology & Evolution, 28(2), 100–9.Google Scholar
Santos, S. M., Marques, J. T., Lourenço, A., Medinas, D., Barbosa, A. M., Beja, P. & Mira, A. (2015). Sampling effects on the identification of roadkill hotspots: Implications for survey design. Journal of Environmental Management, 162, 8795.Google Scholar
Silvertown, J., Buesching, C. D., Jacobson, S. K. & Rebelo, T. (2013). Citizen science and nature conservation. Key Topics in Conservation Biology, 2, 127–42.CrossRefGoogle Scholar
Sitati, N. W., Walpole, M. J., Smith, R. J. & Leader‐Williams, N. (2003). Predicting spatial aspects of human–elephant conflict. Journal of Applied Ecology, 40(4), 667–77.Google Scholar
Souza, R. A. & De Marco, P. (2014). The use of species distribution models to predict the spatial distribution of deforestation in the western Brazilian Amazon. Ecological Modelling, 291, 250–9.CrossRefGoogle Scholar
Sutherland, W. J. & Burgman, M. A. (2015). Use experts wisely. Nature, 526(7573), 317–18.Google Scholar
Tenkanen, H., Di Minin, E., Heikinheimo, V., Hausmann, A., Herbst, M., Kajala, L. & Toivonen, T. (2017). Instagram, Flickr, or Twitter: Assessing the usability of social media data for visitor monitoring in protected areas. Scientific Reports, 7(1), 17615.Google Scholar
Tversky, A. & Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 211 (4481), 453–8.Google Scholar
Vucetich, J. A., Burnham, D., Macdonald, E. A., Bruskotter, J. T., Marchini, S., Zimmermann, A. & Macdonald, D. W. (2018). Just conservation: What is it and should we pursue it? Biological Conservation, 221, 2333.Google Scholar
Weckel, M. E., Mack, D., Nagy, C., Christie, R. & Wincorn, A. (2010). Using citizen science to map human–coyote interaction in suburban New York, USA. Journal of Wildlife Management, 74(5), 1163–71.Google Scholar
Wilson, K. A., Underwood, E. C., Morrison, S. A., Klausmeyer, K. R., Murdoch, W. W., Reyers, B., Wardell-Johnson, G., Marquet, P. A., Rundel, P. W., McBride, M. F. & Pressey, R. L. (2007). Conserving biodiversity efficiently: What to do, where, and when. PLoS Biology, 5(9), 223.Google Scholar
Wilson, S., Davies, T. E., Hazarika, N. & Zimmermann, A. (2013). Understanding patterns of human–elephant conflict in Assam: An analysis to inform mitigation strategies. Oryx, 49(01), 140–9.Google Scholar
Woodroffe, R., Thirgood, S. & Rabinowitz, A. (2005). People and Wildlife, Conflict or Coexistence? Cambridge: Cambridge University Press.Google Scholar
Yurco, K., King, B., Young, K. R. & Crews, K. A. (2017). Human–wildlife interactions and environmental dynamics in the Okavango Delta, Botswana. Society & Natural Resources, 30(9), 1112–26.CrossRefGoogle Scholar
Zeitzoff, T., Kelly, J. & Lotan, G. (2015). Using social media to measure foreign policy dynamics: An empirical analysis of the Iranian–Israeli confrontation (2012–13). Journal of Peace Research, 52(3), 368–83.Google Scholar
Zimmermann, A., Baker, N., Inskip, C., Linnell, J. D. C., Marchini, S., Odden, J., Rasmussen, G. & Treves, A. (2010). Contemporary views of human–carnivore conflicts on wild rangelands. In du Toit, J. T., Kock, R. & Deutsch, J. C., eds., Wild Rangelands: Conserving Wildlife While Maintaining Livestock in Semi-Arid Ecosystems. Chichester: John Wiley & Sons, Ltd, pp. 129–51.Google Scholar
Zimmermann, A., Walpole, M. J. & Leader-Williams, N. (2005). Cattle ranchers’ attitudes to conflicts with jaguar Panthera onca in the Pantanal of Brazil. Oryx, 39(4), 406–12.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×