Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T07:49:55.664Z Has data issue: false hasContentIssue false

19 - Functional transcranial ultrasound

Published online by Cambridge University Press:  05 May 2016

László Csiba
Affiliation:
Department of Neurology, Debreceni Egyetem, Hungary
Claudio Baracchini
Affiliation:
Department of Neuroscience, Università degli Studi di Padova, Italy
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fulton, JF. Observations upon the vascularity of the human occipital lobe during visual activity. Brain. 1928;51:310320.Google Scholar
Aaslid, R. Visually evoked dynamic blood flow response of the human cerebral circulation. Stroke. 1987;18:771775.Google Scholar
Conrad, B, Klingelhöfer, J. Dynamics of regional cerebral blood flow for various visual stimuli. Exp Brain Res. 1989;77:437441.Google Scholar
Paulson, OB, Newman, EA. Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science. 1987;237:896898.Google Scholar
Lou, HC, Edvinsson, L, Mac Kenzie, ET. The concept of coupling blood flow to brain function: revision required? Ann Neurol. 1987;22:289297.CrossRefGoogle ScholarPubMed
Fox, PT, Raichle, ME, Mintun, MA, Dence, C. Nonoxidative glucose consumption during focal physiologic neural activity. Science. 1988;241(4864):462464.CrossRefGoogle ScholarPubMed
Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci. 2004;5:347360.Google Scholar
Rosengarten, B, Deppe, M, Kaps, M, Klingelhöfer, J. Methodological aspects of functional transcranial Doppler sonography and recommendations for simultaneous EEG recording. Ultrasound Med Biol. 2012;38:989996.CrossRefGoogle ScholarPubMed
Villringer, A, Dirnagl, U. Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging. Cerebrovasc Brain Metab Rev. 1995;7:240276.Google Scholar
Toda, N, Ayajiki, K, Okamura, T. Cerebral blood flow regulation by nitric oxide: recent advances. Pharmacol Rev. 2009;61:6297.Google Scholar
Kontos, HA. Validity of cerebral arterial blood flow calculations from velocity measurements. Stroke. 1989;20:13.Google Scholar
Bishop, CC, Powell, S, Rutt, D, Browse, NL. Transcranial Doppler measurement of middle cerebral artery blood fIow velocity: a validation study. Stroke. 1986;17:913915.CrossRefGoogle Scholar
Kirkham, FJ, Padayachee, TS, Parsons, S, et al. Transcranial measurement of blood flow velocities in the basal cerebral arteries using pulsed Doppler ultrasound: velocity as an index of flow. Ultrasound Med Bio. 1986;12:1521.CrossRefGoogle ScholarPubMed
Rosengarten, B, Kaps, M. Peak systolic velocity Doppler index reflects most appropriately the dynamic time course of intact cerebral autoregulation. Cerebrovasc Dis. 2002;13:230234.CrossRefGoogle ScholarPubMed
Rosengarten, B, Aldinger, C, Kaufmann, A, Kaps, M. Comparison of visually evoked peak systolic and end diastolic blood flow velocity using a control system approach. Ultrasound Med Biol. 2001;27:14991503.Google Scholar
Klingelhöfer, J, Sander, D, Wittich, I. Transcranial functional sonographic imaging. In: Bogdahn, U, Becker, G, Schlachetzki, F, eds. Echoenhancers and Transcranial Color Duplex Sonography. Berlin: Blackwell Science; 1998, 374406.Google Scholar
Klingelhöfer, J, Sander, D, Wittich, I. Functional ultrasonographic imaging. In: Babikian, VL, Wechsler, LR, eds. Transcranial Doppler Ultrasonography. Boston, MA: Butterworth Heinemann; 1999, 4966.Google Scholar
Lohmann, H, Ringelstein, EB, Knecht, S. Functional Doppler sonography. Front Neurol Neurosci. 2006;21:251260.CrossRefGoogle ScholarPubMed
Rosengarten, B, Budden, C, Osthaus, S, Kaps, M. Effect of heart rate on regulative features of the cortical activity-flow coupling. Cerebrovasc Dis. 2003;16:4752.CrossRefGoogle ScholarPubMed
Rosengarten, B, Osthaus, S, Kaps, M. Doppler investigation of within-session reproducibility in a visual stimulation task to assess the volunteer- dependent variation. Cerebrovasc Dis. 2003;16: 5360.CrossRefGoogle Scholar
Azevedo, E, Rosengarten, B, Santos, R, Freitas, J, Kaps, M. Interplay of cerebral autoregulation and neurovascular coupling evaluated by functional transcranial Doppler in different orthostatic conditions. J Neurol. 2007;254:236241.Google Scholar
Klingelhöfer, J, Matzander, G, Sander, D, et al. Assessment of functional hemispheric asymmetry by bilateral simultaneous cerebral blood flow velocity monitoring. J Cereb Blood Flow Metab. 1997;17:577585.CrossRefGoogle ScholarPubMed
Ringelstein, EB, Sievers, C, Ecker, S, Schneider, PA, Otis, SM. Noninvasive assessment of CO2-induced cerebral vasomotor response in normal individuals and patients with internal carotid occlusion. Stroke. 1988;19:963969.Google Scholar
Rosengarten, B, Spiller, A, Aldinger, C, Kaps, M. Control system analysis of visually evoked blood flow regulation in humans under normocapnia and hypercapnia. Eur J Ultrasound. 2003;16:169175.CrossRefGoogle ScholarPubMed
Yonai, Y, Boms, N, Monar, S, et al. Acetazo amide- induced vasodilation does not inhibit the visually evoked flow response. J Cereb Blood Flow Metab. 2010:30:516521.CrossRefGoogle Scholar
Deppe, M, Ringelstein, EB, Knecht, S. The investigation of functional brain lateralization by transcranial Doppler sonography. NeuroImage. 2004;21:11241146.CrossRefGoogle ScholarPubMed
Klingelhöfer, J, Bischoff, C, Sander, D, Wittich, I, Conrad, B. Do brief bursts of spike and wave activity cause a cerebral hyper-or hypoperfusion in man? Neurosci Lett. 1991;127:7781.Google Scholar
Klingelhöfer, J, Matzander, G, Sander, D, Conrad, B. Bilateral changes of middle cerebral artery blood flow velocities in various hemisphere-specific brain activities. J Neurol. 1994;241:264265.Google Scholar
Deppe, M, Knecht, S, Henningsen, H, Ringelstein, EB, Average: a Windows program for automated analysis of event related cerebral blood flow. J Neurosci Methods. 1997;75:147154.CrossRefGoogle ScholarPubMed
Sturzenegger, M, Newell, DW, Aaslid, R. Visually evoked blood flow response assessed by simultaneous two-channel transcranial Doppler using flow regulation by nitric oxide. Stroke. 1996;27:22562261.Google Scholar
Rosengarten, B, Dost, A, Kaufmann, A, Gortner, L, Kaps, M. Impaired cerebrovascular reactivity in type 1 diabetic children. Diabetes Care. 2002;25:408410.CrossRefGoogle ScholarPubMed
Rosengarten, B, Huwendiek, O, Kaps, M. Neurovascular coupling and cerebral autoregulation can be described in terms of a control system. Ultrasound Med Biol. 2001;27:189193.CrossRefGoogle ScholarPubMed
Klingelhöfer, J, Sander, D. Latencies of visually evoked perfusion changes in the posterior cerebral artery territory. J Neurol. 1992;239:23.Google Scholar
Klingelhöfer, J, Sander, D. Transcranial Doppler ultrasonography monitoring during cognitive testing. In: Tegeler, CH, Babikian, VL, Gomez, CR, eds. Neurosonology. St Louis, MO: Mosby-Year Book; 1999, 200220.Google Scholar
Rosengarten, B, Kaps, MA. A simultaneous EEG and transcranial Doppler technique to investigate the neurovascular coupling in the human visual cortex. Cerebrovasc Dis. 2010;29:211216.Google Scholar
Rosengarten, B, Molnar, S, Trautmann, J, Kaps, M. Simultaneous VEP and transcranial Doppler ultrasound recordings to investigate activation flow coupling in humans. Ultrasound Med Biol. 2006;32:11711180.Google Scholar
Topcuoglu, MA, Aydin, H, Saka, E. Occipital cortex activation studied with simultaneous recordings of functional transcranial Doppler ultrasound (fTCD) and visual evoked potential (VEP) in cognitively normal human subjects: effect of healthy aging. Neurosci Lett. 2009;452:1722.Google Scholar
Hao, Q, Wong, LKS, Lin, WH, et al. Ethnic influences on neurovascular coupling: a pilot study in whites and Asians. Stroke. 2010;41:383384.Google Scholar
Boms, N, Yonai, Y, Molnar, S, et al. Effect of smoking cessation on visually evoked cerebral blood flow response in healthy volunteers. J Vasc Res. 2010;47:214220.CrossRefGoogle ScholarPubMed
Anneken, K, Konrad, C, Drager, B, et al. Familial aggregation of strong hemisphere language lateralization. Neurology. 2004;63:24332435.Google Scholar
Lohmann, H, Drager, B, Müller-Ehrenberg, S, Deppe, M, Knecht, S. Language lateralization in young children assessed by functional transcranial Doppler sonography (fTCD). NeuroImage. 2005;24:780790.Google Scholar
Groen, MA, Whithouse, AJO, Badcock, NA, Bishop, DVM. Does cerebral lateralization develop? A study using functional transcranial Doppler ultrasound assessing lateralization for language production and visuospatial memory. Brain Behav. 2012;2(3):256269.CrossRefGoogle ScholarPubMed
Illingworth, S, Bishop, DVM. Atypical cerebral lateralization in adults with compensated developmental dyslexia demonstrated using functional transcranial Doppler ultrasound. Brain Lang. 2009;111:6165.Google Scholar
Whitehouse, AJO, Bishop, DVM. Cerebral dominance for language function in adults with specific language impairment or autism. Brain. 2008;131:31933200.CrossRefGoogle ScholarPubMed
Knecht, S, Henningsen, H, Deppe, M, et al. Successive activation of both cerebral hemispheres during cued word generation. NeuroReport. 1996;7:820824.CrossRefGoogle ScholarPubMed
Knecht, S, Deppe, M, Ebner, A, et al. Noninvasive determination of language lateralization by functional transcranial Doppler sonography: a comparison with the Wada test. Stroke. 1998;29:8286.Google Scholar
Knecht, S, Drager, B, Deppe, M, et al. Handedness and hemispheric language dominance in healthy humans. Brain. 2000;123 (12):25122518.Google Scholar
Deppe, M, Knecht, S, Lohmann, H, Ringelstein, EB. A method for the automated assessment of temporal characteristics of functional hemispheric lateralization by transcranial Doppler sonography. J Neuroimaging. 2004;14(3):226230.Google Scholar
Knecht, S, Deppe, M, Ringelstein, EB. Determination of cognitive hemispheric lateralization by “functional” transcranial Doppler cross-validated by functional MRI. Stroke. 1999;30(11):24912492.Google Scholar
Rihs, F, Sturzenegger, M, Gutbord, K, et al. Determination of language dominance: Wada test confirms functional transcranial Doppler sonography. Neurology. 1999;52:15911596.Google Scholar
Deppe, M, Knecht, S, Papke, K, et al. Assessment of hemispheric language lateralization: a comparison between fMRI and fTCD. J Cereb Blood Flow Metab. 2000;20:263268.Google Scholar
Knake, S, Haag, A, Hamer, HM, et al. Language lateralization in patients with temporal lobe epilepsy: a comparison of functional transcranial Doppler sonography and the Wada test. Neuroimage. 2003;19:12281232.CrossRefGoogle ScholarPubMed
Sander, D, Meyer, BU, Röricht, S, Matzander, G, Klingelhöfer, J. Increase of posterior cerebral artery blood flow velocity during threshold repetitive magnetic stimulation of the human visual cortex: hints for neuronal activation without cortical phosphenes. Electroencephalogr Clin Neurophysiol. 1996;99:473478.CrossRefGoogle ScholarPubMed
Floel, A, Knecht, S, Lohmann, H, et al. Language and spatial attention can lateralize to the same hemisphere in healthy humans. Neurology. 2001;57(6):10181024.Google Scholar
Dorst, J, Haag, A, Knake, S, et al. Functional transcranial Doppler sonography and a spatial orientation paradigm identify the non-dominant hemisphere. Brain Cogn. 2008;68:5358.Google Scholar
Klingelhöfer, J. Cerebral blood flow velocity in sleep. In: Bartels, E, Bartels, S, Poppert, H, eds. New Trends in Neurosonology and Cerebral Hemodynamics – an Update. Perspect Med. 2012;1:275284.Google Scholar
Misteli, M, Duschek, S, Richter, A, et al. Gender characteristics of cerebral hemodynamics during complex cognitive functioning. Brain Cogn. 2011;76:123130.Google Scholar
Bracco, L, Bessi, V, Alari, F, et al. Cerebral hemodynamic lateralization during memory tasks as assessed by functional transcranial Doppler (fTCD) sonography: effects of gender and healthy aging. Cortex. 2011;47:750758.Google Scholar
House, PM, Brückner, K.E, Lohmann, H. Presurgical functional transcranial Doppler sonography (fTCD) with intravenous echo enhancing agent SonoVue enables determination of language lateralization in epilepsy patients with poor temporal bone windows. Epilepsia. 2011;52(3):636639.Google Scholar
Bek, S, Kasikci, T, Genc, G, Demirkaya, S, et al. Lateralization of cerebral blood flow in juvenile absence seizures. J Neurol. 2010;257:11811187.Google Scholar
Nehlig, A, Vergnes, M, Waydelich, R, et al. Absence seizures induce a decrease in cerebral blood flow: human and animal data. J Cereb Blood Flow Metab. 1996;16:147155.Google Scholar
De Simone, R, Placidi, F, Diomedi, M, Marciani, MG, Silvestrini, M. Inter-hemispheric asymmetry of cerebral flow velocities during generalized spike-wave discharges. J Neurol. 2002;249:11911194.CrossRefGoogle ScholarPubMed
Owega, A, Klingelhöfer, J, Sabri, O, et al. Cerebral blood flow velocity in acute schizophrenic patients: a transcranial Doppler ultrasonography study. Stroke. 1998; 29:11491154.Google Scholar
Sabri, O, Owega, A, Schreckenberger, M, et al. A truly simultaneous combination of transcranial Doppler sonography and H215O PET adds fundamental new information on differences in cognitive activation between schizophrenics and healthy control subjects. J NucI Med. 2003;44:671681.Google Scholar
Owega, A, Sabri, O, Klingelhöfer, J, Albers, M. Cerebral blood flow velocity in untreated panic disorder patients: a transcranial Doppler ultrasonography study Biol Psychiatry. 2001;50(4):299304.Google Scholar
Deckel, AW, Duffy, JD. Vasomotor hyporeactivity in the anterior cerebral artery during motor activation in Huntington’s disease patients. Brain Res. 2000;872:258261.Google Scholar
Schuepbach, D. Boeker, H, Duschek, S, Hell, D. Rapid cerebral hemodynamic modulation during mental planning and movement execution: evidence of time-locked relationship with complex behaviour. Clin Neurophysiol. 2007;11:22542262.Google Scholar
Feldmann, D, Schuepbach, D, von Rickenbach, B, Theodoridou, A, Hell, D. Association between two distinct executive tasks in schizophrenia: a functional transcranial Doppler sonography study. BMC Psychiatry. 2006;6:25.Google Scholar
Duschek, S, Hellmann, N, Merzoug, K, Reyes del Paso, GA, Werner, NS. Cerebral blood flow dynamic during pain processing investigated by functional transcranial Doppler sonography. Pain Med. 2012;13:419426.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×