Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-27T23:36:15.308Z Has data issue: false hasContentIssue false

24 - Interplanetary dust

from IV - Solar system

Published online by Cambridge University Press:  05 May 2015

Ludmilla Kolokolova
Affiliation:
University of Maryland, College Park
James Hough
Affiliation:
University of Hertfordshire
Anny-Chantal Levasseur-Regourd
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berriman, G. B., Boggess, N. W., Hauser, M. G.et al. (1994). COBE DIRBE near-infrared polarimetry of the zodiacal light: Initial results. The Astrophysical Journal, 431, L63L66.CrossRefGoogle Scholar
Blackwell, D. E., Ingham, M. F., and Petford, A. D. (1967). The distribution of dust in interplanetary space. Monthly Notices of the Royal Astronomical Society, 136, 313328.CrossRefGoogle Scholar
Brorsen, T. (1854). Über eine neue Erscheinung am Zodiacallichtes. Geographie und Witterungskunde, 8, 156160.Google Scholar
Cassini, J. D. (1690). Découverte de la lumière céleste qui apparaît dans le zodiaque. Paris: Imprimerie Royale.Google Scholar
Clemett, S. J., Maechling, C. R., Zare, R. N.et al. (1993). Identification of complex aromatic molecules in individual interplanetary dust particles. Science, 262, 721725.CrossRefGoogle ScholarPubMed
CNES internal report (2013). Eyesat end of phase A internal review, EYESAT-PR-0-022-CNES.Google Scholar
Dermott, S. F., Grogan, K., Gustafson, B. A. S.et al. (1996). Sources of interplanetary dust. In Gustafson, B. A. S. and Hanner, M. S., eds., Physics, Chemistry, and Dynamics of Interplanetary Dust. ASP Conference Series, Vol. 104. San Francisco: Astronomical Society of the Pacific Press, pp. 143154.Google Scholar
Dermott, S. F., Grogan, K., Durda, D. D. et al. (2001). Orbital evolution of interplanetary dust. In Grün, E., Gustafson, B. A. S., Dermott, S. F., and Fechtig, H., eds., Interplanetary Dust. Berlin: Springer-Verlag, pp. 569639.CrossRefGoogle Scholar
Divine, N. (1993). Five populations of interplanetary meteoroids. Journal of Geophysical Research, 98(E9), 1702917048.CrossRefGoogle Scholar
Dolginov, A. Z. and Mitrofanov, I. G. (1975). Circular polarization of the zodiacal light and the structure of the interplanetary magnetic field. Soviet Astronomy Letters, 1–6, 246248.Google Scholar
Dorschner, J., Begemann, B., Henning, T.et al. (1995). Steps toward interstellar silicate mineralogy. II. Study of Mg-Fe-silicate glasses of variable composition. Astronomy and Astrophysics, 300, 503520.Google Scholar
Dufay, M. J. (1925). La polarisation de la lumière zodiacale. Comptes Rendus de l’Académie des sciences, 181, 399401.Google Scholar
Dufay, M. J. (1929). Spectre, couleur et polarisation de la lumière du ciel nocturne. Journal de Physique et Le Radium, 10, 219240.CrossRefGoogle Scholar
Dumont, R. (1965). Séparation des composantes atmosphérique, interplanétaire et stellaire du ciel nocturne à 5000 Å. Application à la photométrie de la lumière zodiacale et du gegenschein. Annales d’Astrophysique, 28, 265320.Google Scholar
Dumont, R. (1973). Phase function and polarization of interplanetary scatters from zodiacal light photopolarimetry. Planetary and Space Science, 21, 21492155.CrossRefGoogle Scholar
Dumont, R. and Levasseur-Regourd, A. C. (1978). Zodiacal light photopolarimetry. IV. Annual variations of brightness and the symmetry plane of the zodiacal cloud. Astronomy and Astrophysics, 64, 916.Google Scholar
Dumont, R. and Levasseur-Regourd, A. C. (1985). Zodiacal light gathered along the line of sight – Retrieval of the local scattering coefficient from photometric surveys of the ecliptic plane. Planetary and Space Science, 33, 19.CrossRefGoogle Scholar
Dumont, R. and Sanchez, F. (1975a). Zodiacal light photopolarimetry. I. Observations, reductions, disturbing phenomena, accuracy. Astronomy and Astrophysics, 38, 397403.Google Scholar
Dumont, R. and Sanchez, F. (1975b). Zodiacal light photopolarimetry. II. Gradients along the ecliptic and the phase functions of interplanetary matter. Astronomy and Astrophysics, 38, 405412.Google Scholar
Fechtig, H., Leinert, C., and Grün, E. (1981). Interplanetary dust and zodiacal light. In Landolt-Börnstein New Series VI/2A, pp. 228243.Google Scholar
Fechtig, H., Leinert, C., and Berg, O. E. (2001). Historical perspectives. In Grün, E., Gustafson, B. A. S., Dermott, S. F., and Fechtig, H., eds., Interplanetary Dust. Berlin: Springer-Verlag, pp. 156.Google Scholar
Giese, R. H. (1963). Light scattering by small particles and models of interplanetary matter derived from the zodiacal light. Space Science Reviews, 1, 589611.CrossRefGoogle Scholar
Giese, R. H. (1973). Optical properties of single-component zodiacal light models. Planetary and Space Science, 33, 19.Google Scholar
Giese, R. H., Weiss, K., Zerull, R. H., and Ono, T. (1978). Large fluffy particle – A possible explanation of the optical properties of interplanetary dust. Astronomy and Astrophysics, 65, 265272.Google Scholar
Graham, J. R., Kalas, P. G., and Matthews, B. C. (2007). The signature of primordial grain growth in the polarized light of the AU Microscopii debris disk. The Astrophysical Journal, 654, 595605.CrossRefGoogle Scholar
Greenberg, J. M. and Hage, J. I. (1990). From interstellar dust to comets – A unification of observational constraints. The Astrophysical Journal, 361, 260274.CrossRefGoogle Scholar
Grün, E., Zook, H. A., Fechtig, H. and Giese, R. H. (1985). Collisional balance of the meteoritic complex. Icarus, 62(2), 244272.CrossRefGoogle Scholar
Grün, E., Zook, H. A., and Baguhl, M. (1993). Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature, 362, 428430.CrossRefGoogle Scholar
Grün, E., Baguhl, M., Svedhem, H., and Zook, H. A. (2001). In situ measurements of cosmic dust. In Grün, E., Gustafson, B. A. S., Dermott, S. F., and Fechtig, H., eds., Interplanetary Dust. Berlin: Springer-Verlag, pp. 295346.CrossRefGoogle Scholar
Guirado, D., Hovenier, J. W., and Moreno, F. (2007). Circular polarization of light scattered by asymmetrical particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 6373.CrossRefGoogle Scholar
Hadamcik, E., Renard, J. B., Levasseur-Regourd, A. C., and Lasue, J. (2006). Light scattering by fluffy particles with the PROGRA2 experiment: Mixtures of materials. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 143156.CrossRefGoogle Scholar
Hadamcik, E., Renard, J. B., Szopa, C.et al. (2011). Light scattering by organic materials in dust clouds when approaching the Sun: Laboratory simulations. EPSC-DPS, 20111827.Google Scholar
Hahn, J. M., Zook, H. A., Cooper, B., and Sunkara, B. (2002). Clementine observations of the zodiacal light and the dust content of the inner solar system. Icarus, 158, 360378.CrossRefGoogle Scholar
Hanner, M. S. and Bradley, J. P. (2004). Composition and mineralogy of cometary dust. In: Festou, M., Keller, H. U., and Weaver, H. A., eds., Comets II. Tucson: University of Arizona Press, pp. 555564.CrossRefGoogle Scholar
Hanner, M. S., Sparrow, J. G., Weinberg, J. L., and Beeson, D. E. (1976). Pioneer 10 observations of zodiacal light brightness near the ecliptic: Changes with heliocentric distance. In Elsässer, H., and Fechtig, H., eds., Interplanetary Dust and Zodiacal Light. Lecture notes in Physics 48. Berlin: Springer-Verlag, pp. 2935.CrossRefGoogle Scholar
Hanner, M. S., Giese, R. H., Weiss, K., and Zerull, R. (1981). On the definition of albedo and application to irregular particles. Astronomy and Astrophysics, 104, 4246.Google Scholar
Haudebourg, V., Cabane, M., and Levasseur-Regourd, A. C. (1999). Theoretical polarimetric responses of fractal aggregates, in relation with experimental studies of dust in the solar system. Physics and Chemistry of the Earth C, 24, 603608.Google Scholar
Hoang, T. and Lazarian, A. (2014). Grain alignment by radiative torques in special conditions and implications. Monthly Notices of the Royal Astronomical Society, 438, 680703.CrossRefGoogle Scholar
Hörz, F., Bastien, R., Borg, J.et al. (2006). Impact features on Stardust: Implications for Comet 81P/Wild 2 Dust. Science, 314, 17161719.CrossRefGoogle ScholarPubMed
Ishiguro, M., Yang, H., Usui, F.et al. (2013). High-resolution imaging of the gegenschein and the geometric albedo of interplanetary dust. The Astrophysical Journal, 767(75), 13 pp.CrossRefGoogle Scholar
Isobe, S., Hirayama, T., Baba, N., and Miura, N. (1985). Optical polarization observations of circumsolar dust during the 1983 solar eclipse. Nature, 318, 644646.CrossRefGoogle Scholar
Isobe, S., Hirayama, T., Baba, N., and Miura, N. (1987). Optical coronal polarization and solar dust ring. Publications of the Astronomical Society of Japan, 39, 667677.Google Scholar
Jenniskens, P. (1993). Optical constants of organic refractory residue. Astronomy and Astrophysics, 274, 653661.Google Scholar
Jenniskens, P. (2006). Meteor Showers and Their Parent Comets. Cambridge University Press.CrossRefGoogle Scholar
Jessberger, E. K., Stephan, T., Rost, D.et al. (2001). Properties of interplanetary dust: Information from collected samples. In Grün, E., Gustafson, B. A. S., Dermott, S. F., and Fechtig, H., eds., Interplanetary Dust. Berlin: Springer-Verlag, pp. 253294.CrossRefGoogle Scholar
Kasuga, T., Yamamoto, T., Kimura, H., and Watanabe, J. (2006). Thermal desorption of Na in meteoroids: Dependence on perihelion distance of meteor showers. Astronomy and Astrophysics, 453, L17L20.CrossRefGoogle Scholar
Kimura, H. (2001). Light-scattering properties of fractal aggregates: Numerical calculations by a superposition technique and the discrete-dipole approximation. Journal of Quantitative Spectroscopy and Radiative Transfer, 70, 581594.CrossRefGoogle Scholar
Kimura, H., Kolokolova, L., and Mann, I. (2003). Optical properties of cometary dust. Constraints from numerical studies on light scattering by aggregate particles. Astronomy and Astrophysics, 407, L5L8.CrossRefGoogle Scholar
Kimura, H., Kolokolova, L., and Mann, I. (2006). Light scattering by cometary dust numerically simulated with aggregate particles consisting of identical spheres. Astronomy and Astrophysics, 449, 12431254.CrossRefGoogle Scholar
Kissel, J., Sagdeev, R. Z., Bertaux, J. L.et al. (1986). Composition of comet Halley dust particles from Vega observations. Nature, 321, 280282.CrossRefGoogle Scholar
Kolokolova, L. and Kimura, H. (2010). Effects of electromagnetic interaction in the polarization of light scattered by cometary and other types of cosmic dust. Astronomy and Astrophysics, 513, A40.CrossRefGoogle Scholar
Kwon, S. M., Hong, S. S., and Weinberg, J. L. (2004). An observational model of the zodiacal light brightness distribution. New Astronomy, 10, 91107.CrossRefGoogle Scholar
Lasue, J. and Levasseur-Regourd, A. C. (2006). Porous irregular aggregates of sub-micron sized grains to reproduce cometary dust light scattering observations. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 220236.CrossRefGoogle Scholar
Lasue, J., Levasseur-Regourd, A. C., Fray, N., and Cottin, H. (2007). Inferring the interplanetary dust properties from remote observations and simulations. Astronomy and Astrophysics, 473, 641649.CrossRefGoogle Scholar
Lazarian, A. (2007). Tracing magnetic fields with aligned grains. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 225256.CrossRefGoogle Scholar
Lazarian, A. and Hoang, T. (2007). Radiative torques: Analytical model and basic properties. Monthly Notices of the Royal Astronomical Society, 378, 910946.CrossRefGoogle Scholar
Leinert, C. (1975). Zodiacal light – A measure of the interplanetary environment. Space Science Reviews, 18, 281335.CrossRefGoogle Scholar
Leinert, C. and Grün, E. (1990). Interplanetary dust. In Schwenn, R., and Marsch, E., eds., Physics of the Inner Heliosphere I. Berlin: Springer-Verlag, pp. 207275.CrossRefGoogle Scholar
Leinert, C. and Moster, B. (2007). Evidence for dust accumulation just outside the orbit of Venus. Astronomy and Astrophysics, 472, 335340.CrossRefGoogle Scholar
Leinert, C., Hanner, M. S., Richter, I., and Pitz, E. (1980). The plane of symmetry of interplanetary dust in the inner solar system. Astronomy and Astrophysics, 82, 328336.Google Scholar
Leinert, C., Richter, I., Pitz, E., and Planck, B. (1981). The zodiacal light from 1 to 0.3 au as observed by the Helios space probes. Astronomy and Astrophysics, 103, 177188.Google Scholar
Leinert, C., Richter, I., Pitz, E., and Hanner, M. S. (1982). Helios zodiacal light measurements, a tabulated summary. Astronomy and Astrophysics, 110, 355357.Google Scholar
Leinert, C., Röser, S., and Buitrago, J. (1983). How to maintain the spatial distribution of interplanetary dust. Astronomy and Astrophysics, 118, 345357.Google Scholar
Leinert, C., Bowyer, S., Haikala, L. K.et al. (1998). The 1997 reference of diffuse night sky brightness. Astronomy and Astrophysics Supplement, 127, 199.CrossRefGoogle Scholar
Levasseur, A. C. and Blamont, J. (1973). Satellite observations of intensity variations of the zodiacal light. Nature, 246, 2628.CrossRefGoogle Scholar
Levasseur-Regourd, A. C. (1994). Natural background radiation, the light of the night sky. In McNally, D., ed., The Vanishing Universe. Cambridge University Press, pp. 6468.Google Scholar
Levasseur-Regourd, A. C. (1995). Physical properties of dust grains deduced by optical probing techniques. Advances in Space Research, 17, 117122.CrossRefGoogle Scholar
Levasseur-Regourd, A. C. (1996). Optical and thermal properties of zodiacal dust. In Gustafson, B. A. S. and Hanner, M. S., eds., Physics, Chemistry, and Dynamics of Interplanetary Dust. ASP Conference Series, Vol. 104. San Francisco: Astronomical Society of the Pacific Press, pp. 301308.Google Scholar
Levasseur-Regourd, A. C. (1998). Zodiacal light, certitudes and questions. Earth Planets Space, 50, 607610.CrossRefGoogle Scholar
Levasseur-Regourd, A. C. and Dumont, R. (1980). Absolute photometry of zodiacal light. Astronomy and Astrophysics, 84, 277279.Google Scholar
Levasseur-Regourd, A. C., Dumont, R., and Renard, J. B. (1990). A comparison between polarimetric properties of cometary dust and interplanetary dust particles. Icarus, 86, 264272.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Renard, J. B., and Dumont, R. (1991). Dust optical properties: A comparison between cometary and interplanetary grains. Advances in Space Research, 11, 175182.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Cabane, M., Worms, J. C., and Haudebourg, V. (1997). Physical properties of dust in the solar system: Relevance of a computational approach and of measurements under microgravity conditions. Advances in Space Research, 20, 15851594.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Cabane, M., and Haudebourg, V. (1999). Observational evidence for the scattering properties of interplanetary and cometary dust clouds: An update. Journal of Quantitative Spectroscopy and Radiative Transfer, 63, 631641.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Mann, I., Dumont, R., and Hanner, M. S. (2001). Optical and thermal properties of interplanetary dust. In Grün, E., Gustafson, B. A. S., Dermott, S. F., and Fechtig, H., eds., Interplanetary Dust. Berlin: Springer-Verlag, pp. 5794.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Mukai, T., Lasue, J., and Okada, Y. (2007). Physical properties of cometary and interplanetary dust. Planetary and Space Science, 55, 10101020.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Lasue, J., Gaboriaud, A.et al. (2014). Eye-Sat, a triple Cubesat to monitor the zodiacal light intensity and polarization. European Planetary Science Congress, 9, EPSC2014-587-2.Google Scholar
Li, A. and Greenberg, J. M. (1997). A unified model of interstellar dust. Astronomy and Astrophysics, 323, 566584.Google Scholar
Liou, J. C., Dermott, S. F., and Xu, Y. L. (1995). The contribution of cometary dust to the zodiacal cloud. Planetary and Space Science, 43(6), 717722.CrossRefGoogle Scholar
Lumme, K. (2000). Scattering properties of interplanetary dust particles. In Mishchenko, M. I., Hovenier, J. W., and Travis, L. D., eds., Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications. San Diego: Academic Press, pp. 555583.CrossRefGoogle Scholar
Lumme, K., Rahola, J., and Hovenier, J. W. (1997). Light scattering by dense clusters of spheres. Icarus, 126, 455469.CrossRefGoogle Scholar
Mann, I. (1993). The influence of circumsolar dust on the whitelight corona – study of the visual F-corona brightness. Planetary and Space Science, 41, 301305.CrossRefGoogle Scholar
Mann, I. (1996). Interstellar grains in the solar system: Requirements for an analysis. Space Science Reviews, 78, 259264.CrossRefGoogle Scholar
Mann, I. (1998). Zodiacal cloud complexes. Earth Planets Space, 50, 465471.CrossRefGoogle Scholar
Mann, I., Okamoto, H., Mukai, T.et al. (1994). Fractal aggregates analogues for near solar dust properties. Astronomy and Astrophysics, 291, 10111018.Google Scholar
Mann, I., Kimura, H., Biesecker, D. A.et al. (2004). Dust near the Sun. Space Science Reviews, 110, 269305.CrossRefGoogle Scholar
Masiero, J. R., Mainzer, A. K., Grav, T.et al. (2012). A revised asteroid polarization-albedo relationship using WISE/NEOWISE data. Annales d’Astrophysique, 749, 104, 6 pp.Google Scholar
Matrajt, G., Ito, M., Wirick, S.et al. (2008). Carbon investigation of two Stardust particles: A TEM, NanoSIMS, and XANES study. Meteoritics and Planetary Science, 43, 315334.CrossRefGoogle Scholar
Mishchenko, M. I., Travis, L. D., and Lacis, A. A. (2002). Scattering, Absorption and Emission of Light by Small Particles. Cambridge University Press.Google Scholar
Muñoz, O., Volten, H., de Haan, J. F.et al. (2000). Experimental determination of scattering matrices of olivine and Allende meteorite particles. Astronomy and Astrophysics, 360, 777788.Google Scholar
Mukai, T. (1996). Sublimation of interplanetary dust. In Gustafson, B. A. S. and Hanner, M. S., eds., Physics, Chemistry, and Dynamics of Interplanetary Dust. ASP Conference Series, Vol. 104. San Francisco: Astronomical Society of the Pacific Press, pp. 453461.Google Scholar
Mukai, T., Fujino, M., Ishiguro, M.et al. (2003). The influence of the brightness of the asteroidal dust bands on the gegenschein. Icarus, 162, 337343.CrossRefGoogle Scholar
Nagdimunov, L., Kolokolova, L., and Sparks, W. (2013). Polarimetric technique to study (pre)biological organics in cosmic dust and planetary aerosols. Earth, Planets and Space, 65, 11671173.CrossRefGoogle Scholar
Nakamura, R. and Okamoto, H. (1999). Optical properties of fluffy aggregates as analogue of interplanetary dust particles. Advances in Space Research, 23, 12091212.CrossRefGoogle Scholar
Nesvorny, D., Jenniskens, P., Levison, H. F.et al. (2010). Cometary origin of the zodiacal cloud and carbonaceous micrometeorites: Implications for hot debris disks. The Astrophysical Journal, 713, 816836.CrossRefGoogle Scholar
Pitz, E., Leinert, C., Schulz, A., and Link, H. (1979). Colour and polarization of the zodiacal light from the ultraviolet to the near infrared. Astronomy and Astrophysics, 74, 1520.Google Scholar
Planck Collaboration (2013). Planck 2013 results. XIV. Zodiacal emission. Astronomy and Astrophysics, 571, id. A14, 25 pp.Google Scholar
Reach, W. T., Morris, P., Boulanger, F., and Okumura, K. (2003). The mid-infrared spectrum of the zodiacal and exozodiacal light. Icarus, 164, 384403.CrossRefGoogle Scholar
Reach, W. T., Kelley, M. S., and Sykes, M. V. (2007). A survey of debris trails from short-period comets. Icarus, 191, 298322.CrossRefGoogle Scholar
Renard, J. B., Levasseur-Regourd, A. C., and Dumont, R. (1995). Properties of interplanetary dust from infrared and optical observations. II Brightness, polarization, temperature, albedo and their dependence on the elevation above the ecliptic. Astronomy and Astrophysics, 304, 602608.Google Scholar
Rosenbush, V., Kolokolova, L., Lazarian, A.et al. (2007). Circular polarization in comets: Observations of Comet C/1999 S4 (LINEAR) and tentative interpretation. Icarus, 186, 317330.CrossRefGoogle Scholar
Rowan-Robinson, M. and May, B. (2013). An improved model for the infrared emission from the zodiacal dust cloud: Cometary, asteroidal and interstellar dust. Monthly Notices of the Royal Astronomical Society, 429, 28942902.CrossRefGoogle Scholar
Sandford, S. A., Aléon, J., Alexander, C. M. O’D.et al. (2006). Organics captured from comet 81P/Wild 2 by the Stardust spacecraft. Science, 314, 17201724.CrossRefGoogle ScholarPubMed
Satoh, T., Nakamura, M., Uemizu, K.et al. (2011). In-flight observations performed by Akatsuki/IR2. EPSC-DPS, 2011-965-1.Google Scholar
Schiffer, R. (1985). The effect of surface roughness on the spectral reflectance of dielectric particles. Applications to the zodiacal light. Astronomy and Astrophysics, 148, 347358.Google Scholar
Schuerman, D. W. (1979). Inverting the zodiacal brightness integral. Planetary and Space Science, 27, 551556.CrossRefGoogle Scholar
Skomorovsky, V. I., Trifonov, V. D., Mashnich, G. P.et al. (2012). White-light observations and polarimetric analysis of the solar corona during the eclipse of 1 August 2008. Solar Physics, 277, 267281.CrossRefGoogle Scholar
Staude, J. and Schmidt, T. (1972). Circular polarization measurements of the zodiacal light. Astronomy and Astrophysics, 20, 163164.Google Scholar
Tamura, M., Fukagawa, M., Kimura, H.et al. (2006). First two-micron imaging polarimetry of β Pictoris. The Astrophysical Journal 641, 11721177.CrossRefGoogle Scholar
Tanabe, T., Tsumuraya, F., Baba, N.et al. (1992). Optical polarization observations of the solar corona during the total solar eclipse of 1991 July 11. Publications of the Astronomical Society of Japan, 44, L221L226.Google Scholar
Umov, N. (1905). Chromatische depolarisation durch Lichtzerstreuung. Physik, 6, 674676.Google Scholar
Van de Hulst, H. C. (1957). Light Scattering by Small Particles. New York: John Wiley and Sons.CrossRefGoogle Scholar
Weinberg, J. L. (1964). The zodiacal light at 5300 Å. Annales d’Astrophysique, 27, 718738.Google Scholar
Weinberg, J. L (1974). Polarization of the zodiacal light. In Gehrels, T., ed., Planets, Stars, and Nebulae: Studied with Photopolarimetry. Tucson AZ: University of Arizona Press, p. 781.Google Scholar
Weinberg, J. L (1985). Zodiacal light and interplanetary dust. In Giese, R. H. and Lamy, P., eds., Properties and Interactions of Interplanetary Dust. Dordrecht: D. Reidel, pp. 16.Google Scholar
Weinberg, J. L. and Hahn, R. C. (1980). Brightness and polarization of the zodiacal light: Results of fixed position observations from Skylab. In Halliday, I. and McIntosh, B. A., eds., Solid Particles in the Solar System. Dordrecht: Reidel Publishing, pp. 1922.CrossRefGoogle Scholar
Weinberg, J. L. and Sparrow, J. G. (1978). Zodiacal light as an indicator of interplanetary dust. In McDonnell, J. A. M., ed., Cosmic Dust. Chichester: John Wiley and Sons, pp. 75122.Google Scholar
Weiss-Wrana, K. (1983). Optical properties of interplanetary dust: Comparison with light scattering by larger meteoritic and terrestrial grains. Astronomy and Astrophysics, 126, 240250.Google Scholar
Whipple, F. L. (1951). A comet model. II. Physical relations for comets and meteors. The Astrophysical Journal, 113, 464474.CrossRefGoogle Scholar
Wolstencroft, R. D. and Kemp, J. C. (1972). Circular polarization of the nightsky radiation. The Astrophysical Journal, 177, L137L140.CrossRefGoogle Scholar
Wolstencroft, R. D. and Rose, L. J. (1967). Observations of the zodiacal light from a sounding rocket. The Astrophysical Journal, 147, 271292.CrossRefGoogle Scholar
Worms, J. C., Renard, J. B., Hadamcik, E.et al. (2000). Light scattering by dust particles with the PROGRA2 instrument, comparative measurements between clouds under microgravity and layers on the ground. Planetary and Space Science, 48, 493505.CrossRefGoogle Scholar
Wright, A. W. (1874). On the polarization of the zodiacal light. American Journal of Science and Arts, VII, 451459.CrossRefGoogle Scholar
Yang, H., Ishiguro, M., Usui, F., and Ueno, M. (2012). High-resolution map of zodiacal dust bands by WIZARD measurements. Asteroids, Comets, Meteors, 6277.Google Scholar
Zolensky, M. E., Zega, T. J., Yano, H.et al. (2006). Mineralogy and petrology of Comet 81P/Wild 2 nucleus samples. Science, 314, 17351739.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×