Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T04:31:30.886Z Has data issue: false hasContentIssue false

IV - Solar system

Published online by Cambridge University Press:  05 May 2015

Ludmilla Kolokolova
Affiliation:
University of Maryland, College Park
James Hough
Affiliation:
University of Hertfordshire
Anny-Chantal Levasseur-Regourd
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Anusha, L. S., Nagendra, K. N., Bianda, M.et al. (2011). Analysis of the forward-scattering Hanle effect in the Ca I 4227 Å Line. The Astrophysical Journal, 737(2), 95.CrossRefGoogle Scholar
Auer, L. H. and Heasley, J. N. (1978). The origin of broad-band circular polarization in sunspots. Astronomy and Astrophysics, 64, 6771.Google Scholar
Belluzzi, L. (2009). On the physical origin of the Second Solar Spectrum of the Sc II line at 4247 Å. Astronomy and Astrophysics, 508, 933940.CrossRefGoogle Scholar
Belluzzi, L., Trujillo Bueno, J., and Landi Degl’Innocenti, E. (2007). The magnetic sensitivity of the Ba II D1 and D2 lines of the Fraunhofer spectrum. The Astrophysical Journal, 666(1), 588.CrossRefGoogle Scholar
Belluzzi, L., Landi Degl’Innocenti, E., and Trujillo Bueno, J. (2009). The physical origin and the diagnostic potential of the scattering polarization in the Li I resonance doublet at 6708 Å. The Astrophysical Journal, 705(1), 218.CrossRefGoogle Scholar
Berdyugina, S. V., Nagendra, K. N., and Ramelli, R., eds. (2009). Solar Polarization 5: In Honor of Jan Olof Stenflo. Astronomical Society of the Pacific Conference Series, Vol. 405. San Francisco CA: Astronomical Society of the Pacific.Google Scholar
Bianda, M., Ramelli, R., Anusha, L. S.et al. (2011). Observations of the forward scattering Hanle effect in the Cal 4227 Å line. Astronomy and Astrophysics, 530, L13 (4pp).CrossRefGoogle Scholar
Bommier, V. (1980). Quantum theory of the Hanle effect. II – Effect of level-crossings and anti-level-crossings on the polarization of the D3 helium line of solar prominences. Astronomy and Astrophysics, 87, 109120.Google Scholar
Bommier, V. (1997a). Master equation theory applied to the redistribution of polarized radiation, in the weak radiation field limit. I – Zero magnetic field case. Astronomy and Astrophysics, 328, 706725.Google Scholar
Bommier, V. (1997b). Master equation theory applied to the redistribution of polarized radiation, in the weak radiation field limit. II – Arbitrary magnetic field case. Astronomy and Astrophysics, 328, 726751.Google Scholar
Bommier, V. and Sahal-Bréchot, S. (1978). Quantum theory of the Hanle effect – Calculations of the Stokes parameters of the D3 helium line for quiescent prominences. Astronomy and Astrophysics, 69, 5764.Google Scholar
Casini, R. and Manso Sainz, R. (2005). Line formation theory for the multiterm atom with hyperfine structure in a magnetic field. The Astrophysical Journal, 624(2), 1025.CrossRefGoogle Scholar
Casini, R., Landi Degl’Innocenti, E., Landolfi, M., and Trujillo Bueno, J. (2002). On the atomic polarization of the ground level of Na I. The Astrophysical Journal, 573(2), 864.CrossRefGoogle Scholar
del Toro Iniesta, J. C. (2003). Introduction to Spectropolarimetry. Cambridge University Press.CrossRefGoogle Scholar
Golub, L., De Moortel, I., and Shimizu, T., eds. (2012). Fifth Hinode Science Meeting. Astronomical Society of the Pacific Conference Series, Vol. 456. San Francisco: Astronomical Society of the Pacific.Google Scholar
Hale, G. E. (1908). On the probable existence of a magnetic field in sun-spots. The Astrophysical Journal, 28, 315343.CrossRefGoogle Scholar
Hanle, W. (1924). Über magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz. Zeitschrift für Physik, 30(1), 93105.CrossRefGoogle Scholar
Holzreuter, R. and Stenflo, J. (2007). Scattering polarization in strong chromospheric lines. Astronomy and Astrophysics, 472(3), 919928.CrossRefGoogle Scholar
Illing, R. M. E., Landman, D. A., and Mickey, D. L. (1975). Broad-band circular polarization of sunspots – Spectral dependence and theory. Astronomy and Astrophysics, 41, 183185.Google Scholar
Ivanov, V. V. (1991). Analytical methods of line formation theory: Are they still alive?. In Crivellari, L., Hubeny, I., and Hummer, D. G., eds., Stellar Atmospheres: Beyond Classical Models. Dordrecht: Springer, pp. 81104.CrossRefGoogle Scholar
Kuhn, J. R., Harrington, D. M., Lin, H.et al., eds. (2011). Solar Polarization 6. Astronomical Society of the Pacific Conference Series, Vol. 437. San Francisco: Astronomical Society of the Pacific.Google Scholar
Landi Degl’innocenti, E. (1982). The determination of vector magnetic fields in prominences from the observations of the Stokes profiles in the D3 line of helium. Solar Physics, 79(2), 291322.CrossRefGoogle Scholar
Landi Degl’Innocenti, E. (1983). Polarization in spectral lines. I – A unifying theoretical approach. Solar Physics, 85(1), 331.CrossRefGoogle Scholar
Landi Degl’Innocenti, E. (1984). Polarization in spectral lines. III – Resonance polarization in the non-magnetic, collisionless regime. Solar Physics, 91(1), 126.Google Scholar
Landi Degl’Innocenti, E. (1998). Evidence against turbulent and canopy-like magnetic fields in the solar chromosphere. Nature, 392(6673), 256258.CrossRefGoogle Scholar
Landi Degl’Innocenti, E. and Landolfi, M. (2004). Polarization in Spectral Lines. Astrophysics and Space Science Library, Vol. 307. Dordrecht: Kluwer.CrossRefGoogle Scholar
Landolfi, M. and Landi Degl’Innocenti, E. (1982). Magneto-optical effects and the determination of vector magnetic fields from Stokes profiles. Solar Physics, 78, 355.CrossRefGoogle Scholar
Leroy, J. L., Ratier, G., and Bommier, V. (1977). The polarization of the D3 emission line in prominences. Astronomy and Astrophysics, 54, 811816.Google Scholar
Lites, B. W., Kubo, M., Socas-Navarro, H.et al. (2008). The horizontal magnetic flux of the quiet-Sun internetwork as observed with the Hinode spectro-polarimeter. The Astrophysical Journal, 672(2), 1237.CrossRefGoogle Scholar
Manso Sainz, R. and Trujillo Bueno, J. (2003). Zero-field dichroism in the solar chromosphere. Physical Review Letters, 91(11), 111102.CrossRefGoogle Scholar
Manso Sainz, R. and Trujillo Bueno, J. (2007). Scattering polarization of the Ca II infrared triplet as diagnostic of the quiet solar chromosphere. In Heinzel, P., Dorotovic, I., and Rutten, R. J., eds., The Physics of Chromospheric Plasmas. Astronomical Society of the Pacific Conference Series, Vol. 368. San Francisco: Astronomical Society of the Pacific, p. 155.Google Scholar
Narukage, N., Tsuneta, S., Bando, T.et al. (2011). Overview of chromospheric Lyman-alpha spectropolarimeter (CLASP). In SPIE Optical Engineering + Applications. Bellingham WA: International Society for Optics and Photonics, p. 81480H.Google Scholar
Omont, A., Smith, E. W., and Cooper, J. (1973). Redistribution of resonance radiation. II – The effect of magnetic fields. The Astrophysical Journal, 182, 283300.CrossRefGoogle Scholar
Povel, H. P. (2001). Ground-based instrumentation for solar magnetic field studies, with special emphasis on the Zurich Imaging Polarimeters ZIMPOL-I and II. In Mathys, G., Solanki, S. K., and Wickramasinghe, D. T., eds., Magnetic Fields Across the Hertzsprung-Russell Diagram. Astronomical Society of the Pacific Conference Series, Vol. 248. San Francisco: Astronomical Society of the Pacific, p. 543.Google Scholar
Rachkovsky, D. N. (1962a). Magneto-optical effects in spectral lines of sunspots. Crimean Astrophysical Observatory, 27, 148161.Google Scholar
Rachkovsky, D. N. (1962b). Magnetic rotation effects in spectral lines. Crimean Astrophysical Observatory, 28, 259270.Google Scholar
Sahal-Bréchot, S., Bommier, V., and Leroy, J. L. (1977). The Hanle effect and the determination of magnetic fields in solar prominences. Astronomy and Astrophysics, 59, 223231.Google Scholar
Solanki, S. K. (1993). Small-scale solar magnetic fields: An overview. Space Science Reviews, 63(1–2), 1188.CrossRefGoogle Scholar
Stenflo, J. O. (1973). Magnetic-field structure of the photospheric network. Solar Physics, 32(1), 4163.CrossRefGoogle Scholar
Stenflo, J. O. (1980). Resonance-line polarization. V. Quantum-mechanical interference between states of different total angular momentum. Astronomy and Astrophysics, 84, 6874.Google Scholar
Stenflo, J. O. (1982). The Hanle effect and the diagnostics of turbulent magnetic fields in the solar atmosphere. Solar Physics, 80(2), 209226.CrossRefGoogle Scholar
Stenflo, J. O. (1987). Observational constraints on a “hidden,” turbulent magnetic field of the sun. Solar Physics, 114(1), 119.Google Scholar
Stenflo, J. O. (1994). Solar Magnetic Fields: Polarized Radiation Diagnostics. Astrophysics and Space Science Library, Vol. 189. Dordrecht: Kluwer.CrossRefGoogle Scholar
Stenflo, J. O. (1997). Quantum interferences, hyperfine structure, and Raman scattering on the Sun. Astronomy and Astrophysics, 324, 344356.Google Scholar
Stenflo, J. O. (1998). Hanle-Zeeman scattering matrix. Astronomy and Astrophysics, 338, 301310.Google Scholar
Stenflo, J. O. (2003). Scattering polarization in magnetic fields: Anomalies, surprises and enigmas. In Trujillo Bueno, J. and Sanchez Almeida, J., eds., Solar Polarization 3. Astronomical Society of the Pacific Conference Series, Vol. 307. San Francisco: Astronomical Society of the Pacific, pp. 385398.Google Scholar
Stenflo, J. O. (2005). Polarization of the Sun’s continuous spectrum. Astronomy and Astrophysics, 429(2), 713730.CrossRefGoogle Scholar
Stenflo, J. O. (2006). Second Solar Spectrum: A brief overview. In Casini, R. and Lites, B. W., eds., Solar Polarization 4. Astronomical Society of the Pacific Conference Series, Vol. 358. San Francisco: Astronomical Society of the Pacific, pp. 215224.Google Scholar
Stenflo, J. O. (2009). The Sun as a Rosetta stone for polarization physics. In Berdyugina, S., Nagendra, K. N., and Ramelli, R., eds., Solar Polarization 5: In Honor of Jan Olof Stenflo. Astronomical Society of the Pacific Conference Series, Vol. 405. San Francisco: Astronomical Society of the Pacific, pp. 316.Google Scholar
Stenflo, J. O. (2011). Unsolved problems in solar polarization. In Kuhn, J. R., Harrington, D. M., Lin, H.et al., eds., Solar Polarization 6. Astronomical Society of the Pacific Conference Series, Vol. 437. San Francisco: Astronomical Society of the Pacific, pp. 317.Google Scholar
Stenflo, J. O. (2012). Scaling laws for magnetic fields on the quiet Sun. Astronomy and Astrophysics, 541, A17 (12pp).CrossRefGoogle Scholar
Stenflo, J. O. (2013a). Horizontal or vertical magnetic fields on the quiet Sun. Angular distributions and their height variations. Astronomy and Astrophysics, 555, A132 (12pp).CrossRefGoogle Scholar
Stenflo, J. O. (2013b). Solar magnetic fields as revealed by Stokes polarimetry. The Astronomy and Astrophysics Review, 21(1), 158.CrossRefGoogle Scholar
Stenflo, J. O. and Keller, C. U. (1997). The Second Solar Spectrum. A new window for diagnostics of the Sun. Astronomy and Astrophysics, 321, 927934.Google Scholar
Stenflo, J. O., Dravins, D., Wihlborg, N.et al. (1980). Search for spectral line polarization in the solar vacuum ultraviolet. Solar Physics, 66(1), 1319.CrossRefGoogle Scholar
Stenflo, J. O., Twerenbold, D., and Harvey, J. W. (1983a). Coherent scattering in the solar spectrum – Survey of linear polarization in the range 3165–4230 Å. Astronomy and Astrophysics Supplement Series, 52, 161180.Google Scholar
Stenflo, J. O., Twerenbold, D., Harvey, J. W., and Brault, J. W. (1983b). Coherent scattering in the solar spectrum – Survey of linear polarization in the range 4200–9950 Å. Astronomy and Astrophysics Supplement Series, 54(3), 505514.Google Scholar
Stenflo, J. O., Harvey, J. W., Brault, J. W., and Solanki, S. (1984). Diagnostics of solar magnetic fluxtubes using a Fourier transform spectrometer. Astronomy and Astrophysics, 131(2), 333346.Google Scholar
Stenflo, J. O., Keller, C. U., and Gandorfer, A. (2000). Anomalous polarization effects due to coherent scattering on the Sun. Astronomy and Astrophysics, 355, 789803.Google Scholar
Stepanov, V. E. (1958). The absorption coefficient of atoms in the case of reverse Zeeman effect for arbitrary directed magnetic fields. Crimean Astrophysical Observatory, 18, 136150.Google Scholar
Stepanov, V. E. and Severny, A. B. (1962). A photoelectric method for measurements of the magnitude and direction of the solar magnetic field. Crimean Astrophysical Observatory, 28, 166193.Google Scholar
Thalmann, C., Stenflo, J. O., Feller, A., and Cacciani, A. (2009). Magnetic field dependence of polarized scattering on potassium. In Berdyugina, S., Nagendra, K. N., and Ramelli, R., eds., Solar Polarization 5: In Honor of Jan Olof Stenflo. Astronomical Society of the Pacific Conference Series, Vol. 405. San Francisco: Astronomical Society of the Pacific, pp. 113118.Google Scholar
Trujillo Bueno, J. (2001). Atomic polarization and the Hanle effect. In Sigwarth, M., ed., Advanced Solar Polarimetry – Theory, Observation, and Instrumentation. Astronomical Society of the Pacific Conference Series, Vol. 236. San Francisco: Astronomical Society of the Pacific, pp. 161195.Google Scholar
Trujillo Bueno, J. T. and Landi Degl’Innocenti, E. (1997). Linear polarization due to lower level depopulation pumping in stellar atmospheres. The Astrophysical Journal Letters, 482(2), L183L186.CrossRefGoogle Scholar
Trujillo Bueno, J., Casini, R., Landolfi, M., and Landi Degl’Innocenti, E. (2002a). The physical origin of the scattering polarization of the Na I D lines in the presence of weak magnetic fields. The Astrophysical Journal Letters, 566(1), L53L57.CrossRefGoogle Scholar
Trujillo Bueno, J., Landi Degl’Innocenti, E., Collados, M., Merenda, L., and Manso Sainz, R. (2002b). Selective absorption processes as the origin of puzzling spectral line polarization from the Sun. Nature, 415(6870), 403406.CrossRefGoogle ScholarPubMed
Trujillo Bueno, J., Shchukina, N., and Asensio-Ramos, A. (2004). A substantial amount of hidden magnetic energy in the quiet Sun. Nature, 430(6997), 326329.CrossRefGoogle Scholar
Trujillo Bueno, J., Štěpán, J., and Casini, R. (2011). The Hanle effect of the hydrogen Lyα line for probing the magnetism of the solar transition region. The Astrophysical Journal Letters, 738(1), L11 (5pp).CrossRefGoogle Scholar
Trujillo Bueno, J., Štěpán, J., and Belluzzi, L. (2012). The Lyα lines of H I and He II: A differential Hanle effect for exploring the magnetism of the solar transition region. The Astrophysical Journal Letters, 746(1), L9 (5pp).CrossRefGoogle Scholar
Unno, W. (1956). Line formation of a normal Zeeman triplet. Publications of the Astronomical Society of Japan, 8, 108.Google Scholar
Watanabe, H., Narukage, N., Kubo, M.et al. (2011). Ly-alpha polarimeter design for CLASP rocket experiment. In SPIE Optical Engineering + Applications. Bellingham WA: International Society for Optics and Photonics, p. 81480T.Google Scholar

References

Ariste, A. L., Leblanc, F., Casini, R.et al. (2012). Resonance scattering polarization in the magnetosphere of Mercury. Icarus, 220, 11041111.CrossRefGoogle Scholar
Bohren, C. and Huffman, D. (1998). Absorption and Scattering of Light by Small Particles. New York: John Wiley & Sons.CrossRefGoogle Scholar
Cantor, B. A., Wolff, M. J., James, P. B., and Higgs, E. (1998). Regression of Martian north polar cap: 1990–1997 Hubble Space Telescope observations. Icarus, 136, 175191.CrossRefGoogle Scholar
Clancy, R. T., Wolff, M. J., and Christensen, P. R. (2003). Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude. Journal of Geophysical Research, 108, 5098.CrossRefGoogle Scholar
Coffeen, D. L. (1979). Polarization and scattering characteristics in the atmospheres of Earth, Venus, and Jupiter. Journal of the Optical Society of America, 69, 10511064.CrossRefGoogle Scholar
Coffeen, D. and Hansen, J. (1974). Polarization studies of planetary atmospheres. In Planets, Stars, and Nebular Studies with Photopolarimetry. Tucson: University of Arizona Press.Google Scholar
Dlugach, Z. and Petrova, E. (2003). Polarimetry of Mars in high-transparency periods: How reliable are the estimates of aerosol optical properties?Solar System Research, 37, 87100.CrossRefGoogle Scholar
Dollfus, A. and Auriere, M. (1974). Optical polarimetry of planet Mercury. Icarus, 23, 465482.CrossRefGoogle Scholar
Dollfus, A. and Focas, J. (1969). La planete Mars: La nature de sa surface et les proprietes de son atmosphere, d’apres la polarisation de sa lumiere. Observations. Astronomy and Astrophysics, 2, 6374.Google Scholar
Dollfus, A., Auriere, M., and Santer, R. (1979). Wavelength dependence of polarization. XXXVII. Regional observations of Venus. The Astronomical Journal, 84(9), 14191436.CrossRefGoogle Scholar
Dollfus, A., Deschaps, M., and Ksanfomality, L. (1983). The surface texture of the Martian soil from Soviet spacecraft Mars 5 photopolarimeter. Astronomy and Astrophysics, 123, 225237.Google Scholar
Dollfus, A., Bowell, E., and Ebisawa, S. (1984). The Martian dust storms of 1973: A polarimetric analysis. Astronomy and Astrophysics, 134, 343353.Google Scholar
Dollfus, A., Ebisawa, S., and Crussaire, D. (1996). Hoods, mists, frosts, and ice caps at the poles of Mars. Journal of Geophysical Research, 101(E4), 92079226.CrossRefGoogle Scholar
Ebisawa, S. and Dollfus, A. (1993). Dust in the Martian atmosphere: Polarimetric sensing. Astronomy and Astrophysics, 272, 671686.Google Scholar
Fox, G., Code, A., Anderson, C.et al. (1997). Solar system observations by the Wisconsin Ultraviolet Photopolarimeter experiment. I. The first ultraviolet linear spectropolarimetry of Mars. The Astronomical Journal, 113, 11521157.CrossRefGoogle Scholar
Gehrels, T., Gradie, J., Howes, M., and Vrba, F. (1979). Wavelength dependence of polarization. XXXIV. Observations of Venus. The Astronomical Journal, 84, 671682.CrossRefGoogle Scholar
Gehrels, T., Landau, R., and Coyne, G. V. (1987). Mercury: Wavelength and longitude dependence of polarization. Icarus, 71, 386396.CrossRefGoogle Scholar
Grinspoon, D., Polack, J., Sitton, B.et al. (1993). Probing Venus’s cloud structure with Galileo NIMS. Planetary and Space Science, 41(7), 515542.CrossRefGoogle Scholar
Hansen, J. E. and Arking, A. (1971). Clouds of Venus: Evidence for their nature. Science, 171, 669672.CrossRefGoogle ScholarPubMed
Hansen, J. E. and Hovenier, J. W. (1974). Interpretation of the polarization of Venus. Journal of the Atmospheric Sciences, 31, 11371160.2.0.CO;2>CrossRefGoogle Scholar
Hapke, B. (2012) Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press.CrossRefGoogle Scholar
James, P. B., Clancy, R. T., Lee, S. W.et al. (1994). Monitoring Mars with the Hubble Space Telescope: 1990–1991 observations. Icarus, 109, 79101.CrossRefGoogle Scholar
Kawabata, K. and Hansen, J. (1975). Interpretation of the variation of polarization over the disk of Venus. Journal of the Atmospheric Sciences, 32, 11331139.2.0.CO;2>CrossRefGoogle Scholar
Kawabata, K., Coffeen, D., Hansen, J.et al. (1980). Cloud and haze properties from Pioneer Venus polarimetry. Journal of Geophysical Research, 85(AI3), 81298140.CrossRefGoogle Scholar
Kaydash, V., Kreslavsky, M., Shkuratov, Yu. et al. (2006). Measurements of winds on Mars with Hubble Space Telescope images in 2003 opposition. Icarus, 185, 97101.CrossRefGoogle Scholar
Kemp, G., Henson, G., Steiner, C., and Powell, E. (1987). The optical polarization of the Sun measured at a sensitivity of parts in ten million. Nature, 326(6110), 270273.CrossRefGoogle Scholar
Knibbe, W., de Haan, J., Hovenier, J., and Travis, L. (1997). A biwavelength analysis of Pioneer Venus polarization observations. Journal of Geophysical Research, 102(E5), 1094510957.CrossRefGoogle Scholar
Können, G., Schoenmaker, A., and Tinbergen, J. (1993). A polarimetric search for ice crystals in the upper atmosphere of Venus. Icarus, 102, 6275.CrossRefGoogle Scholar
Korablev, O., Fedorova, A., Bertaux, J.-L.et al. (2012). SPICAV IR acousto-optic spectrometer experiment on Venus Express. Planetary and Space Science, 65, 3857.CrossRefGoogle Scholar
Ksanfomality, L., Harmon, J., Petrova, E.et al. (2007). Earth-based visible and near-IR imaging of Mercury. Space Science Reviews, 132, 351397.CrossRefGoogle Scholar
Laven, P. (2004). Simulation of rainbows, coronas and glories using Mie theory and the Debye series. Journal of Quantitative Spectroscopy and Radiative Transfer, 89, 257269.CrossRefGoogle Scholar
Lee, P., Ebisawa, S., and Dollfus, A. (1990). Crystal clouds in the Martian atmosphere. Astronomy and Astrophysics, 240, 520532.Google Scholar
Limaye, S. (1984). Morphology and movements of polarization features on Venus as seen in the Pioneer Orbiter Cloud Photopolarimeter data. Icarus, 57, 362385.CrossRefGoogle Scholar
Lupishko, D. and Kiselev, N. (2004). Disk-integrated polarimetry of Mercury in 2000–2002. In Videen, G., Yatskiv, Ya., and Mishchenko, M., eds., Photopolarimetry in Remote Sensing. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 385392.Google Scholar
Lyot, B. (1929). Recherches sur la polarisation de la lumière des planètes et de quelques substances terrestres. Annales de l’Observatoire de Paris, section de Meudon, 8, 1161.Google Scholar
Marov, M. Y., Lystsev, V. T., Lebedev, V. N., Lukashevich, N. L., and Shari, V. P. (1980). The structure and microphysical properties of the Venus clouds: Venera 9, 10, and 11 data. Icarus, 44, 608639.CrossRefGoogle Scholar
Mishchenko, M., Lacis, A., Carlson, B., and Travis, L. (1995). Nonsphericity of dust-like tropospheric aerosols: Implications for aerosol remote sensing and climate modeling. Geophysical Research Letters, 22, 10771080.CrossRefGoogle Scholar
Mishchenko, M., Dlugach, J., Liu, L.et al. (2009). Direct solutions of the Maxwell equations explain opposition phenomena observed for high-albedo solar system objects. The Astrophysical Journal Letters, 705, L118L122.CrossRefGoogle Scholar
Ovcharenko, A., Shkuratov, Y., Pinet, P., Cord, A., and Daydou, Y. (2002). Additional characterization of Martian regolith analogs used for spectral imaging by the facility of observatory Midi-Pyrenees. Microsymposium Vernadsky-Brown, 36, MS075.Google Scholar
Petrova, E. V. (1999). Mars aerosol optical thickness retrieved from measurements of the polarization inversion angle and the shape of dust particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 63, 667676.CrossRefGoogle Scholar
Petrova, E. V. and Tishkovets, V. P. (2011). Light scattering by morphologically complex objects and opposition effects (a review). Solar System Research, 45(4), 304322.CrossRefGoogle Scholar
Petrova, E., Shalygina, O., Markiewicz, W., and Almeida, M. (2013). VMC/VEX photometry at small phase angles: Glory and the properties of particles in the upper cloud layer of Venus. European Geosciences Union, General Assembly (EGU2013-7839).Google Scholar
Ragent, B. and Blamont, J. (1980). The structure of the clouds of Venus: Results of the Pioneer Venus nephelometer experiment. Journal of Geophysical Research, 85(A13), 80898105.CrossRefGoogle Scholar
Ragent, B., Esposito, L., Tomasko, M.et al. (1985). Particulate matter in the Venus atmosphere. Advances in Space Research, 5, 85115.CrossRefGoogle Scholar
Roggemann, M. C. and Welsh, B. M. (1996). Imaging Through Turbulence. Boca Raton: CRC Press.Google Scholar
Rossi, L., Montmessin, F., Marcq, M.et al. (2013). Study of Venus’ cloud layers by polarimetry with SPICAV/Vex. European Planetary Science Congress 2013, 8, EPSC2013–504.Google Scholar
Santer, R., Deschaps, M., Ksanfomality, L., and Dollfus, A. (1985). Photopolarimetric analysis of the Martian atmosphere by Soviet MARS-5 orbiter. 1. White clouds and dust veils. Astronomy and Astrophysics, 150, 217228.Google Scholar
Santer, R., Deschaps, M., Ksanfomality, L., and Dollfus, A. (1986). Photopolarimetric analysis of the Martian atmosphere by Soviet MARS-5 orbiter. 2. Limb and terminator measurements. Astronomy and Astrophysics, 158, 247258.Google Scholar
Sato, M., Travis, L. D., and Kawabata, K. (1996). Photopolarimetry analysis of the Venus atmosphere in polar regions. Icarus, 124, 569585.CrossRefGoogle Scholar
Shkuratov, Y. G. (1987). Negative polarization of sunlight scattered from celestial bodies: Interpretation of the wavelength dependence. Soviet Astronomy Letters, 13, 182183.Google Scholar
Shkuratov, Y. G. and Opanasenko, N. V. (1992). Polarimetric and photometric study of the Moon: Telescope observation and laboratory simulation. 2. The positive polarization. Icarus, 99, 468484.CrossRefGoogle Scholar
Shkuratov, Yu. and Zubko, E. (2008). Comment on “Modeling of opposition effects with ensembles of clusters: Interplay of various scattering mechanisms” by E. V. Petrova, V. P. Tishkovets, K. Jockers, 2007 [Icarus, 188, 233–245]. Icarus, 194, 850852.CrossRefGoogle Scholar
Shkuratov, Y., Ovcharenko, A., Zubko, E.et al. (2002). The opposition effect and negative polarization of structurally simulated planetary regoliths. Icarus, 159, 396416.CrossRefGoogle Scholar
Shkuratov, Y., Kreslavsky, M., Kaydash, V.et al. (2005). Hubble Space Telescope imaging polarimetry of Mars during the 2003 opposition. Icarus, 176, 111.CrossRefGoogle Scholar
Shkuratov, Y., Bondarenko, S., Ovcharenko, A.et al. (2006). Comparative studies of the reflectance and degree of linear polarization of particulate surfaces and independently scattering particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 340358.CrossRefGoogle Scholar
Shkuratov, Y., Kaydash, V., Korokhin, V.et al. (2011). Optical measurements of the Moon as a tool to study its surface. Planetary and Space Science, 59, 13261371.CrossRefGoogle Scholar
Sparks, W., Hough, J., and Bergeron, L. (2005). A search for chiral signatures on Mars. Astrobiology, 5, 737748.CrossRefGoogle ScholarPubMed
Sparks, W., Hough, J., Geremer, T., Robb, F., and Kolokolova, L. (2012). Remote sensing of chiral signatures on Mars. Planetary and Space Science, 72, 111115.CrossRefGoogle Scholar
Starodubtseva, O. M. (1987). Temporal variations of polarized light on Venus. Astronomicheskii Tsirkulyar, 1511, 3 [in Russian].Google Scholar
Starodubtseva, O. M. (1991). Variability of polarized light of Venus from ground-based observations. In 22nd Lunar Planetary Science Conference. Houston: LPI, p. 1315.Google Scholar
Taylor, F. (2006). Venus before Venus Express. Planetary and Space Science, 54, 12491262.CrossRefGoogle Scholar
Tishkovets, V. P. and Shkuratov, Y. G. (1982). Polarization properties of the surface and atmosphere of Mars. Soviet Astronomy, 26, 599601.Google Scholar
Travis, L. D., Coffeen, D. L., Hansen, J. E.et al. (1979). Orbiter cloud photopolarimeter investigation. Science, 203, 781785.CrossRefGoogle ScholarPubMed
Veverka, J., Helfenstein, P., Hapke, B., and Goguen, J. D. (1988). Photometry and polarimetry of Mercury. In Vilas, F., Chapman, C. R., and Matthews, M. S., eds., Mercury. Tucson: University of Arizona Press, pp. 3758.Google Scholar
Wolff, M. and Clancy, R. (2003). Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations. Journal of Geophysical Research, 108, 5097.CrossRefGoogle Scholar
Wolff, M. J., BellIII, J. F., James, P. B., Clancy, R. T., and Lee, S. W. (1999). Hubble Space Telescope observations of the Martian aphelion cloud belt prior to the Mars Pathfinder mission: Seasonal and interannual variations. Journal of Geophysical Research, 104(E4), 90279041.CrossRefGoogle Scholar
Young, A. (1973). Are the clouds of Venus sulfuric acid?Icarus, 18, 564582.CrossRefGoogle Scholar
Zubko, E., Shkuratov, Y., Mishchenko, M., and Videen, G. (2008). Light scattering in a finite multi-particle system. Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 21952206.CrossRefGoogle Scholar

References

Akimov, L. A. and Shkuratov, Yu. G. (1983). Optical research on lunar soil samples of different degrees of maturity. Solar System Research, 17, 152158.Google Scholar
Arago, F. (1858). Les Comètes. Paris: Gide Editeur.Google Scholar
Bandermann, L. W., Kemp, L. C., and Wolstencroft, R. D. (1972). Circular polarization of light scattered from rough surfaces. Monthly Notices of the Royal Astronomical Society, 158, 291304.CrossRefGoogle Scholar
Bohren, C. F. and Huffman, D. R. (2004). Absorption and Scattering of Light by Small Particles. WILEY-VCH Verlag GmbH & Co.Google Scholar
Bowell, E. and Zellner, B. (1974). Polarizations of asteroids and satellites. In Gehrels, T., ed., Planets, Stars, and Nebulae Studied with Photopolarimetry. Tucson: University of Arizona Press, pp. 381404.Google Scholar
Bowell, E., Dollfus, A., and Geake, J. (1972). Polarimetric properties of the Lunar surface and its interpretation. Part 5: Apollo 14 and Luna 16 lunar samples. Proceedings of the 3rd Lunar Science Conference. Houston, USA: LPI, pp. 31033126.Google Scholar
Burns, R. (1993). Mineralogical Applications of Crystal Field Theory. Cambridge University Press.CrossRefGoogle Scholar
Degtyarev, V. and Kolokolova, L. (1992). Possible application of circular polarization for remote sensing of cosmic bodies. Earth, Moon, and Planets, 57, 213223.CrossRefGoogle Scholar
Dollfus, A. (1962). The polarization of moonlight. Chapter 18. In Kopal, Z., ed., Physics and Astronomy of the Moon. Academic Press Inc., pp. 131139.Google Scholar
Dollfus, A. (1998). Lunar surface imaging polarimetry: I. Roughness and grain size. Icarus, 136, 69103.CrossRefGoogle Scholar
Dollfus, A. (1999). Lunar surface imaging polarimetry: II. Mare Fecunditatis and Messier. Icarus, 140, 313327.CrossRefGoogle Scholar
Dollfus, A. (2000). Lunar surface imaging polarimetry. III. Langrenus. Icarus, 146, 420429.CrossRefGoogle Scholar
Dollfus, A. and Bowell, E. (1971). Polarimetric properties of the lunar surface and interpretation. I. Telescope observation. Astronomy and Astrophysics, 10, 2953.Google Scholar
Dollfus, A. and Titulaer, C. (1971). Polarimetric properties of the lunar surface and its interpretation. Part III. Astronomy and Astrophysics, 12, 199209.Google Scholar
Dzhapiashvili, V. P. and Korol, A. N. (1982). Polarimetric Atlas of the Moon. Tbilisi: Metsniereba.Google Scholar
Engelhardt, W., Hurrle, H., and Luft, E. (1976). Microimpact-induced changes of textural parameters and modal composition of the lunar regolith. Proceedings of the 7th Lunar Planetary Science Conference. Houston, USA: LPI, pp. 373392.Google Scholar
Evsyukov, N. N., and Shestopalov, D. I. (1976). Polarimetric mapping of the Moon. Soviet Astronomy, 19, 772775.Google Scholar
Fox, G., Code, A., Anderson, C.et al. (1998). Solar system observations by the Wisconsin Ultraviolet Photopolarimeter Experiment – III. The first ultraviolet spectropolarimetry of the Moon. Monthly Notices of the Royal Astronomical Society, 298, 303309.CrossRefGoogle Scholar
Grynko, E. and Shkuratov, Yu. (2003). Scattering matrix for semitransparent particles of different shapes in geometric optics approximation. Journal of Quantitative Spectroscopy and Radiative Transfer, 78, 319340.CrossRefGoogle Scholar
Grynko, E. S. and Shkuratov, Yu. G. (2007). Ray tracing sumulation of light scattering by spherical clusters consisting of particles with different shapes. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 5662.CrossRefGoogle Scholar
Hapke, B. (1971). Optical properties of the lunar surface. In Kopal, Z., ed., Physics and Astronomy of the Moon. New York: Academic Press, pp. 155211.Google Scholar
Hapke, B. (2012). Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press.CrossRefGoogle Scholar
Hapke, B. W., Nelson, R. M., and Smythe, W. D. (1974). The opposition effect of the moon: The contribution of coherent backscatter. Science, 260(5107), 509511.CrossRefGoogle Scholar
Heiken, G. H., McKay, D. S., and Brown, R. W. (1974). Lunar deposits of possible pyroclastic origin. Geochimica et Cosmochimica Acta, 38, 17031718.CrossRefGoogle Scholar
Kaydash, V., Shkuratov, Y., and Videen, G. (2012). Phase-ratio imagery as a tool of lunar remote sensing. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 26012607.CrossRefGoogle Scholar
Kemp, J. C., Wolstencroft, R. D., and Swedlung, J. B. (1971). Circular polarization: Jupiter and other planets. Nature, 232, 165168.CrossRefGoogle ScholarPubMed
Kornienko, Y. V., Shkuratov, Y. G., Bychinskii, V. I., and Stankevich, D. G. (1982). Correlation between albedo and polarization characteristics of the Moon – application of digital image processing. Soviet Astronomy, 26, 345348.Google Scholar
Korokhin, V. V. and Velikodsky, Y. I. (2005). Parameters of the positive polarization maximum of the Moon: Mapping. Solar System Research, 39, 4553.CrossRefGoogle Scholar
Kvaratskhelia, O. I. (1988). Spectropolarimetry of the lunar surface and samples of the lunar soil. Bulletin of Abastumari Astrophysical Observatory, 64, 1312.Google Scholar
Lipsky, Y. N. and Pospergelis, M. M. (1967). Several results of measuring the complete Stokes vector for lunar surface features. Astronomicheskii Zhurnal, 44, 410412.Google Scholar
Lyot, B. (1929). Recherches sur la polarisation de la lumière des planètes et de quelques substances terrestres. Annales de l’Observatoire de Paris, section de Meudon, 8, 1161.Google Scholar
Mishchenko, M., Dlugach, J., Liu, L. et al. (2009). Direct solutions of the Maxwell equations explain opposition phenomena observed for high-albedo solar system objects. The Astrophysical Journal Letters, 705, L118L122.CrossRefGoogle Scholar
Muinonen, K. (1989). Electromagnetic scattering by two interacting dipoles. In Proceedings of the 1989 URSI International Symposium on Electromagnetic Theory. Stockholm: Royal Institute of Technology (Stockholm), pp. 428430.Google Scholar
Novikov, V. V. (1980). Polarimetry as a tool of remote sensing selenochemistry. Trudy Shternberg Gosudarstvennogo Astronomicheskogo Instituta Moscow, 50, 135149.Google Scholar
Opanasenko, N. V. and Shkuratov, Y. G. (1994). Results of simultaneous polarimetry and photometry of the Moon. Solar System Research, 28, 398417.Google Scholar
Opanasenko, N. V., Dolukhanyan, A. A., Shkuratov, Y. G.et al. (1994). Polarization map of the Moon at the minimum of the negative branch. Solar System Research, 28, 98105.Google Scholar
Opanasenko, N. V., Opanasenko, A. N., Shkuratov, Y. G.et al. (2009). The negative polarization parameters of the light scattered by the lunar surface: Mapping. Solar System Research, 43, 210214.CrossRefGoogle Scholar
Opanasenko, N., Shkuratov, Y., Kaydash, V.et al. (2013). Preliminary mapping negative polarization of the lunar nearside. In Proceedings of the 44th Lunar and Planetary Science Conference. Houston: LPI, p. 1354.Google Scholar
Shestopalov, D. I., McFadden, L. A., Golubeva, L. F., Khomenko, V. M., and Gasanova, L. O. (2008). Vestoid surface composition from analysis of faint absorption bands in visible reflectance spectra. Icarus, 195, 649662.CrossRefGoogle Scholar
Shkuratov, Y. G. (1981). Connection between the albedo and polarization properties of the Moon. Fresnel component of reflected light. Soviet Astronomy, 25(4), 490494.Google Scholar
Shkuratov, Y. G. (1985). On the origin of the opposition effect and negative polarization for cosmic bodies with solid surface. In Astronomicheskii Circular, No. 1400. Moscow: Sternberg State Astronomy Institute, pp. 36.Google Scholar
Shkuratov, Y. G. (1987). Negative polarization of sunlight scattered from celestial bodies: Interpretation of the wavelength dependence. Soviet Astronomy Letters, 13, 182183.Google Scholar
Shkuratov, Y. (1988). Diffraction model of the brightness surge of complex structure surfaces. Kinematics and Physics of Celestial Bodies, 4, 3339.Google Scholar
Shkuratov, Y. G. and Basilevsky, A. T. (1981). An attempt at mapping the parameter of surface micro porosity of lunar regolith: Correlation between albedo and polarization properties of the Moon. In Proceedings of the 12th Lunar and Planetary Science Conference. Houston, USA: LPI, pp. 19811983.Google Scholar
Shkuratov, Y. and Grynko, Y. (2005). Scattering by semitransparent particles of different shapes and media consisting of these particles in geometric optics approximation: Consequences for photometry and spectroscopy of the planetary regoliths. Icarus, 173, 1628.CrossRefGoogle Scholar
Shkuratov, Y. G. and Opanasenko, N. V. (1990). On the limb polarimetric effect in the Moon discovered by Lyot. Astronomicheskii Vestnik, 24(4), 333336 [in Russian].Google Scholar
Shkuratov, Y. G. and Opanasenko, N. V. (1992). Polarimetric and photometric study of the Moon: Telescope observation and laboratory simulation. 2. The positive polarization. Icarus, 99, 468484.CrossRefGoogle Scholar
Shkuratov, Y. G., Opanasenko, N. V., and Kreslavsky, M. A. (1992a). Polarimetric and photometric properties of the Moon: Telescope observation and laboratory simulation. 1. The negative polarization. Icarus, 95, 283299.CrossRefGoogle Scholar
Shkuratov, Y. G., Kreslavsky, M. A., and Opanasenko, N. V. (1992b). Analysis of a mechanism of negative polarization of light scattered by the surfaces of atmosphereless celestial bodies. Solar System Research, 26, 3338.Google Scholar
Shkuratov, Y., Muinonen, K., Bowell, E.et al. (1994). A critical review of theoretical models for the negative polarization of light scattered by atmosphereless solar system bodies. Earth, Moon, and Planets, 65, 201246.CrossRefGoogle Scholar
Shkuratov, Y., Ovcharenko, A., Zubko, E. et al. (2002). The opposition effect and negative polarization of structurally simulated planetary regoliths. Icarus, 159, 396416.CrossRefGoogle Scholar
Shkuratov, Yu., Ovcharenko, A., Zubko, E.et al. (2004). The negative polarization of light scattered from particulate surfaces and of independently scattering particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 88, 267284.CrossRefGoogle Scholar
Shkuratov, Y., Opanasenko, N., Zubko, E.et al. (2007). Multispectral polarimetry as a tool to investigate texture and chemistry of lunar regolith particles. Icarus, 187, 406416.CrossRefGoogle Scholar
Shkuratov, Yu., Opanasenko, N., Opanasenko, A.et al. (2008). Polarimetric mapping of the Moon at a phase angle nearby minimum of polarization degree. Icarus, 198, 16.CrossRefGoogle Scholar
Shkuratov, Y., Kaydash, V., Korokhin, V.et al. (2011). Optical measurements of the Moon as a tool to study its surface. Planetary and Space Science, 59, 13261371.CrossRefGoogle Scholar
Stankevich, D., Istomina, L., Shkuratov, Yu., and Videen, G. (2007). The coherent backscattering effects in a random medium as calculated using a ray tracing technique for large non-transparent spheres. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 509519.CrossRefGoogle Scholar
Sterzik, M. F., Bagnulo, S., and Palle, E. (2012). Biosignatures as revealed by spectropolarimetry of Earthshine. Nature, 483 (7387), 6466, doi: 10.1038/nature10778.CrossRefGoogle ScholarPubMed
Takashi, J., Iton, Y., Akitaya, H. et al. (2013). Phase variation of Earthshine polarization spectra. Publications of the Astronomical Society of Japan, 65, 381–9.CrossRefGoogle Scholar
Umov, N. (1905). Chromatische depolarisation durch Lichtzerstreuung. Physikalische Zeitschrift, 6, 674676.Google Scholar
Wolff, M. (1980). Theory and application of the polarization-albedo rules. Icarus, 44, 780792.CrossRefGoogle Scholar
Zellner, B., Leake, M., Lebertre, T., Duseaux, M., and Dollfus, A. (1977). The asteroid albedo scale. I. Laboratory polarimetry of meteorites. Proceedings of the 8th Lunar Science Conference. Houston, USA: LPI, pp. 10911110.Google Scholar
Zubko, E., Kimura, H., Shkuratov, Y.et al. (2009). Effect of absorption on light scattering by agglomerated debris particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 17411749.CrossRefGoogle Scholar
Zubko, E., Videen, G., Shkuratov, Y., Muinonen, K., and Yamamoto, T. (2011). The Umov effect for single irregularly shaped particles with size comparable with wavelength. Icarus, 212, 403415.CrossRefGoogle Scholar

References

Baker, A. L., Baker, L. R., Beshore, E.et al. (1975). Imaging photopolarimeter experiment on Pioneer 11. Science, 188, 468472.CrossRefGoogle ScholarPubMed
Bar-Nun, A., Kleinfeld, I., and Ganor, E. (1988). Shape and optical properties of aerosols formed by photolysis of acetylene, ethylene, and hydrogen cyanide. Journal of Geophysical Research, 93, 83838387.CrossRefGoogle Scholar
Bar-Nun, A., Dimitrov, V., and Tomasko, M. (2008). Titan’s aerosols: Comparison between our model and DISR findings. Planetary and Space Science, 56, 708714.CrossRefGoogle Scholar
Barrado-Izagirre, N., Sánchez-Lavega, A., Pérez-Hoyos, S., and Hueso, R. (2008). Jupiter’s polar clouds and waves from Cassini and HST images: 1993–2006. Icarus, 194, 173185.CrossRefGoogle Scholar
Bazzon, A., Schmid, H. M., and Buenzli, E. (2010). HST observations of the limb polarization of Titan. In Boccaletti, A., ed., Proceedings of the Conference In the Spirit of Lyot 2010: Direct Detection of Exoplanets and Circumstellar Disks. October 25–29, 2010. University of Paris Diderot, Paris, France.Google Scholar
Beebe, R. F., Suggs, R. M., and Little, T. (1986). Seasonal north-south asymmetry in solar radiation incident on Jupiter’s atmosphere. Icarus, 66(2), 359365.CrossRefGoogle Scholar
Braak, C. J., de Haan, J. F., van der Mee, C. V. M., Hovenier, J. W., and Travis, L. D. (2001). Parameterized scattering matrices for small particles in planetary atmospheres. Journal of Quantitative Spectroscopy and Radiative Transfer, 69, 585604.CrossRefGoogle Scholar
Braak, C. J., de Haan, J. F., Hovenier, J. W., and Travis, L. D. (2002). Galileo photopolarimetry of Jupiter at 678.5 nm. Icarus, 157, 401418.CrossRefGoogle Scholar
Buenzli, E. and Schmid, H. M. (2009). A grid of polarization models for Rayleigh scattering planetary atmospheres. Astronomy and Astrophysics, 504, 259276.CrossRefGoogle Scholar
Cabane, M., Chassefiere, E., and Israel, G. (1992). Formation and growth of photochemical aerosols in Titan’s atmosphere. Icarus, 96, 176189.CrossRefGoogle Scholar
Cabane, M., Rannou, P., Chassefiere, E., and Israel, G. (1993). Fractal aggregates in Titan’s atmosphere. Planetary and Space Science, 41, 257267.CrossRefGoogle Scholar
Coffeen, D. L. (1974a). Optical polarimeters in space. In Gehrels, T, ed., Planets, Stars, and Nebulae Studied with Photopolarimetry. Tucson AZ: University of Arizona Press, pp. 189217.Google Scholar
Coffeen, D. L. (1974b). Optical polarization measurements of Jupiter atmosphere at 103 degrees phase angle. Journal of Geophysical Research, 79, 36453652.CrossRefGoogle Scholar
Dlugach, J. A. and Mishchenko, M. I. (2004). The effect of particle shape on microphysical properties of Jovian aerosols retrieved from ground-based spectropolarimetric observations. Journal of Quantitative Spectroscopy and Radiative Transfer, 88, 3746.CrossRefGoogle Scholar
Dlugach, J. M. and. Mishchenko, M. I. (2008). Photopolarimetry of planetary atmospheres: What observational data are essential for a unique retrieval of aerosol microphysics?Monthly Notices of the Royal Astronomical Society, 384, 6470.CrossRefGoogle Scholar
Dollfus, A. (1978). Optical reflectance polarimetry of Saturn’s globe and rings. I. Measurements on the B ring. Icarus, 37, 404442.CrossRefGoogle Scholar
Dollfus, A. (1979). Optical reflectance polarimetry of Saturn’s globe and rings. II. Interpretations for the B Ring. Icarus, 40, 171179.CrossRefGoogle Scholar
Doose, L. R. (1976). Light scattering properties of Jupiter’s red spot. Ph.D. dissertation, The University of Arizona, Tucson AZ.Google Scholar
Draine, B. T. (1988). The discrete-dipole approximation and its application to interstellar graphite grains. The Astrophysical Journal, 333, 848872.CrossRefGoogle Scholar
Fimmel, R. O., Van Allen, J., and Burgess, E. (1980). Pioneer First to Jupiter, Saturn and Beyond. Washington DC: NASA SP-446.Google Scholar
Fountain, J. W., Coffeen, D. L., Doose, L. R.et al. (1974). Jupiter’s clouds – Equatorial plumes and other cloud forms in Pioneer-10 images. Science, 184, 12791281.CrossRefGoogle ScholarPubMed
Friedson, A. J., Wong, A.-S., and Yung, Y. L. (2002). Models for polar haze formation in Jupiter’s stratosphere. Icarus, 158(2), 389400.CrossRefGoogle Scholar
Gehrels, T., Herman, B. M., and Owen, T. (1969). Wavelength dependence of polarization XIV. Atmosphere of Jupiter. The Astronomical Journal, 74, 190199.CrossRefGoogle Scholar
Gehrels, T., Coffeen, D., Tomasko, M.et al. (1974). The imaging photopolarimeter experiment on Pioneer 10. Science, 183, 318320.CrossRefGoogle ScholarPubMed
Gehrels, T., Baker, L. R., Beshore, E.et al. (1980). Imaging photopolarimeter on Pioneer Saturn. Science, 207, 434439.CrossRefGoogle ScholarPubMed
Hall, J. S. and Riley, L. A. (1969). Polarization studies of Jupiter and Saturn. Journal of the Atmospheric Sciences, 26, 920923.2.0.CO;2>CrossRefGoogle Scholar
Hall, J. S. and Riley, L. A. (1976). A polarimetric search for fine structure on Jupiter’s disk. Icarus, 29, 231234.CrossRefGoogle Scholar
Hansen, J. E. and Hovenier, J. W. (1974). Interpretation of the polarization of Venus. Journal of the Atmospheric Sciences, 31, 11371160.2.0.CO;2>CrossRefGoogle Scholar
Hord, C. W., West, R. A., Simmons, K. E.et al. (1979). Photometric observations of Jupiter at 2400 Å. Science, 806, 956958.CrossRefGoogle Scholar
Joos, F. and Schmid, H. M. (2007). Limb polarization of Uranus and Neptune. II. Spectropolarimetric observations. Astronomy and Astrophysics, 463, 12011210.CrossRefGoogle Scholar
Karkoschka, E. and Tomasko, M. (2005). Saturn’s vertical and latitudinal cloud structure 1991–2004 from HST imaging in 30 filters. Icarus, 179, 195221.CrossRefGoogle Scholar
Karkoschka, E. and Tomasko, M. (2009). The haze and methane distributions on Uranus from HST-STIS spectroscopy. Icarus, 202, 287309.CrossRefGoogle Scholar
Kawata, Y. (1978). Circular polarization of sunlight reflected by planetary atmospheres. Icarus, 33, 217232.CrossRefGoogle Scholar
Kemp, K. G., Rudy, R. J., Lebofsky, M. J., and Reike, G. H. (1978). Near infrared polarization studies of Saturn and Jupiter. Icarus, 35(2), 263271.CrossRefGoogle Scholar
Kim, S. J., Drossart, P., and Caldwell, J. (1991). The 2-µm polar haze of Jupiter. Icarus, 91, 145153.CrossRefGoogle Scholar
Korokhin, V. V., Beletskii, S. A., and Velikodsky, Yu. I. (2000). The experience of application of CCD-photodetectors at the Astronomical Observatory of the Kharkiv National University. Kinematics and Physics of Celestial Bodies, 16(1), 6367.Google Scholar
Kuiper, G. P. (1944). Titan: A satellite with atmosphere. The Astrophysical Journal, 100, 378383.CrossRefGoogle Scholar
Lane, A. L., Hord, C. W., West, R. A.et al. (1982). Photopolarimetry from Voyager 2. Preliminary Results on Saturn, Titan and the Rings. Science, 215, 537543.CrossRefGoogle ScholarPubMed
Lavvas, P., Yelle, R. V., and Vuitton, V. (2009). The detached haze layer in Titan’s mesosphere. Icarus, 201, 626633.CrossRefGoogle Scholar
Lillie, C. F., Hord, C. W., Pang, K., Coffeen, D. L., and Hansen, J. E. (1977). The Voyager mission photopolarimeter experiment. Space Science Reviews, 21, 159181.CrossRefGoogle Scholar
Lyot, B. (1929). Recherches sur le polarization de la lumière des planèts et de quelques substances terrestres. Annales de l'Observatoire de Paris, section de Meudon VIII (in English, NASA TT F-187).Google Scholar
Mallama, A., Krobusek, B. F., Collins, D. A. (2000). The radius of Jupiter and its polar haze. Icarus, 144, 99103.CrossRefGoogle Scholar
Mishchenko, M. I. (1990). Physical properties of the upper tropospheric aerosols in the equatorial region of Jupiter. Icarus, 84, 296304.CrossRefGoogle Scholar
Morozhenko, A. V. and Yanovitskii, E. G. (1973). The optical properties of Venus and the Jovian planets. I. The atmosphere of Jupiter according to polarimetric observations. Icarus, 18, 583592.CrossRefGoogle Scholar
Owen, T. and Terrile, R. J. (1981). Colors on Jupiter. Journal of Geophysical Research, 86, 87978814.CrossRefGoogle Scholar
Pellicori, S. F., Russell, E. E., and Watts, L. A. (1973). Pioneer imaging photopolarimeter optical system. Applied Optics, 12, 12461258.CrossRefGoogle ScholarPubMed
Pope, S. K., Tomasko, M. G., Williams, M. S.et al. (1992). Clouds of ammonia ice: Laboratory measurements of the single-scattering properties. Icarus, 100, 203220.CrossRefGoogle Scholar
Porco, C. C., West, R. A., Squyres, S.et al. (2004). Cassini imaging science: Instrument characteristics and anticipated scientific investigations at Saturn. Space Science Reviews, 115, 363497.CrossRefGoogle Scholar
Pryor, W. R. and Hord, C. W. (1991). A study of photopolarimeter system UV absorption data on Jupiter, Saturn, Uranus, and Neptune: Implications for auroral haze formation. Icarus, 91, 161172.CrossRefGoogle Scholar
Pryor, W. R., West, R. A., Simmons, K. E., and Delitsky, M. (1992). High-phase-angle observations of Neptune at 2650-Angstrom and 7500-Angstrom – Haze structure and particle properties. Icarus, 99, 302317.CrossRefGoogle Scholar
Rages, K. and Pollack, J. B. (1981). High phase angle Voyager images of Titan’s main aerosol layer. Bulletin of the American Astronomical Society, 13, 703.Google Scholar
Rannou, P., McKay, C. P., and Lorenz, R. D. (2003). A model of Titan’s haze of fractal aerosols constrained by multiple observations. Planetary and Space Science, 51, 963976.CrossRefGoogle Scholar
Russell, E. E., Brown, F. G., Chandos, R. A.et al. (1992). Galileo photopolarimeter/radiometer experiment. Space Science Reviews, 60, 531563.CrossRefGoogle Scholar
Sato, T. M., Satoh, T., and Kasaba, Y. (2013). Retrieval of Jovian cloud structure from the Cassini ISS limb-darkening data I. Continuum scattering phase functions for cloud and haze in the South Tropical Zone. Icarus, 222, 100121.CrossRefGoogle Scholar
Schmid, H. M., Joos, F., Buenzli, E., and Gisler, D. (2011). Long-slit polarimetry of Jupiter and Saturn. Icarus, 212(2), 701713.CrossRefGoogle Scholar
Shalygina, O. S., Korokhin, V. V., Starukhina, L. V.et al. (2008). The north-south asymmetry of polarization of Jupiter: The causes of seasonal variations. Solar System Research, 42(1), 817, doi: 10.1134/S0038094608010024.CrossRefGoogle Scholar
Shalygina, O. S., Shalygin, E. V., Korokhin, V. V., and Velikodsky, Yu. I. (2011). Appearance of linear polarization at polar regions of Jupiter. Proceedings of the 42nd Lunar and Planetary Science Conference. Houston, USA: LPI.Google Scholar
Smith, P. H. and Tomasko, M. G. (1984). Photometry and polarimetry of Jupiter at large phase angles. II. Polarimetry of the South Tropical Zone, South Equatorial Belt, and the Polar Regions from the Pioneer 10 and 11 Missions. Icarus, 58, 3573.CrossRefGoogle Scholar
Sromovsky, L. A. and Fry, P. M. (2010). The source of widespread 3-μm absorption in Jupiter’s clouds: Constraints from 2000 Cassini VIMS observations. Icarus, 210, 230257.CrossRefGoogle Scholar
Starodubtseva, O. M. and Tejfel, V. G. (1984). Light polarization in the polar regions of Jupiter. Solar System Research, 18(3), 115122.Google Scholar
Starodubtseva, O. M., Akimov, L. A., and Korokhin, V. V. (1997). Temporal changes in the north-south asymmetry of polarized light of Jupiter may be associated with the comet SL9 visit to the Jovian system. Planetary and Space Science, 45, 11831188.CrossRefGoogle Scholar
Starodubtseva, O. M., Akimov, L. A., and Korokhin, V. V. (2002). Seasonal variation of the north-south asymmetry of polarized light of Jupiter. Icarus, 157(2), 419425.CrossRefGoogle Scholar
Stoll, C. P. (1980). Polarimetry of Jupiter at large phase angles. Ph.D. dissertation, The University of Arizona, Tucson AZ.Google Scholar
Swedlund, J. B., Kemp, J. C., and Wolstencroft, R. D. (1973). Circular polarization of Saturn. The Astrophysical Journal, 178, 257266.CrossRefGoogle Scholar
Tejfel, V. G. (1985). Polar regions of Jupiter and Saturn. Solar System Research, 19(1), 3344.Google Scholar
Tomasko, M. G. (1980). Preliminary results of polarimetry and photometry of Titan at large phase angles from Pioneer 11. Journal of Geophysical Research, 85, 59375942.CrossRefGoogle Scholar
Tomasko, M. G. and Doose, L. R. (1984). Polarimetry and photometry of Saturn from Pioneer 11: Observations and constraints on the distribution and properties of cloud and aerosol particles. Icarus, 58, 134.CrossRefGoogle Scholar
Tomasko, M. G. and Smith, P. H. (1982). Photometry and polarimetry of Titan: Pioneer 11 observations and their implications for aerosol properties. Icarus, 51, 6595.CrossRefGoogle Scholar
Tomasko, M. G., Buchhauser, D., Bushroe, M.et al. (2002). The Descent Imager/Spectral Radiometer (DISR) experiment on the Huygens entry probe of Titan. Space Science Reviews, 104, 469551.CrossRefGoogle Scholar
Tomasko, M. G., Archinal, B., Becker, T.et al. (2005). Rain, winds and haze during the Huygens probe’s descent to Titan’s surface. Nature, 438, 765778.CrossRefGoogle ScholarPubMed
Tomasko, M. G., Doose, L., Engel, S.et al. (2008). A model of Titan’s aerosols based on measurements made inside the atmosphere. Planetary and Space Science, 56, 669707.CrossRefGoogle Scholar
Tomasko, M. G., Doose, L. R., Dafoe, L. E., and See, C. (2009). Limits on the size of aerosols from measurements of linear polarization in Titan’s atmosphere. Icarus, 204, 271283.CrossRefGoogle Scholar
Veverka, J. (1973). Titan: Polarimetric evidence for an optically thick atmosphere?Icarus, 18, 657660.CrossRefGoogle Scholar
Wauben, W. M. F., de Haan, J. F., and Hovenier, J. W. (1993). Influence of particle shape on the polarized radiation in planetary atmospheres. J. Quant. Spectrosc. Radiat. Transfer, 50, 237246.CrossRefGoogle Scholar
West, R. A. (1979). Spatially resolved methane band photometry of Jupiter. I. Absolute reflectivity and center-to-limb variations in the 6190-, 7250-, and 8900-A bands. Icarus, 38, 1233.CrossRefGoogle Scholar
West, R. A. (1988). Voyager 2 imaging eclipse observations of the Jovian high altitude haze. Icarus, 75, 381398.CrossRefGoogle Scholar
West, R. A. (1991). Optical properties of aggregate particles whose outer diameter is comparable to the wavelength. Applied Optics, 30, 53165324.CrossRefGoogle ScholarPubMed
West, R. A. and Smith, P. H. (1991). Evidence for aggregate particles in the atmospheres of Titan and Jupiter. Icarus, 90, 330333.CrossRefGoogle Scholar
West, R. A. and Tomasko, M. G. (1980). Spatially resolved methane band photometry of Jupiter. III. Cloud vertical structures for several axisymmetric bands and the great red spot. Icarus, 41, 278292.CrossRefGoogle Scholar
West, R. A., Tomasko, M. G., Smith, B. A.et al. (1982). Spatially resolved methane band photometry of Saturn. I. Absolute reflectivity and center-to-limb variations in the 6190, 7250 and 8900 Å Bands. Icarus, 51, 5164.CrossRefGoogle Scholar
West, R. A., Sato, M., Hart, H.et al. (1983a). Photometry and polarimetry of Saturn at 2640 and 7500 Å. Journal of Geophysical Research, 88, 86798697.CrossRefGoogle Scholar
West, R. A., Lane, A. L., Hart, H.et al. (1983b). Voyager 2 photopolarimeter observations of Titan. Journal of Geophysical Research, 88, 86998708.CrossRefGoogle Scholar
West, R. A., Orton, G. S., Draine, B. T., and Hubbell, E. A. (1989). Infrared absorption features for tetrahedral ammonia ice crystals. Icarus, 80, 220223.CrossRefGoogle Scholar
West, R. A., Baines, K. H., Friedson, J. A.et al. (2004). Jovian clouds and haze. In Bagenal, F., Dowling, T., and McKinnon, W., eds., Jupiter the Planet, Satellites and Magnetosphere. Cambridge University Press.Google Scholar
West, R. A., Baines, K. H., Karkoschka, E., and Sánchez-Lavega, A. (2009). Clouds and aerosols in Saturn’s atmosphere. In Dougherty, M., Esposito, L. W., and, Krimigis, S. M., eds., Saturn from Cassini/Huygens. New York: Springer.Google Scholar
West, R. W., Knowles, B., Birath, E.et al. (2010). In-flight calibration of the Cassini imaging science sub-system cameras. Planetary and Space Science, 58, 14751488.CrossRefGoogle Scholar
Wolstencroft, R. D. (1976). The circular polarization of the light from Jupiter. Icarus, 29, 235243.CrossRefGoogle Scholar

References

Afanasiev, V. L. and Amirkhanyan, V. R. (2012). Technique of polarimetric observations of faint objects at the 6-m BTA telescope. Astrophysical Bulletin, 67, 438452.CrossRefGoogle Scholar
Afanasiev, V. L. and Moiseev, A. V. (2011). Scorpio on the 6 m telescope: Current state and perspectives for spectroscopy of galactic and extragalactic objects. Baltic Astronomy, 20, 363370.Google Scholar
Afanasiev, V. L., Rosenbush, V. K., and Kiselev, N. N. (2014). Polarimetry of Uranian satellites at the 6-m BTA telescope. Astrophysical Bulletin, 69(2), 121133.CrossRefGoogle Scholar
Albers, S. (2008). Index of /albers/sos/saturn/Iapetus. Available online at: http://laps.noaa.gov/albers/sos/saturn/iapetus/ (accessed January 12, 2015).Google Scholar
Avramchuk, V. V. and Shavlovskij, V. I. (1998). Microstructure and properties of particles on the surface of Callisto. Analysis of phase variations in brightness. Kinematics and Physics of Celestial Bodies, 14, 111.Google Scholar
Avramchuk, V. V., Rosenbush, V. K., and Bul’ba, T. P. (2007). Photometric study of the major satellites of Uranus. Solar System Research, 41, 186202.CrossRefGoogle Scholar
Bagenal, F., Dowling, T. E., and McKinnon, W. B., eds. (2004). Jupiter. The planet, satellites and magnetosphere. Cambridge University Press.Google Scholar
Bagnulo, S., Belskaya, I., Muinonen, K.et al. (2008). Discovery of two distinct polarimetric behaviours of trans-Neptunian objects. Astronomy and Astrophysics, 491, L33L36.CrossRefGoogle Scholar
Bagnulo, S., Belskaya, I., Boehnhardt, H.et al. (2011). Polarimetry of small bodies of the solar system with large telescopes. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 20592067.CrossRefGoogle Scholar
Belskaya, I. N., Bagnulo, S., Barucci, M. A.et al. (2010). Polarimetry of Centaurs (2060) Chiron, (5145) Pholus and (10199) Chariklo. Icarus, 210, 472479.CrossRefGoogle Scholar
Belskaya, I. N., Bagnulo, S., Stinson, A.et al. (2012). Polarimetry of trans-Neptunian objects (136472) Makemake and (90482) Orcus. Astronomy and Astrophysics, 547, 5pp.CrossRefGoogle Scholar
Bergstralh, J. T., Miner, E. D., and Matthews, M. S., eds. (1991). Uranus. Tucson: University of Arizona Press.CrossRefGoogle Scholar
Blackburn, D. G., Buratti, B. J., Ulrich, R., and Mosher, J. A. (2010). Solar phase curves and phase integrals for the leading and trailing hemispheres of Iapetus from the Cassini Visual Infrared Mapping Spectrometer. Icarus, 209, 738744.CrossRefGoogle Scholar
Blackburn, D. G., Buratti, B. J., and Rivera-Valentin, E. G. (2012). Exploring the impact of thermal segregation on Dione through a bolometric bond albedo map. In Proceedings of the 43rd Lunar and Planetary Science Conference. Houston TX: LPI, LPI Contribution, No. 1659, id. 1536.Google Scholar
Botvinova, V. V. and Kucherov, V. A. (1980). Multicolour polarimetry of Galilean satellites of Jupiter. Astrometriia i Astrofizika, 41, 5963 [in Russian].Google Scholar
Buratti, B. J. (1991). Ganymede and Callisto: Surface textural dichotomies and photometric analysis. Icarus, 92, 312323.CrossRefGoogle Scholar
Buratti, B. J. and Mosher, J. A. (1995). The dark side of Iapetus: Additional evidence for an exogenous origin. Icarus, 115, 219227.CrossRefGoogle Scholar
Buratti, B. J. and Thomas, P. C. (2007). Planetary satellites. In McFadden, L.-A., Weissman, P., and Johnson, T., eds., Encyclopedia of the Solar System. Academic Press, pp. 365382.CrossRefGoogle Scholar
Chigladze, R. A. (1989). Investigation of the polarimetric properties of the Galilean satellites of Jupiter and planet Uranus. Ph.D. thesis. Abastumany Astrophys. Obs. [in Russian].Google Scholar
Clark, R. N., Cruikshank, D. P., Jaumann, R.et al. (2012). The surface composition of Iapetus: Mapping results from Cassini VIMS. Icarus, 218, 831860.CrossRefGoogle Scholar
Collins, G. and Johnson, T. (2007). Ganymede and Callisto. In McFadden, L.-A., Weissman, P., and Johnson, T., eds., Encyclopedia of the Solar System. Academic Press, pp. 449466.CrossRefGoogle Scholar
Cruikshank, D. P., Brown, R. H., and Calvin, W. (1998). Ices on the satellites of Jupiter, Saturn, and Uranus, In Schmitt, B., Bergh, C., and Festou, M., eds., Solar System Ices. Dordrecht: Kluwer Academic Publishers, pp. 579606.CrossRefGoogle Scholar
Denk, T., Neukum, G., Roatsch, T. et al. (2010). Iapetus: Unique surface properties and a global color dichotomy from Cassini Imaging. Science, 327, 435439.CrossRefGoogle Scholar
Dollfus, A. (1975). Optical polarimetry of the Galilean satellites of Jupiter. Icarus, 25, 416431.CrossRefGoogle Scholar
Dollfus, A. (1984). The Saturn ring particles from optical reflectance polarimetry. In CNES Planetary Rings (SEE N85-26473 15–91). CNES, pp. 121143.Google Scholar
Dollfus, A. and Zellner, B. (1979). Optical polarimetry of asteroids and laboratory samples. In Gehrels, T., ed., Asteroids. Tucson: University of Arizona Press, pp. 170183.Google Scholar
Ejeta, C., Boehnhardt, H., Bagnulo, S., and Tozzi, G. P. (2012). Spectro-polarimetry of the bright side of Saturn’s moon Iapetus. Astronomy and Astrophysics, 537, A23.CrossRefGoogle Scholar
Ejeta, C., Boehnhardt, H., Bagnulo, S.et al. (2013a). Polarization of Saturn’s moon Iapetus. II. Comparison of the dark and the bright sides. Astronomy and Astrophysics, 549, A61.CrossRefGoogle Scholar
Ejeta, C., Muinonen, K., Boehnhardt, H.et al. (2013b). Polarization of Saturn’s moon Iapetus. III. Models of the bright and the dark sides. Astronomy and Astrophysics, 554, A117.CrossRefGoogle Scholar
Franklin, F. A. and Cook, A. F. (1974). Photometry of Saturn’s satellites: The opposition effect of Iapetus at maximum light and the variability of Titan. Icarus, 23, 355362.CrossRefGoogle Scholar
Geake, J. E. and Geake, M. (1990). A remote sensing method for sub-wavelength grains on planetary surfaces by optical polarimetry. Monthly Notices of the Royal Astronomical Society, 245, 4655.CrossRefGoogle Scholar
Gradie, J. and Zellner, B. (1973). A polarimetric survey of the Galilean satellites. Bulletin of the American Astronomical Society, 5, 404405.Google Scholar
Gudipati, M. S. and Castillo-Rogez, J., eds. (2012). The Science of Solar System Ices. New York: Springer.Google Scholar
Hapke, B. (1986). Bidirectional reflectance spectroscopy: VI. The extinction coefficient and opposition effect. Icarus, 67, 264280.CrossRefGoogle Scholar
Hapke, B. W. (2002). Bidirectional reflectance spectroscopy. 5. The coherent backscatter opposition effect and anisotropic scattering. Icarus, 157, 523534.CrossRefGoogle Scholar
Harris, A. W., Young, J. W., Contreiras, L.et al. (1989). Phase relations of high-albedo asteroids: The unusual opposition brightening of 44 Nysa and 64 Angelina. Icarus, 81, 365374.CrossRefGoogle Scholar
Heiles, C. (2000). 9286 stars: An agglomeration of stellar polarization catalogs. The Astronomical Journal, 119, 923927.CrossRefGoogle Scholar
Helfenstein, P., Currier, N., Clark, B.et al. (1998). Galileo observations of Europa’s opposition effect. Icarus, 135, 4163.CrossRefGoogle Scholar
Hough, J. (2011). High sensitivity polarimetry: Techniques and applications. In Mishchenko, M. I., Yatskiv, Ya. S., Rosenbush, V. K., and Videen, G., eds., Polarimetric Detection, Characterization, and Remote Sensing. Dordrecht, the Netherlands: Springer, pp. 177204.CrossRefGoogle Scholar
Johnson, P. E., Kemp, J. C., King, R., Parker, T. E., and Barbour, M. S. (1980). New results from optical polarimetry of Saturn rings. Nature, 283, 146149.CrossRefGoogle Scholar
Johnston, W. R. (2013). TNO and centaur diameters, albedos, and densities, V1.0, EAR-A-COMPIL-5-TNOCENALB-V1.0, NASA Planetary Data System. Available online at: www.johnstonsarchive.net/astro/tnodiam.html (accessed January 15, 2015).Google Scholar
Kiselev, N., Rosenbush, V., Velichko, F., and Zaitsev, S. (2009). Polarimetry of the Galilean satellites and Jupiter near opposition. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 17131718.CrossRefGoogle Scholar
Kulyk, I. (2012). Brightness and polarization opposition effects at low phase angles of the Saturnian satellites Tethys, Dione, and Rhea. Planetary and Space Science, 73, 407424.CrossRefGoogle Scholar
Lockwood, G. W. (1983). Photometry of planets and satellites. In Genet, R. M., ed., Solar System Photometry Handbook. Richmond: Willmann-Bell, Inc.Google Scholar
Lumme, K. and Muinonen, K. O. (1993). A two-parameter system for linear polarization of some solar system objects. In IAU Symposium 160: Asteroids, Comets, Meteors, LPI Contribution 810. Houston: LPI, pp. 194197.Google Scholar
Lyot, B. (1929). Recherches sur la polarisation de la lumière des planètes et de quelques substances terrestres. Annales de l'Observatoire de Paris, section de Meudon, 8(1). English translation: Research on the polarization of light from planets and from some terrestrial substances, NASA Tech. Transl. NASA TT F−187, 1964, Washington, DC, 144pp.Google Scholar
Mackowski, D. W. and Mishchenko, M. I. (2011). A multiple sphere T-matrix Fortran code for use on parallel computer clusters. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 21822192.CrossRefGoogle Scholar
Martin, T. Z., Goguen, J. D., Travis, L. D.et al. (2000). Galileo PPR polarimetric phase curves for the Galilean satellites. Bulletin of the American Astronomical Society, 32, 1069.Google Scholar
McCarthy, M. F. (1980). New techniques in stellar photometry and polarimetry. Ricerche Astronomiche Specola Vaticana, 10.Google Scholar
Miner, E. D. (1998). Uranus: The Planet, Rings, and Satellites. Chichester: Wiley.Google Scholar
Mishchenko, M. I. (1993). On the nature of the polarization opposition effect exhibited by Saturn’s rings. The Astrophysical Journal, 411, 351361.CrossRefGoogle Scholar
Mishchenko, M. I., Luck, J. -M., and Nieuwenhuizen, Th. M. (2000). Full angular profile of the coherent polarization opposition effect. Journal of the Optical Society of America A, 17, 888891.CrossRefGoogle ScholarPubMed
Mishchenko, M., Tishkovets, V., and Litvinov, P. (2002). Exact results of the vector theory of coherent backscattering from discrete random media: An overview. In Videen, G. and Kocifaj, M., eds., Optics of Cosmic Dust. Dordrecht: Kluwer Academic Publishers, pp. 239260.CrossRefGoogle Scholar
Mishchenko, M. I., Rosenbush, V. K., and Kiselev, N. N. (2006). Weak localization of electromagnetic waves and opposition phenomena exhibited by high-albedo atmosphereless solar system objects. Applied Optics, 45, 44594463.CrossRefGoogle ScholarPubMed
Mishchenko, M. I., Dlugach, J. M., Liu, L.et al. (2009). Direct solutions of the Maxwell equations explain opposition phenomena observed for high-albedo Solar system objects. The Astrophysical Journal, 705, L118L122.CrossRefGoogle Scholar
Mishchenko, M. I., Rosenbush, V. K., Kiselev, N. N.et al. (2010). Polarimetric Remote Sensing of Solar System Objects. Kyiv: Akademperiodika.CrossRefGoogle Scholar
Mishchenko, M. I., Tishkovets, V. P., Travis, L. D.et al. (2011). Electromagnetic scattering by a morphologically complex object: Fundamental concepts and common misconceptions. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 671692.CrossRefGoogle Scholar
Moore, J. M., Chapman, C. R., Bierhaus, E. B.et al. (2004). Callisto. In Bagenal, F., Dowling, T. E., and McKinnon, W. B., eds., Jupiter. The Planet, Satellites and Magnetosphere. Cambridge University Press, pp. 397426.Google Scholar
Morrison, D. and Morrison, N. D. (1977). Photometry of the Galilean satellites. In Burns, J. A., ed., Planetary Satellites. Tucson: University of Arizona Press, pp. 363378.Google Scholar
Muinonen, K. and Videen, G. (2012). A phenomenological single scatterer for studies of complex particulate media. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 23852390.CrossRefGoogle Scholar
Muinonen, K., Videen, G., Zubko, E., and Shkuratov, Yu. (2002). Numerical techniques for backscattering by random media. In Videen, G. and Kocifaj, M., eds., Optics of Cosmic Dust. Dordrecht: Kluwer Academic Publishers, pp. 261282.CrossRefGoogle Scholar
Muinonen, K., Tyynelä, J., Zubko, E., and Videen, G. (2010). Scattering parameterization for interpreting asteroid polarimetric and photometric phase effects. Earth, Planets and Space, 62, 4752.CrossRefGoogle Scholar
Muinonen, K., Mishchenko, M. I., Dlugach, J. M.et al. (2012). Coherent backscattering verified numerically for a finite volume of spherical particles. The Astrophysical Journal, 760, 118128.CrossRefGoogle Scholar
Naghizadeh-Khouei, J. and Clarke, D. (1993). On the statistical behaviour of the position angle of linear polarization. Astronomy and Astrophysics, 274, 968–974.Google Scholar
Nelson, M. L., Britt, D. T., and Lebofsky, L. F. (1993). Review of asteroid compositions. In Lewis, J. S., Matthews, M. S., and Guerrieri, M. L., eds., Resources of Near-Earth Space. Tucson: The University of Arizona Press, pp. 493522.Google Scholar
Nelson, R. M., Smythe, W. D., Hapke, B. W., and Hale, A. S. (2002). Low phase angle laboratory studies of the opposition effect: Search for wavelength dependence. Planetary Space Science, 50, 849856.CrossRefGoogle Scholar
Noland, M., Veverka, J., Morrison, D.et al. (1974). Six-color photometry of Iapetus, Titan, Rhea, Dione and Tethys. Icarus, 23, 334354.CrossRefGoogle Scholar
Patat, F. and Romaniello, M. (2006). Error analysis for dual-beam optical linear polarimetry. Publications of the Astronomical Society of the Pacific, 118, 146161.CrossRefGoogle Scholar
Petrova, E. V. and Tishkovets, V. P. (2011a). Light scattering by morphologically complex objects and opposition effects (a review). Solar System Research, 45, 304322.CrossRefGoogle Scholar
Petrova, E. V. and Tishkovets, V. P. (2011b). Light scattering by aggregates of varying porosity and the opposition phenomena observed in the low-albedo particulate media. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 22262233.CrossRefGoogle Scholar
Petrova, E. V., Tishkovets, V. P., and Jockers, K. (2007). Modeling of opposition effects with ensembles of clusters: Interplay of various scattering mechanisms. Icarus, 188, 233245.CrossRefGoogle Scholar
Rathbun, J. A., Rodriguez, N. J., and Spencer, J. R. (2010). Galileo PPR observations of Europa: Hotspot detection limits and surface thermal properties. Icarus, 210, 763769.CrossRefGoogle Scholar
Rosenbush, V. K. (2002). The phase-angle and longitude dependence of polarization for Callisto. Icarus, 159, 145155.CrossRefGoogle Scholar
Rosenbush, V. K. (2006). The scattered light properties of small Solar System bodies. Habilitation dissertation, Main Astronomical Observatory of National Academy of Sciences of Ukraine, Kyiv.Google Scholar
Rosenbush, V. (2012). Polarimetry of atmosphereless Solar System bodies. Available online at: www.polarisation.eu/projectdir/Warsaw-Rosenbush.pdf (accessed January 29, 2015).Google Scholar
Rosenbush, V. K. and Avramchuk, V. V. (1999). New polarimetric effects observed for the Galilean satellites of Jupiter. Solar System Research, 33, 267277.Google Scholar
Rosenbush, V. K. and Kiselev, N. N. (2005). Polarization opposition effect for the Galilean satellites of Jupiter. Icarus, 179, 490496.CrossRefGoogle Scholar
Rosenbush, V. K. and Mishchenko, M. I. (2011). Opposition optical phenomena in planetary astrophysics: Observational results. In Mishchenko, M. I., Yatskiv, Ya. S., Rosenbush, V. K., and Videen, G., eds., Polarimetric Detection, Characterization, and Remote Sensing. Dordrecht, the Netherlands: Springer, pp. 409436.CrossRefGoogle Scholar
Rosenbush, V. K., Avramchuk, V. V., Rosenbush, A. E., and Mishchenko, M. I. (1997). Polarization properties of the Galilean satellites of Jupiter: Observations and preliminary analysis. The Astrophysical Journal, 487, 402414.CrossRefGoogle Scholar
Rosenbush, V. K., Kiselev, N. N., Jockers, K.et al. (2000). Optical polarimetry of the Galilean satellites, Iapetus, and 64 Angelina near opposition. Kinematics and Physics of Celestial Bodies, Supplement Series, 3, 227230.Google Scholar
Rosenbush, V., Kiselev, N., Avramchuk, V., and Mishchenko, M. (2002). Photometric and polarimetric opposition phenomena exhibited by solar system bodies. In Videen, G. and Kocifaj, M., eds., Optics of Cosmic Dust. Dordrecht: Kluwer Academic Publishers, pp. 191224.CrossRefGoogle Scholar
Rosenbush, V. K., Kiselev, N. N., Shevchenko, V. G.et al. (2005). Polarization and brightness opposition effects for the E-type asteroid 64 Angelina. Icarus, 178, 222234.CrossRefGoogle Scholar
Rosenbush, V. K., Shevchenko, V. G., Kiselev, N. N.et al. (2009). Polarization and brightness opposition effects for the E-type asteroid 44 Nysa. Icarus, 201, 655665.CrossRefGoogle Scholar
Rosenbush, V. K., Kiselev, N. N., Zaitsev, S. V.et al. (2012). Opposition optical phenomena in Solar System bodies: Observational results. In Asteroids, Comets, Meteors. Houston: LPI. LPI Contribution No. 1667, id. 6130.Google Scholar
Russell, E. E., Brown, F. G., Chandos, R. A.et al. (1992). Galileo Photopolarimeter/Radiometer experiment. Space Science Reviews, 60, 531563.CrossRefGoogle Scholar
Schmitt, B., De Bergh, C., and Festou, M., eds. (1998). Ices in the Solar System, Dordrecht, the Netherlands: Kluwer.CrossRefGoogle Scholar
Serkowsky, K. (1974). Polarimeters for optical astronomy. In Gehrels, T., ed., Planets, Stars and Nebulae Studied with Photopolarimetry. Tucson: University of Arizona Press, pp. 135174.Google Scholar
Shakhovskoj, N. M. (1994). Methods for analysis of polarization observations. Bulletin of the Crimean Astrophysical Observatory, 91, 106123 [in Russian].Google Scholar
Shakhovskoy, N. M. and Efimov, Yu. S. (1972). Polarization observations of nonstable stars and extragalactic objects. I: Equipment, method of observation and reduction. Bulletin of the Crimean Astrophysical Observatory, 45, 90110 [in Russian].Google Scholar
Shakhovskoy, N. M. and Efimov, Yu. S. (1976). Observations of linear polarization of optical emission from X-ray sources. Bulletin of the Crimean Astrophysical Observatory, 54, 99119 [in Russian].Google Scholar
Shevchenko, V. G., Belskaya, I. N., and Tereschenko, I. A. (2010). The diversity of the opposition effect of dark asteroids. In Proceedings of the 41st Lunar and Planetary Science Conference. Houston: LPI. LPI Contribution No. 1533, 1131.Google Scholar
Shkuratov, Yu. G. (1987). Interpretation of spectral dependence of negative polarization parameters of light scattered by solid surfaces of celestial bodies. Pis’ma Astronomicheskii Zhurnal, 13, 444448 [in Russian].Google Scholar
Shkuratov, Yu. G., Muinonen, K., Bowell, E.et al. (1994). A critical review of theoretical models of negatively polarized light scattered by atmosphereless solar system bodies. Earth, Moon, and Planets, 65, 201246.CrossRefGoogle Scholar
Shkuratov, Yu., Ovcharenko, A., Zubko, E.et al. (2002). The opposition effect and negative polarization of structural analogs of planetary regoliths. Icarus, 159, 396416.CrossRefGoogle Scholar
Spencer, J. R. and Denk, T. (2010). Formation of Iapetus’ extreme albedo dichotomy by exogenically triggered thermal ice migration. Science, 327, 432435.CrossRefGoogle ScholarPubMed
Thompson, D. T. and Lockwood, G. W. (1992). Photoelectric photometry of Europa and Callisto 1976−1991. Journal of Geophysical Research, 97, 1476114772.CrossRefGoogle Scholar
Tishkovets, V. (2007). Incoherent and coherent backscattering of light by a layer of densely packed random medium. Journal of Quantitative Spectroscopy and Radiative Transfer, 108, 454463.CrossRefGoogle Scholar
Tishkovets, V. P. (2008). Light scattering by closely packed clusters: Shielding of particles by each other in the near field. Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 26652672.CrossRefGoogle Scholar
Tishkovets, V. P. and Jockers, K. (2006). Multiple scattering of light by densely packed random media. Dense media vector radiative transfer equation. Journal of Quantitative Spectroscopy and Radiative Transfer, 101, 5472.CrossRefGoogle Scholar
Tishkovets, V. P. and Petrova, E. V. (2013). Coherent backscattering by discrete random media composed of clusters of spherical particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 127, 192206.CrossRefGoogle Scholar
Tishkovets, V., Litvinov, P., Petrova, E., Jockers, K., and Mishchenko, M. (2004). Backscattering effects for discrete random media. In Videen, G., Yatskiv, Y., and Mishchenko, M., eds., Photopolarimetry in Remote Sensing. Dordrecht: Kluwer Academic Publishers, pp. 221242.Google Scholar
Tishkovets, V. P., Petrova, E. V., and Mishchenko, M. I. (2011). Scattering of electromagnetic waves by ensembles of particles and discrete random media. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 20952127.CrossRefGoogle Scholar
Tosi, F., Turrini, D., Coradini, A., Filacchione, G., and the VIMS Team (2010). Probing the origin of the dark material on Iapetus. Monthly Notices of the Royal Astronomical Society, 403, 11131130.CrossRefGoogle Scholar
Travis, L. D., Martin, T. Z., Orton, G. S. (2002). Galileo orbiter PPR reduced data record (RDV) V1.0, GO-J-PPR-3RDV-V1.0, NASA Planetary Data System.Google Scholar
Umov, N. A. (1905). Chromatische depolarisation durch lichtzerstreung. Zeitschrift fur Physik, 6, 674676.Google Scholar
Verbiscer, A. J., French, R. G., and McGhee, C. A. (2005). The opposition surge of Enceladus: HST observations 338–1022 nm. Icarus, 173, 6683.CrossRefGoogle Scholar
Verbiscer, A., French, R., Showalter, M., and Helfenstein, P. (2007). Enceladus: Cosmic graffiti artist caught in the act. Science, 315, 815.CrossRefGoogle Scholar
Veverka, J. (1971). Polarization measurements of the Galilean satellites of Jupiter. Icarus, 14, 355359.CrossRefGoogle Scholar
Veverka, J. (1977) Polarimetry of satellite surfaces. In Burns, J. A., ed., Planetary Satellites. Tucson: University of Arizona Press, pp. 210230.Google Scholar
Zaitsev, S. V., Kiselev, N. N., Rosenbush, V. K.et al. (2012a). Polarimetric observations of the Galilean satellites near opposition in 2011. Advances in Astronomy and Space Physics, 2, 177179.Google Scholar
Zaitsev, S., Rosenbush, V., and Kiselev, N., eds. (2012b). Polarimetry of Planetary Satellites V1.0. EAR-SA-COMPIL-3- SATPOL-V1.0. NASA Planetary Data System.Google Scholar
Zellner, B. H. (1972). On the nature of Iapetus. The Astrophysical Journal, 174, L107L109.CrossRefGoogle Scholar

References

Appenzeller, I., Fricke, K., Furtig, W.et al. (1998). Successful commissioning of FORS1 – the first optical instrument on the VLT. The Messenger, 94, 1.Google Scholar
Bagnulo, S., Belskaya, I. N., Boehnhardt, H.et al. (2011). Polarimetry of small bodies of the solar system with large telescopes. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 20592067.CrossRefGoogle Scholar
Belskaya, I. N. and Shevchenko, V. G. (2000). Opposition effect of asteroids. Icarus, 147, 94105.CrossRefGoogle Scholar
Belskaya, I. N., Efimov, Y. S., Lupishko, D. F., and Shakhovskoy, N. M. (1985). Five color polarimetry of the asteroid 16-Psyche. Soviet Astronomy Letters, 11, 116118.Google Scholar
Belskaya, I. N., Lupishko, D. F., and Shakhovskoi, N. M. (1987). Negative polarization spectra for five asteroids. Soviet Astronomy Letters, 13, 219.Google Scholar
Belskaya, I. N., Kiselev, N. N., Lupishko, D., and Chernova, G. P. (1991). Polarimetry of CMEU asteroids. II – A peculiarity of M-type asteroids. Kinematics and Physics of Celestial Bodies, 7, 811.Google Scholar
Belskaya, I. N., Shevchenko, V. G., Kiselev, N. N.et al. (2003). Opposition polarimetry and photometry of S- and E-type asteroids. Icarus, 166, 276284.CrossRefGoogle Scholar
Belskaya, I. N., Shkuratov, Yu. G., Efimov, Yu. S.et al. (2005). The F-type asteroids with small inversion angles of polarization. Icarus, 178, 213221.CrossRefGoogle Scholar
Belskaya, I. N., Levasseur-Regourd, A.-C., Cellino, A. et al. (2009a). Polarimetry of main belt asteroids: Wavelength dependence. Icarus, 199, 97105.CrossRefGoogle Scholar
Belskaya, I. N., Fornasier, S., and Krugly, Y. N. (2009b). Polarimetry and BVRI photometry of the potentially hazardous near-Earth asteroid (23187) 2000 PN9. Icarus, 201, 167171.CrossRefGoogle Scholar
Belskaya, I. N., Fornasier, S., Krugly, Yu. N.et al. (2010). Puzzling asteroid 21 Lutetia: Our knowledge prior to the Rosetta fly-by. Astronomy and Astrophysics, 515, A29.CrossRefGoogle Scholar
Burbine, T. H., Gaffey, M. J., and Bell, J. F. (1992). S-asteroids 387 Aquitania and 980 Anacostia – Possible fragments of the breakup of a spinel-bearing parent body with CO3/CV3 affinities. Meteoritics, 27, 424434.CrossRefGoogle Scholar
Bus, S. J. and Binzel, R. P. (2002). Phase II of the small main-belt asteroid spectroscopic survey. A feature-based taxonomy. Icarus, 158, 146177.CrossRefGoogle Scholar
Cañada-Assandri, M., Gil-Hutton, R., and Benavidez, P. (2012). Polarimetric survey of main-belt asteroids. III. Results for 33 X-type objects. Astronomy and Astrophysics, 542, A11.CrossRefGoogle Scholar
Cellino, A., Gil-Hutton, R., Tedesco, E. F., Di Martino, M., and Brunini, A. (1999). Polarimetric observations of small asteroids: Preliminary results. Icarus, 138, 129140.CrossRefGoogle Scholar
Cellino, A., Zappalà, V., Doressoundiram, A.et al. (2001). The puzzling case of the Nysa-Polana family. Icarus, 152, 225237.CrossRefGoogle Scholar
Cellino, A., Gil-Hutton, R., di Martino, M.et al. (2005a). Asteroid polarimetric observations using the Torino UBVRI photopolarimeter. Icarus, 179, 304324.CrossRefGoogle Scholar
Cellino, A., Yoshida, F., Anderlucci, E.et al. (2005b). A polarimetric study of asteroid 25143 Itokawa. Icarus, 179, 297303.CrossRefGoogle Scholar
Cellino, A., Belskaya, I. N., Bendjoya, Ph.et al. (2006). The strange polarimetric behavior of asteroid (234) Barbara. Icarus, 180, 565567.CrossRefGoogle Scholar
Cellino, A., Delbò, M., Bendjoya, Ph., and Tedesco, E. F. (2010). Polarimetric evidence of close similarity between members of the Karin and Koronis dynamical families. Icarus, 209, 556563.CrossRefGoogle Scholar
Cellino, A., Dell’Oro, A., Bendjoya, Ph., Cañada-Assandri, M., and Di Martino, M. (2012). A new calibration of the albedo–polarization relation for the asteroids. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 25522560.CrossRefGoogle Scholar
Cellino, A., Bagnulo, S., Tanga, P., Novakovic, B., and Delbò, M. (2014). A successful search for hidden Barbarians in the Watsonia asteroid family. Monthly Notices of the Royal Astronomical Society Letters, 439, L75.CrossRefGoogle Scholar
Chamberlin, A. B., McFadden, L.-A., Schulz, R., Schleicher, D. G., and Bus, S. J. (1996). 4015 Wilson Harrington, 2201 Oljato, and 3200 Phaethon: Search for CN Emission. Icarus, 119, 173181.CrossRefGoogle Scholar
Chapman, C. R. (1996). S-type asteroids, ordinary chondrites, and space weathering: The evidence from Galileo’s fly-bys of Gaspra and Ida. Meteoritics and Planetary Science, 31, 699725.CrossRefGoogle Scholar
Chapman, C. R., Morrison, D., and Zellner, B. (1975). Surface properties of asteroids – A synthesis of polarimetry, radiometry, and spectrophotometry. Icarus, 25, 104130.CrossRefGoogle Scholar
Degtyarev, V. S. and Kolokolova, L. O. (1992). Possible application of circular polarization for remote sensing of cosmic bodies. Earth, Moon and Planets, 57, 213223.CrossRefGoogle Scholar
Delbò, M., Cellino, A., and Tedesco, E. F. (2007). Albedo and size determination of potentially hazardous asteroids: (99942) Apophis. Icarus, 188, 266269.CrossRefGoogle Scholar
De Luise, F., Perna, D., Dotto, E.et al. (2007). Physical investigation of the potentially hazardous asteroid (144898) 2004 VD17. Icarus, 191, 628635.CrossRefGoogle Scholar
DeMeo, F. E., Binzel, R. P., Slivan, S. M., and Bus, S. J. (2009). An extension of the Bus asteroid taxonomy into the near-infrared. Icarus, 202, 160180.CrossRefGoogle Scholar
Desidera, S., Giro, E., Munari, U.et al. (2004). Polarimetric evolution of V838 Monocerotis. Astronomy and Astrophysics, 414, 591600.CrossRefGoogle Scholar
Dollfus, A. and Zellner, B. (1979). Optical polarimetry of asteroids and laboratory samples. In Gehrels, T., ed., Asteroids. Tucson: University of Arizona Press, pp. 170183.Google Scholar
Dollfus, A., Wolff, M., Geake, J. E., Lupishko, D. F., and Dougherty, L. M. (1989). Photopolarimetry of asteroids. In Binzel, R. P., Gehrels, T., and Matthews, M. S., eds., Asteroids II. Tucson: University of Arizona Press, pp. 594616.Google Scholar
Fornasier, S., Belskaya, I. N., Fulchignoni, M., Barucci, M. A., and Barbieri, C. (2006a). First albedo determination of 2867 Steins, target of the Rosetta mission. Astronomy and Astrophysics, 449, L9L12.CrossRefGoogle Scholar
Fornasier, S., Beskaya, I. N., Shkuratov, Yu. G.et al. (2006b). Polarimetric survey of asteroids with the Asiago telescope. Astronomy and Astrophysics, 455, 371377.CrossRefGoogle Scholar
Gaffey, M. J., Bell, J. F., and Cruikshank, D. P. (1989). Reflectance spectroscopy and asteroid surface mineralogy. In Binzel, R. P., Gehrels, T., and Matthews, M. S., eds., Asteroids II. Tucson: University of Arizona Press, pp. 98127.Google Scholar
Gehrels, T., ed. (1974). Planets, Stars, and Nebulae Studied with Photopolarimetry. Tucson: University of Arizona Press.Google Scholar
Gil-Hutton, R. (2007). Polarimetry of M-type asteroids. Astronomy and Astrophysics, 464, 11271132.CrossRefGoogle Scholar
Gil-Hutton, R. and Cañada-Assandri, M. (2011). Polarimetric survey of main-belt asteroids. I. Results for fifty seven S-, L-, and K-type objects. Astronomy and Astrophysics, 529, A86.CrossRefGoogle Scholar
Gil-Hutton, R. and Cañada-Assandri, M. (2012). Polarimetric survey of main-belt asteroids. II. Results for 58 B- and C-type objects. Astronomy and Astrophysics, 539, A115.CrossRefGoogle Scholar
Gil-Hutton, R., Mesa, V., Cellino, A.et al. (2008). New cases of unusual polarimetric behavior in asteroids. Astronomy and Astrophysics, 482, 309314.CrossRefGoogle Scholar
Goidet-Devel, B., Renard, J. B., and Levasseur-Regourd, A.-C. (1995). Polarization of asteroids. Synthetic curves and characteristic parameters. Planetary and Space Science, 43, 779786.CrossRefGoogle Scholar
Gradie, J. and Tedesco, E. F. (1982). Compositional structure of the asteroid belt. Science, 216, 14051407.CrossRefGoogle ScholarPubMed
Gradie, J., Tedesco, E. F., and Zellner, B. (1978). Rotational variations in the optical polarization and reflection spectrum of Vesta. Bulletin of the American Astronomical Society, 10, 595.Google Scholar
Hadamcik, E., Levasseur-Regourd, A. C., Renard, J. B., Lasue, J., and Sen, A. K. (2011). Polarimetric observations and laboratory simulations of asteroidal surfaces: The case of 21-Lutetia. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 18811890.CrossRefGoogle Scholar
Ishiguro, M., Nakayama, H., Kogachi, M.et al. (1997). Maximum visible polarization of 4179 Toutatis in the apparition of 1996. Publications of the Astronomical Society of Japan, 49, L31L34.CrossRefGoogle Scholar
Jenniskens, P., Shaddad, M. H., Numan, D.et al. (2009). The impact and recovery of asteroid 2008 TC3. Nature, 458, 485488.CrossRefGoogle ScholarPubMed
Kawabata, K., Okazaki, A., Akitaya, H. et al. (1999). A new spectropolarimeter at the Dodaira Observatory. Publications of the Astronomical Society of the Pacific, 111, 898908.CrossRefGoogle Scholar
Kiselev, N. N., Lupishko, D. F., Chernova, G. P., and Shkuratov, Yu. G. (1990). Polarimetry of the asteroid 1685 Toro. Kinematika i Fizika Nebesnykh Tel, 6, 7782.Google Scholar
Kiselev, N. N., Rosenbush, V. K., and Jockers, K. (1999). Polarimetry of asteroid 2100 Ra-Shalom at large phase angle. Icarus, 140, 464466.CrossRefGoogle Scholar
Kiselev, N. N., Rosenbush, V. K., Jockers, K.et al. (2002). Polarimetry of near-Earth asteroid 33342 (1998 WT24). Synthetic phase angle dependence of polarization for the E-type asteroids. In Warmbein, B., ed., Proceedings of Asteroids, Comets, Meteors – ACM 2002, ESA SP-500. The Netherlands: Noordwijk, pp. 887890.Google Scholar
Kolokolova, L. and Jockers, K. (1997). Composition of cometary dust from polarization spectra. Planetary and Space Science, 45, 15431550.CrossRefGoogle Scholar
Lupishko, D. F. (1998). Bimodality in the albedo distribution of S-asteroids. Solar System Research, 32, 233.Google Scholar
Lupishko, D. and Belskaya, I. N. (1989). On the surface composition of the M-type asteroids. Icarus, 78, 395401.CrossRefGoogle Scholar
Lupishko, D. F. and Mohamed, R. A. (1996). A new calibration of the polarimetric albedo scale of asteroids. Icarus, 119, 209213.CrossRefGoogle Scholar
Lupishko, D. F. and Vasilyev, S. V. (1997). Asteroid Polarimetric Database. Kinematics and Physics of Celestial Bodies, 13, 1723.Google Scholar
Lupishko, D. F., Belskaya, I. N., Kvaratskheliia, O. I., Kiselev, N. N., and Morozhenko, A. V. (1988). The polarimetry of Vesta during the 1986 opposition. Astronomicheskii Vestnik, 22, 142146 [in Russian].Google Scholar
Lupishko, D. F., Vasilyev, S. V., Efimov, Yu. S., and Shakhovskoy, N. M. (1995). UBVRI polarimetry of asteroid (4179) Toutatis. Icarus, 113, 200205.CrossRefGoogle Scholar
Lupishko, D. F., Efimov, Yu. S. and Shakhovskoi, N. M. (1999). Position angle variations of the polarization plane of asteroid 4 Vesta. Solar System Research, 33, 4548.Google Scholar
Lupishko, D. F. and Vasilyev, S. V., eds, (2012). Asteroid Polarimetric Database V7.0. EAR-A-3-RDR-APD-POLARI METRY-V7.0. NASA Planetary Data System, 2012. Available online at: http://sbn.psi.edu/pds/resource/apd.html (accessed January 13, 2015).Google Scholar
Magalhães, A. M., Rodriguez, C. V., Margoniner, V. E., Pereyra, A., and Heathcote, S. (1996). High precision CCD imaging polarimetry. In Roberge, W. G. and Whittet, D. C. B., eds., Polarimetry of the Interstellar Medium. Astronomical Society of the Pacific Conference Series, Vol. 97. San Francisco CA: Astronomical Society of the Pacific, p. 118.Google Scholar
Masiero, J., Hodapp, K., Harrington, D., and Lin, H. S. (2007). Commissioning of the dual-beam imaging polarimeter for the University of Hawaii 88 inch telescope. Publications of the Astronomical Society of the Pacific, 119, 11261132.CrossRefGoogle Scholar
Masiero, J., Hartzell, C., and Scheers, D. J. (2009). The effect of the dust size distribution on asteroid polarization. The Astronomical Journal, 138, 15571562.CrossRefGoogle Scholar
Masiero, J. R., Mainzer, A. K., Grav, T.et al. (2011). Main belt asteroids with WISE/NEOWISE. I. Preliminary albedos and diameters. The Astrophysical Journal, 741, 68.CrossRefGoogle Scholar
Masiero, J. R., Mainzer, A. K., Gray, T.et al. (2012). A revised asteroid polarization–albedo relationship using WISE/NEOWISE data. The Astrophysical Journal, 749, 104.CrossRefGoogle Scholar
Mignard, F., Cellino, A., Muinonen, K.et al. (2007). The Gaia Mission: Expected applications to asteroid science. Earth, Moon and Planets, 101, 97125.CrossRefGoogle Scholar
Muinonen, K., Piironen, J., Kaasalainen, S., and Cellino, A. (2002). Asteroid photometric and polarimetric phase curves: Joint linear-exponential modeling. Memorie Della Società Astronomica Italiana—Journal of the Italian Astronomical Society, 73, 716721.Google Scholar
Muinonen, K., Belskaya, I. N., Cellino, A. (2010). A three-parameter magnitude phase function for asteroids. Icarus, 209, 542555.CrossRefGoogle Scholar
Mukai, T., Iwata, T., Kikuchi, S.et al. (1997). Polarimetric observations of 4179 Toutatis in 1992/1993. Icarus, 127, 452460.CrossRefGoogle Scholar
Nesvorny, D., Enke, B. L., Bottke, W. F.et al. (2006). Karin cluster formation by asteroid impact. Icarus, 183, 296311.CrossRefGoogle Scholar
Novakovic, B., Cellino, A., and Knezevic, Z. (2011). Families among high-inclination asteroids. Icarus, 216, 6981.CrossRefGoogle Scholar
Penttilä, A., Lumme, K., Hadamcik, E., and Levasseur-Regourd, A.-C. (2005). Statistical analysis of asteroidal and cometary polarization phase curves. Astronomy and Astrophysics, 432, 10811090.CrossRefGoogle Scholar
Pernechele, C., Giro, E., and Fantinel, D. (2003). Device for optical linear polarization measurements with a single exposure. Proceedings of SPIE, 4843, 156163.CrossRefGoogle Scholar
Pernechele, C., Abe, L., Bendjoya, Ph.et al. (2012). A single-shot optical linear polarimeter for asteroid studies. Proceedings of SPIE, 8446, 84462H.CrossRefGoogle Scholar
Piirola, V. (1973). A double image chopping polarimeter. Astronomy and Astrophysics, 27, 383388.Google Scholar
Rivkin, A. S., Howell, E. S., Britt, D. T.et al. (1995). Three-micron spectrometric survey of M- and E-class asteroids. Icarus, 117, 90100.CrossRefGoogle Scholar
Rivkin, A. S., Howell, E. S., Lebofsky, L. A., Clark, B. E., and Britt, D. T. (2000). The nature of M-class asteroids from 3-micron observation. Icarus, 145, 351368.CrossRefGoogle Scholar
Rosenbush, V. K., Kiselev, N. N., Shevchenko, V. G.et al. (2005). Polarization and brightness opposition effects for the E-type asteroid 64 Angelina. Icarus, 178, 222234.CrossRefGoogle Scholar
Rosenbush, V. K., Shevchenko, V. G., Kiselev, N. N.et al. (2009). Polarization and brightness opposition effects for the E-type asteroid 44 Nysa. Icarus, 201, 655665.CrossRefGoogle Scholar
Ross Taylor, S. (1992). Solar System Evolution. New York: Cambridge University Press.Google Scholar
Scaltriti, F., Piirola, V., Cellino, A.et al. (1989). The UBVRI photopolarimeter of the Torino Astronomical Observatory. Memorie della Societa Astronomica Italiana, 60, 243246.Google Scholar
Shakhovskoj, N. M. (1994). Methods for analysis of polarization observations. Crimean Astrophysical Observatory, 91, 106123.Google Scholar
Shevchenko, V. G. and Tedesco, E. F. (2006). Asteroid albedos deduced from stellar occultations. Icarus, 184, 211220.CrossRefGoogle Scholar
Sunshine, J., Connolly, H. C., McCoy, T. J., and Bus, S. J. (2007). Refractory-rich asteroids: Concentrations of the most ancient materials in the Solar System. Bulletin of the American Astronomical Society, 39, 476.Google Scholar
Sunshine, J. M., Connolly, H. C., McCoy, T. J., Bus, S.J., and La Croix, L. M. (2008). Ancient asteroids enriched in refractory inclusions. Science, 320, 514517.CrossRefGoogle ScholarPubMed
Tedesco, E. F., Noah, P. V., Noah, M., and Price, S. D. (2002). The supplemental IRAS minor planet survey. The Astronomical Journal, 123, 10561085.CrossRefGoogle Scholar
Tholen, D. (1984). Asteroid taxonomy from cluster analysis of photometry. Ph.D. thesis, University of Arizona.Google Scholar
Tholen, D. J. and Barucci, M. A. (1989). Asteroid taxonomy. In Binzel, R., Gehrels, T., and Matthews, M. S., eds., Asteroids II. Tucson: University of Arizona Press, pp. 298315.Google Scholar
Vasil’Ev, S. V., Lupishko, D. F., Shakhovskoj, N. M., and Efimov, Yu. S. (1996). UBVRI polarimetry and photometry of the asteroid 1620 Geographos. Kinematics and Physics of Celestial Bodies, 12, 812.Google Scholar
Vernazza, P., Binzel, R. P., Rossi, A., Fulchignoni, M., and Birlan, M. (2009). Solar wind as the origin of rapid reddening of asteroid surfaces. Nature, 458, 993995.CrossRefGoogle ScholarPubMed
Wolff, M. (1980). Theory and application of the polarization–albedo rules. Icarus, 44, 780792.CrossRefGoogle Scholar
Wolff, M. (1981). Computing diffuse reflection from particulate planetary surface with a new function. Applied Optics, 20, 24932498.CrossRefGoogle ScholarPubMed
Zellner, B. and Gradie, J. (1976a). Minor planets and related objects. XX. Polarimetric evidence for the albedos and compositions of 94 asteroids. The Astronomy Journal, 81, 262280.CrossRefGoogle Scholar
Zellner, B. and Gradie, J. (1976b). Polarization of the reflected light of asteroid 433 Eros. Icarus, 28, 117123.CrossRefGoogle Scholar
Zellner, B., Gehrels, T., and Gradie, J. (1974). Minor planets and related objects. XVI. Polarimetric diameters. The Astronomy Journal, 79, 11001110.CrossRefGoogle Scholar
Zellner, B., Leake, M., Lebertre, T., and Dollfus, A. (1977). Polarimetry of meteorites and the asteroid albedo scale. Lunar and Planetary Science Conference, 8, 1041.Google Scholar

References

A’Hearn, M. F., Millis, R. L., Schleicher, D. G., Osip, D. J., and Birch, P. V. (1995). The ensemble properties of comets: Results from narrowband photometry of 85 comets, 1976–1992. Icarus, 118, 223270.CrossRefGoogle Scholar
A’Hearn, M. F., Belton, M. J. S., Delamere, W. A.et al. (2005). Deep impact: Excavating comet Tempel 1. Science, 310(5746), 258264.Google Scholar
Arago, F. (1854–1857). Astronomie Populaire, Vols. 1–4. Paris: Gide et Baudry.Google Scholar
Arpigny, C. (1995). Spectra of comets: Ultraviolet and optical regions. ASP Conference Series, 81, 362382.Google Scholar
Bagnulo, S., Tozzi, G. P., Boehnhardt, H., Vincent, J.-B., and Muinonen, K. (2010). Polarimetry and photometry of the peculiar main-belt object 7968 = 133P/Elst–Pizarro. Astronomy and Astrophysics, 514(A99), 13 pp.CrossRefGoogle Scholar
Boehnhardt, H. and ESO DI team (2005). The Deep Impact campaign at ESO: Dust and nucleus characterization. In IAU Symposium ACM-2005, Vol. 229. Buzios, Brazil.Google Scholar
Boehnhardt, H., Tozzi, G., Bagnulo, S.et al. (2008). Photometry and polarimetry of the nucleus of comet 2P/Encke. Astronomy and Astrophysics, 489, 13371343.CrossRefGoogle Scholar
Bonev, T., Boehnhardt, H., and Borisov, G. (2008). Broadband imaging and narrowband polarimetry of comet 73P/Schwassmann–Wachmann 3, components B and C, on 3, 4, 8, and 9 May 2006. Astronomy and Astrophysics, 480, 277287.CrossRefGoogle Scholar
Brooke, T. Y., Knacke, R. F., and Joyce, R. R. (1987). The near infrared polarization and color of comet P/Halley. Astronomy and Astrophysics, 187, 621624.Google Scholar
Brown, M. E., Bouchez, A. H., Spinrad, H., and Johns-Krull, C. M. (1996). A high-resolution catalog of cometary emission lines. The Astronomical Journal, 112, 11971202.CrossRefGoogle Scholar
Brownlee, D. E., Tomandl, D. A., and Olszewski, E. (1977). Interplanetary dust – A new source of extraterrestrial material for laboratory studies. In Proceedings of the Lunar Science Conference, Vol. 1. New York: Pergamon Press, Inc., pp. 149160.Google Scholar
Chernova, G. P., Kiselev, N. N., and Jockers, K. (1993). Polarimetric characteristic of dust particles as observed in 13 comets: Comparison with asteroids. Icarus, 103, 144158.CrossRefGoogle Scholar
Clarke, D. (1971). Polarization measurements of the head of comet Bennett (1969i). Astronomy and Astrophysics, 14, 9094.Google Scholar
Dobrovolsky, O. V. (1966). Comets. Moscow: Nauka.Google Scholar
Dobrovolsky, O. V., Kiselev, N. N., and Chernova, G. P. (1986). Polarimetry of comets – A review. Earth, Moon, and Planets, 34, 189200.CrossRefGoogle Scholar
Dolginov, A. Z. and Mytrophanov, I. G. (1976). Orientation of cosmic dust grains. Astrophysics and Space Science, 43, 291317.CrossRefGoogle Scholar
Dollfus, A. and Suchail, J.-L. (1987). Polarimetry of grains in the coma of P/Halley I. Observations. Astronomy and Astrophysics, 187, 669688.Google Scholar
Dollfus, A., Bastien, P., Le Borgne, J. L., Levasseur-Regourd, A. C., and Mukai, T. (1988). Optical polarimetry of P/Halley: Synthesis of the measurements in the continuum. Astronomy and Astrophysics, 206, 348356.Google Scholar
Draine, B. T. and Flatau, P. J. (1994). Discrete-dipole approximation of scattering calculations. Journal of the Optical Society of America A, Optics, image science, and vision, 11, 14911499. Available online at: www.astro.princeton.edu/~draine/DDSCAT.html (accessed January 14, 2015).CrossRefGoogle Scholar
Eaton, N., Scarrot, S., and Warren–Smith, R. F. (1988). Polarization images of the inner regions of comet Halley. Icarus, 76, 270278.CrossRefGoogle Scholar
Eaton, N., Scarrott, S. M., and Wolstencroft, R. D. (1991). Polarization studies of Comet Okazaki–Levy–Rudenko. Monthly Notices of the Royal Astronomical Society, 250, 654656.CrossRefGoogle Scholar
Eaton, N., Scarrott, S. M., and Gledhill, T. M. (1992). Polarization studies of Comet Austin. Monthly Notices of the Royal Astronomical Society, 258, 384386.CrossRefGoogle Scholar
Elvius, A. (1958). Preliminary results of polarization measurements in comets. Arkiv för Astronomi, 2, 195197.Google Scholar
Farnham, T. L., Schleicher, D. G., and A’Hearn, M. F. (2000). The HB narrowband comet filters: standard stars and calibrations. Icarus, 147, 180204.CrossRefGoogle Scholar
Farnham, T. L., Schleicher, D. G., Woodney, L. M.et al. (2001). Imaging and photometry of comet C/1999 S4 (LINEAR) before perihelion and after breakup. Science, 292(5520), 13481354.CrossRefGoogle Scholar
Festou, M. C., Keller, H. U., and Weaver, H. A. (2004). A brief conceptual history of cometary science. In Festou, M., Keller, H. U., and Weaver, H. A., eds., Comets II. Tucson: University of Arizona Press, pp. 316.CrossRefGoogle Scholar
Flynn, G. J. (2008). Physical, chemical, and mineralogical properties of comet 81P/Wild 2 particles collected by Stardust. Earth, Moon, and Planets, 102, 447459.CrossRefGoogle Scholar
Fomenkova, M. (1999). On the organic refractory component of cometary dust. Space Science Reviews, 90, 109114.CrossRefGoogle Scholar
Furusho, R., Ikeda, Y., Kinoshita, D.et al. (2007). Imaging polarimetry of Comet 9P/Tempel before and after the Deep Impact. Icarus, 190(2), 454458.CrossRefGoogle Scholar
Furusho, R., Arai, A., and Uemura, K. (2008). Polarimetry of 17P/Holmes. In Proceedings of the AOGS Conference, abstract PS10, A018.Google Scholar
Ganesh, S., Joshi, U. C., Baliyan, K. S., and Deshpande, M. R. (1998). Polarimetric observations of the comet Hale–Bopp. Astronomy and Astrophysics Supplement, 129, 489493.CrossRefGoogle Scholar
Gehrels, T. (1974). Introduction and overview. In Gehrels, T., ed., Planets, Stars, and Nebulae Studied with Photopolarimetry. Tucson: University of Arizona Press, pp. 344.Google Scholar
Gehrels, T. (1977). The physical basis of the polarimetric method for deriving asteroid albedos. In Comets, Asteroids, Meteorites: Interrelations, Evolution and Origins. Proceedings of the 39th International Colloquium. Toledo, Ohio: University of Toledo, pp. 253256.Google Scholar
Greenberg, J. M. (1982). What are comets made of − A model based on interstellar dust. In Wilkening, L., ed., Comets. Tucson: University of Arizona Press, pp. 131163.CrossRefGoogle Scholar
Grynko, Ye., Jockers, K., and Schwenn, R. (2004). The phase curve of cometary dust: Observations of comet 96P/Machholz 1 at large phase angle with the SOHO LASCO C3 coronagraph. Astronomy and Astrophysics, 427, 755761.CrossRefGoogle Scholar
Guirado, D. and Moreno, F. (2008). Monte Carlo modeling of radiative transfer in comets: A search for mechanisms giving circular polarization. In Asteroids, Comets, Meteors. Houston: LPI. LPI Contribution No. 1405, id. 8175.Google Scholar
Guirado, D., Hovenier, J. W., and Moreno, F. (2007). Circular polarization of light scattered by asymmetrical particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 6373.CrossRefGoogle Scholar
Gustafson, B. Å. S. and Kolokolova, L. (1999). A systematic study of light scattering by aggregate particles using the microwave analog technique: Angular and wavelength dependence of intensity and polarization. Journal of Geophysical Research, 104, 3171131720.Google Scholar
Hadamcik, E. and Levasseur-Regourd, A. C. (2003a). Dust coma of comet C/1999 S4 (LINEAR): Imaging polarimetry during nucleus disruption. Icarus, 166, 188194.CrossRefGoogle Scholar
Hadamcik, E. and Levasseur-Regourd, A. C. (2003b). Imaging polarimetry of cometary dust: different comets and phase angles. Journal of Quantitative Spectroscopy and Radiative Transfer, 79−80, 661678.CrossRefGoogle Scholar
Hadamcik, E. and Levasseur-Regourd, A. C. (2003c). Dust evolution of comet C/1995 O1 (Hale–Bopp) by imaging polarimetric observations. Astronomy and Astrophysics, 403, 757768.CrossRefGoogle Scholar
Hadamcik, E. and Levasseur-Regourd, A. C. (2009). Optical properties of dust from Jupiter family comets. Planetary and Space Science, 57, 11181132.CrossRefGoogle Scholar
Hadamcik, E., Levasseur-Regourd, A. C., and Renard, J. B. (1997). CCD polarimetric imaging of comet Hale–Bopp (C/1995 O1). Earth, Moon, and Planets, 78(1/3), 365371.CrossRefGoogle Scholar
Hadamcik, E., Renard, J.-B., Worms, J.-C., Levasseur-Regourd, A. C., and Masson, M. (2002). Polarization of light scattered by fluffy particles (PROGRA2 Experiment). Icarus, 155, 497508.CrossRefGoogle Scholar
Hadamcik, E., Renard, J.-B., Levasseur-Regourd, A. C., and Lasue, J. (2006). Light scattering by fluffy particles with the PROHRA2 experiment: Mixtures of materials. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 143156.CrossRefGoogle Scholar
Hadamcik, E., Levasseur-Regourd, A. C., Leroi, V., and Bardin, D. (2007a). Imaging polarimetry of the dust coma of comet Tempel 1 before and after Deep Impact. Icarus, 190, 459468.CrossRefGoogle Scholar
Hadamcik, E., Renard, J.-B., Rietmeijer, F. J. M.et al. (2007b). Light scattering by fluffy Mg-Fe-SiO and C mixtures as cometary analogs (PROGRA 2 experiment). Icarus, 190, 660671.CrossRefGoogle Scholar
Hadamcik, E., Sen, A. K., Levasseur-Regourd, A. C., Gupta, R., and Lasue, J. (2010). Polarimetric observations of comet 67P/Churyumov–Gerasimenko during its 2008–2009 apparition. Astronomy and Astrophysics, 517, A86.CrossRefGoogle Scholar
Hadamcik, E., Renard, J.-B., Levasseur-Regourd, A. C., and Lasue, J. (2011). Laboratory measurements of light scattered by clouds and layers of solid particles using an imaging technique. In Mishchenko, M., Yatskiv, Ya., Rosenbush, V., and Videen, G., eds., Polarimetric Detection, Characterization, and Remote Sensing. Dordrecht, The Netherlands: Springer, pp. 137176.CrossRefGoogle Scholar
Hadamcik, E., Sen, A. K., Levasseur-Regourd, A. C. (2013). Dust in comet Hartley 2 coma, during EPOXI mission. Icarus, 222, 774785.CrossRefGoogle Scholar
Hadamcik, E., Sen, A. K., Levasseur-Regourd, A. C.et al. (2014). Dust coma of comet C/2009 P1 (Garradd) by imaging polarimetry. Meteoritics and Planetary Science, 49, 3644.CrossRefGoogle Scholar
Hanner, M. S. (2003). The scattering properties of cometary dust. Journal of Quantitative Spectroscopy and Radiative Transfer, 79−80, 164173.Google Scholar
Hanner, M. S. and Bradley, J. P. (2004). Composition and mineralogy of cometary dust. In Festou, M., Keller, H. U., and Weaver, H. A., eds., Comets II. Tucson: University of Arizona, pp. 555564.CrossRefGoogle Scholar
Hanner, M. S., Veeder, G. J., and Tokunaga, A. T. (1992). The dust coma of Comet P/Giacobini–Zinner in the infrared. The Astronomical Journal, 104, 386393.CrossRefGoogle Scholar
Hanner, M. S., Gehrz, R. D., Harker, D. E.et al. (1997). Thermal emission from the dust coma of comet Hale–Bopp and the composition of the silicate grains. Earth, Moon, and Planets, 79, 247264.CrossRefGoogle Scholar
Harrington, D. M., Meech, K., Kolokolova, L., Kuhn, J. R., and Whitman, K. (2007). Spectropolarimetry of the Deep Impact target Comet 9P/Tempel 1 with HiVIS. Icarus, 191, 381388.CrossRefGoogle Scholar
Hoang, T. and Lazarian, A. (2014). Grain alignment by radiative torques in special conditions and implications. Monthly Notices of the Royal Astronomical Society, 438, 680703.CrossRefGoogle Scholar
Jessberger, E. K., Christoforidis, A., and Kissel, J. (1988). Aspects of the major element composition of Halley’s dust. Nature, 332(6166), 691695.CrossRefGoogle Scholar
Jewitt, D. (2004). Looking through the HIPPO: Nucleus and dust in comet 2P/Encke. The Astronomical Journal, 128, 30613069.CrossRefGoogle Scholar
Jockers, K. (1997). Observations of scattered light from cometary dust and their interpretation. Earth, Moon, and Planets, 79(1/3), 221245.CrossRefGoogle Scholar
Jockers, K., Bonev, T., Delva, M., Kiselev, N., and Petrova, E. (2001). The disintegration of comet C/1999 S4: Properties of cometary dust derived from narrow-band images of its color and polarization. Astronomishe Gesellschaft, Abstract Series, 18(139).Google Scholar
Jockers, K., Kiselev, N., Bonev, T.et al. (2005). CCD imaging and aperture polarimetry of comet 2P/Encke: Are there two polarimetric classes of comets?Astronomy and Astrophysics, 441, 773782.CrossRefGoogle Scholar
Jones, T. J. and Gehrz, R. D. (2000). Infrared imaging polarimetry of comet C/1995 01 (Hale–Bopp). Icarus, 143(2), 338346.CrossRefGoogle Scholar
Jones, T. J., Stark, D., Woodward, C. E.et al. (2008). Evidence of fragmenting dust particles from near-simultaneous optical and near-infrared photometry and polarimetry of comet 73P/Schwassmann–Wachmann 3. The Astronomical Journal, 135(4), 13181327.CrossRefGoogle Scholar
Joshi, U. C., Sen, A. K., Deshpande, M. R., and Chauhan, J. S. (1992). Photopolarimetric studies of Comet Austin. Journal of Astrophysics & Astronomy, 13(3), 267277.CrossRefGoogle Scholar
Joshi, U. C., Ganesh, S., and Baliyan, K. S. (2010). Optical polarimetry and photometry of comet 17P/Holmes. Monthly Notices of the Royal Astronomical Society, 402, 27442752.CrossRefGoogle Scholar
Kearsley, A. T., Borg, J., Graham, G. A.et al. (2008). Dust from comet Wild 2: Interpreting particle size, shape, structure, and composition from impact features on the Stardust aluminum foils. Meteoritics and Planetary Science, 43(1–2), 4173.CrossRefGoogle Scholar
Kelley, M. S., Jones, T. J., Reach, W. T., and Johnson, J. (2004). Near-infrared polarimetry and photometry of recent comets. The Astronomical Journal, 127(4), 23982405.CrossRefGoogle Scholar
Kelley, M. S., Woodward, C. E., and Jones, T. J. (2005). Polarimetry of comets in the near-IR. In Astronomical Polarimetry: Current Status and Future Directions, ASP Conference Series, Vol. 343. San Francisco, USA: Astronomical Society of the Pacific, p. 192.Google Scholar
Kikuchi, S. (2006). Linear polarization of five comets. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 179186.CrossRefGoogle Scholar
Kimura, H. (2001). Light-scattering properties of fractal aggregates: Numerical calculations by a superposition technique and discrete dipole approximation. Journal of Quantitative Spectroscopy and Radiative Transfer, 70, 581594.CrossRefGoogle Scholar
Kimura, H. and Mann, I. (2004). Light scattering by large clusters of dipoles as an analog for cometary dust aggregates. Journal of Quantitative Spectroscopy and Radiative Transfer, 89, 155164.CrossRefGoogle Scholar
Kimura, H., Kolokolova, L., and Mann, I. (2003). Optical properties of cometary dust: Constraints from numerical studies on light scattering by aggregate particles. Astronomy and Astrophysics, 407, L5L8.CrossRefGoogle Scholar
Kimura, H., Kolokolova, L., and Mann, I. (2006). Light scattering by cometary dust numerically simulated with aggregate particles consisting of identical spheres. Astronomy and Astrophysics, 449, 12431254.CrossRefGoogle Scholar
Kiselev, N. N. (1981). Polarimetric and photometric studies of comets, Ph.D. thesis, Dushanbe, 239 pp.Google Scholar
Kiselev, N. N. (2003). Light scattering by dust particles of comets, asteroids, and circumstellar shells: Observations and interpretation. Doctor degree thesis, Kharkiv National University, Kharkiv, 338 pp.Google Scholar
Kiselev, N. N. and Chernova, G. P. (1976). On a possible new version of the polarization–phase relation for comets. Astronomicheskij Tsirkulyar, 931, 57.Google Scholar
Kiselev, N. N. and Chernova, G. P. (1978). Polarization of the radiation of comet West, 1975n. Soviet Astronomy, 22, 607611.Google Scholar
Kiselev, N. N. and Chernova, G. P. (1979). Photometry and polarimetry during flares of comet Schwassmann–Wachmann I. Soviet Astronomy Letters, 5, 156159.Google Scholar
Kiselev, N. N. and Chernova, G. P. (1981). Phase functions of polarization and brightness and the nature of cometary atmosphere particles. Icarus, 48, 473481.CrossRefGoogle Scholar
Kiselev, N. and Rosenbush, V. (2004). Polarimetry of comets: Progress and problems. In Videen, G., Yatskiv, Ya., and Mishchenko, M., eds., Photopolarimetry in Remote Sensing. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 411430.Google Scholar
Kiselev, N. and Velichko, F. (1997). Aperture polarimetry and photometry of comet Hale–Bopp. Earth, Moon, and Planets, 78, 347352.CrossRefGoogle Scholar
Kiselev, N. and Velichko, F. (1998). Polarimetry and photometry of comet C/1996 B2 Hyakutake. Icarus, 133, 286292.CrossRefGoogle Scholar
Kiselev, N. N., Jockers, K., Rosenbush, V. K.et al. (2000). Anomalous wavelength dependence of polarization of Comet 21P/Giacobini–Zinner. Planetary Space Science, 48(10), 10051009.CrossRefGoogle Scholar
Kiselev, N. N., Velichko, F. P., and Velichko, S. F. (2001a). Polarimetry of comet C/1999 S4 (LINEAR) before and after disintegration. In Churyumov, K. I., ed., Fourth Vsekhsvyatsky Readings. Modern Problems of Physics and Dynamics of the Solar System. Ukraine: Kyiv University, pp. 127131.Google Scholar
Kiselev, N. N., Jockers, K., Rosenbush, V. K., and Korsun, P. P. (2001b). Analysis of polarimetric, photometric, and spectroscopic observations of comet C/1996 Q1 (Tabur). Solar System Research, 35(6), 480495.CrossRefGoogle Scholar
Kiselev, N. N., Jockers, K., and Rosenbush, V. K. (2002). Comparative study of the dust polarimetric properties in split and normal comets. Earth, Moon, and Planets, 90, 167176.CrossRefGoogle Scholar
Kiselev, N. N., Jockers, K., and Bonev, T. (2004). CCD imaging polarimetry of Comet 2P/Encke. Icarus, 168(2), 385391.CrossRefGoogle Scholar
Kiselev, N., Velichko, S., Jockers, K., Rosenbush, V., and Kikuchi, S., eds. (2006). Database of comet polarimetry. EAR-C-COMPIL-5-COMET-POLARIMETRY-V1.0.  NASA Planetary Data System.Google Scholar
Kiselev, N., Rosenbush, V., Kolokolova, L., and Antonyuk, K. (2008). The anomalous spectral dependence of polarization in comets. Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 13841391.CrossRefGoogle Scholar
Kiselev, N. N., Rosenbush, V. K., Afanasiev, V. L.et al. (2013). Linear and circular polarization of comet C/2009 P1 (Garradd). Earth, Planets and Space, 65, 11511157.CrossRefGoogle Scholar
Knacke, R. F. and Encrenaz, T. (2006). IHW comet Halley infrared polarimetry, V2.0, IHW-C-IRPOL-3-RDR-HALLEY-V2.0. NASA Planetary Data System.Google Scholar
Kolokolova, L. and Jockers, K. (1997). Composition of cometary dust from polarization spectra. Planetary and Space Science, 45, 15431550.CrossRefGoogle Scholar
Kolokolova, L. and Kimura, H. (2010a). Effects of electromagnetic interaction in the polarization of light scattered by cometary and other types of cosmic dust. Astronomy and Astrophysics, 513, id. A40.CrossRefGoogle Scholar
Kolokolova, L. and Kimura, H. (2010b). Comet dust as a mixture of aggregates and solid particles: Model consistent with ground-based and space-mission results. Earth, Planets and Space, 62, 1722.CrossRefGoogle Scholar
Kolokolova, L. and Mackowski, D. W. (2012). Polarization of light scattered by large aggregates. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 25672572.CrossRefGoogle Scholar
Kolokolova, L., Hanner, M., Levasseur-Regourd, A.-Ch., and Gustafson, B. Å. S. (2004a). Physical properties of cometary dust from light scattering and emission. In Festou, M., Keller, H. U., and Weaver, H. A., eds., Comets II. Tucson: University of Arizona Press, pp. 577604.CrossRefGoogle Scholar
Kolokolova, L., Kimura, H., and Mann, I. (2004b). Characterization of dust particles using photopolarimetric data: Example of cometary dust. In Videen, G., Yatskiv, Ya., and Mishchenko, M., eds., Photopolarimetry in Remote Sensing. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 431454.Google Scholar
Kolokolova, L., Kimura, H., Kiselev, N., and Rosenbush, V. (2007). Polarimetric and infrared evidence of two types of dust in comets. Astronomy and Astrophysics, 463, 11891196.CrossRefGoogle Scholar
Kolokolova, L., Sparks, W., and Mackowski, D. (2011a). Astrobiological remote sensing with circular polarization. In Mishchenko, M., Yatskiv, Ya., Rosenbush, V., and Videen, G., eds., Polarimetric Detection, Characterization, and Remote Sensing. Dordrecht, The Netherlands: Springer, pp. 277293.CrossRefGoogle Scholar
Kolokolova, L., Petrova, E., and Kimura, H. (2011b). Effects of interaction of electromagnetic waves in complex particles. In Zhurbenko, V., ed., Electromagnetic Waves. Vienna: InTech, ISSN 978-953-307-304-0, pp. 173202.Google Scholar
Lasue, J. and Levasseur-Regourd, A. C. (2006). Porous irregular aggregates of sub-micron sized grains to reproduce cometary dust light scattering observations. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 220236.CrossRefGoogle Scholar
Lasue, J., Levasseur-Regourd, A. C., Fray, N., and Cottin, H. (2007). Inferring the interplanetary dust properties from remote observations and simulations. Astronomy and Astrophysics, 473, 641649.CrossRefGoogle Scholar
Lasue, J., Levasseur-Regourd, A. C., Hadamcik, E., and Alcouffe, G. (2009). Cometary dust properties retrieved from polarization observations: Application to C/1995 O1 Hale–Bopp and 1P/Halley. Icarus, 199, 129144.CrossRefGoogle Scholar
Le Borgne, J. F. and Crovisier, J. (1987). Polarization of molecular fluorescence bands in comets: Recent observations and interpretation. In Proceedings of the International Symposium on the Diversity and Similarity of Comets. ESA-278. European Space Agency, pp. 171175.Google Scholar
Le Borgne, J. F., Leroy, J. L., and Arnaud, J. (1987). Polarimetry of visible and near-UV molecular bands: Comet P/Halley and Hartley–Good. Astronomy and Astrophysics, 173, 180182.Google Scholar
Levasseur-Regourd, A. C. (1995). Physical properties of dust grains deduced by optical probing techniques. Advances in Space Research, 17, 117122.CrossRefGoogle Scholar
Levasseur-Regourd, A. C. (1999). Polarization of light scattered by cometary dust particles: Observations and tentative interpretations. Space Science Reviews, 90, 163168.CrossRefGoogle Scholar
Levasseur-Regourd, A. C. (2011). Inferring properties of dust within small bodies of the solar system through observations and simulations of the linear polarization of scattered solar light. In Mishchenko, M., Yatskiv, Ya., Rosenbush, V., and Videen, G., eds., Polarimetric Detection, Characterization, and Remote Sensing. Dordrecht, The Netherlands: Springer, pp. 296312.Google Scholar
Levasseur-Regourd, A. C. (2014). Polarimetry of solar system bodies. Journal of Quantitative Spectroscopy and Radiative Transfer, submitted.Google Scholar
Levasseur-Regourd, A. C. and Hadamcik, E. (2003). Light scattering by irregular dust particles in the solar system: Observations and interpretation by laboratory measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 79–80, 903910.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Bertaux, J. L., Dumont, R.et al. (1985a). The Giotto optical probe experiment. ESA Special Publication, ESA SP-1077, 187193.Google Scholar
Levasseur-Regourd, A.-C., Bertaux, J.-J., Weinberg, J. L., Dumont, R., and Festou, M. (1985b). In-situ photopolarimetric measurements of dust and gas in the coma of Halley’s Comet. Advances in Space Research, 5(12), 197199.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Bertaux, J. L., Dumont, R.et al. (1986). Optical probing of comet Halley from the Giotto spacecraft. Nature, 321, 341344.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Dumont, R., and Renard, J. B. (1990). A comparison between polarimetric properties of cometary dust and interplanetary dust particles. Icarus, 86, 264272.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Goidet, B., Le Duin, T.et al. (1993). Optical probing of dust in comet Grigg–Skjellerup from the Giotot spacecraft. Planetary and Space Science, 41(2), 167169.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Hadamcik, E., and Renard, J. B. (1996). Evidence of two classes of comets from their polarimetric properties at large phase angles. Astronomy and Astrophysics, 313, 327333.Google Scholar
Levasseur-Regourd, A. C., McBride, N., Hadamcik, E., and Fulle, M. (1999a). Similarities between in situ measurements of local dust scattering and dust flux impact data within the coma of 1P/Halley. Astronomy and Astrophysics, 348, 636641.Google Scholar
Levasseur-Regourd, A. C., Cabane, M., and Haudebourg, V. (1999b). Observational evidence for the scattering properties of interplanetary and cometary dust. Journal of Quantitative Spectroscopy and Radiative Transfer, 63, 631641.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Hadamcik, E., and Lasue, J. (2005). Light scattering as a clue to cometary dust structure. Highlights of Astronomy, 13, 498500.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Zolensky, M., and Lasue, J. (2008). Dust in cometary comae: Present understanding of the structure and composition of dust particles. Planetary and Space Science, 56, 17191724.CrossRefGoogle Scholar
Li, A. and Greenberg, J. M. (1998). From interstellar dust to comets: Infrared emission from comet Hale–Bopp (C/1995 O1). The Astrophysical Journal, 498, L83L87.CrossRefGoogle Scholar
Lisse, C. (2002). On the role of dust mass loss in the evolution of comets and dusty disk systems. Earth, Moon, and Planets, 90, 497506.CrossRefGoogle Scholar
Lisse, C. M., A’Hearn, M. F., Fernández, Y. R., and Peschke, S. B. (2002). A search for trends in cometary dust emission. In Green, S. F., Williams, I. P., McDonnell, J. A. M., and McBride, N., eds., Dust in the Solar System and Other Planetary Systems. Oxford: Pergamon, p. 259.Google Scholar
Lumme, K. and Muinonen, K. (1993). A two-parameter system for linear polarization of some solar system objects. In IAU Symposium 160: Asteroids, Comets, Meteors, LPI Contribution 810. Houston: LPI, pp. 194197.Google Scholar
Lumme, K. and Rahola, J. (1994). Light scattering by porous dust particles in the discrete-dipole approximation. The Astrophysical Journal, 425, 653667CrossRefGoogle Scholar
Lyot, B. (1934). Polarisation des petites planètes. Comptes Rendus de l’Académie des sciences, 199, 774782.Google Scholar
Mackowski, D. W. and Mishchenko, M. I. (1996). Calculation of the T matrix and the scattering matrix for ensembles of spheres. Journal of the Optical Society of America A, 13, 22662278.CrossRefGoogle Scholar
Mackowski, D. W. and Mishchenko, M. I. (2011). A multiple sphere T-matrix Fortran code for use on parallel computer clusters. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 21822192. Available online at www.eng.auburn.edu/users/dmckwski/scatcodes/ (accessed January 14, 2015).CrossRefGoogle Scholar
Manset, N. and Bastien, P. (2000). Polarimetric observations of comets C/1995 O1 Hale–Bopp and C/1996 B2 Hyakutake. Icarus, 145, 203219.CrossRefGoogle Scholar
McBride, N., Green, S. F., Levasseur-Regourd, A. C., Goidet- Devel, B., and Renard, J.-B. (1997). The inner dust coma of comet 26P/Grigg–Skjellerup: Multiple jets and nucleus fragments?Monthly Notices of the Royal Astronomical Society, 289, 535553.CrossRefGoogle Scholar
McDonnell, J. A. M., Lamy, P. L., and Pankiewicz, G. S. (1991). Physical properties of cometary dust. In Comets in Post-Halley Era, I. Dordrecht, the Netherlands: Kluwer, pp. 10431074.Google Scholar
Meech, K. J., A’Hearn, M. F., Adams, J. A.et al. (2011). EPOXI: Comet 103P/Hartley 2 observations from a worldwide campaign. The Astrophysical Journal Letters, 734, L1L9.CrossRefGoogle Scholar
Metz, K. and Haefner, R. (1987). Circular polarization near the nucleus of Comet P/Halley. Astronomy and Astrophysics, 187(1–2), 539542.Google Scholar
Michalsky, J. J. (1981). Optical polarimetry of Comet West 1976 VI. Icarus, 47, 388396.CrossRefGoogle Scholar
Mirzoyan, L. V. and Khachikian, E. (1959). The investigation of Comet Mrkos 1957d. I. Byurakan Observatory Report, 26, 3552.Google Scholar
Mishchenko, M., Travis, L. D., and Mackowski, D. W. (1996). T-matrix computations of light scattering by nonspherical particles: A review. Journal of Quantitative Spectroscopy and Radiative Transfer, 55, 535575. Available online at www.giss.nasa.gov/staff/mmishchenko/t_matrix.html (accessed January 14, 2015).CrossRefGoogle Scholar
Mishchenko, M. I., Travis, L. D., and Lacis, A. A. (2002). Scattering, Absorption, and Emission of Light by Small Particles. New York: Cambridge University Press.Google Scholar
Mishchenko, M. I., Rosenbush, V. K., Kiselev, N. N.et al. (2010). Polarimetric Remote Sensing of Solar System Objects. Kyiv: Akademperiodika.CrossRefGoogle Scholar
Moreno, F., Munoz, O., Guirado, D., and Vilaplana, R. (2007). Comet dust as a size distribution of irregularly shaped, compact particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 348359.CrossRefGoogle Scholar
Morozhenko, A. V., Kiselev, N. N., and Gural’chuk, A. L. (1987). On the circular polarization of comet Halley head. Kinematika i Fizika Nebesnykh Tel, 3, 8990.Google Scholar
Mukai, T., Mukai, S., and Kikuchi, S. (1987). Complex refractive index of grain material deduced from the visible polarimetry of comet P/Halley. Astronomy and Astrophysics, 187, 650–652.Google Scholar
Mumma, M. J., Dello Russo, N., DiSanti, M. A.et al. (2001). Organic composition of C/1999 S4 (LINEAR): A comet formed near Jupiter?Science, 292(5520), 13341339.CrossRefGoogle ScholarPubMed
Muñoz, O., Volten, H., de Haan, J. F., Vassen, W., and Hovenier, J. W. (2000). Experimental determination of scattering matrices of olivine and Allende meteorite particles. Astronomy and Astrophysics, 360, 777788.Google Scholar
Myers, R. V. and Nordsieck, K. H. (1984). Spectropolarimetry of comets Austin and Churyumov–Gerasimenko. Icarus, 58, 431439.CrossRefGoogle Scholar
Nagdimunov, L., Kolokolova, L., and Sparks, W. (2013). Polarimetric technique to study (pre)biological organics in cosmic dust and planetary aerosols. Earth, Planets and Space, 65(10), 11671173.CrossRefGoogle Scholar
Noguchi, K., Sato, S., Maihara, T., Okuda, H., and Uyama, K. (1974). Infrared photometric and polarimetric observations of Comet Kohoutek 1973f. Icarus, 23, 545550.CrossRefGoogle Scholar
Öhman, Y. (1939). On some observations made with a modified Pickering polarigraph. Monthly Notices of the Royal Astronomical Society, 99, 624634.CrossRefGoogle Scholar
Öhman, Y. (1941). Measurements of polarization in the spectra of comet Cunningham (1940 C) and comet Paraskevopoulos (1941C). Stockholms Observatoriums Annaler, 13, 120.Google Scholar
Oishi, M., Kawara, K., Kobayashi, Y.et al. (1978). Infrared observations of Comet West (1975n). I. Observational results. Publications of the Astronomical Society of Japan, 30, 149160.Google Scholar
Osborn, W. H., A’Hearn, M. F., Carsenty, U.et al. (1990). Standard stars for photometry of comets. Icarus, 88, 228245.CrossRefGoogle Scholar
Penttilä, A., Lumme, K., Hadamcik, E., and Levasseur-Regourd, A.-C. (2005). Statistical analysis of asteroidal and cometary polarization phase curves. Astronomy and Astrophysics, 432, 10811090.CrossRefGoogle Scholar
Petrova, E. V., Jockers, K., and Kiselev, N. (2000). Light scattering by aggregates with sizes comparable to the wavelength: an application to cometary dust. Icarus, 148, 526536.CrossRefGoogle Scholar
Petrova, E. V., Tishkovets, V. P., and Jockers, K. (2004). Polarization of light scattered by solar system bodies and the aggregate model of dust particles. Solar System Research, 38, 354371.CrossRefGoogle Scholar
Pontoppidan, K. M. and Brearley, A. J. (2010). Dust particle size evolution. In Apai, D. and Lauretta, D., eds., Protoplanetary Dust. Cambridge University Press, pp. 191229.CrossRefGoogle Scholar
Renard, J. B., Levasseur-Regourd, A. C., and Dollfus, A. (1992). Polarimetric CCD imaging of comet Levy. Annales Geophysicae, 10, 288292.Google Scholar
Renard, J. B., Hadamcik, E., and Levasseur-Regourd, A. C. (1996). Polarimetric CCD imaging of comet 47P/Ashbrook–Jackson and variability of polarization in the inner coma of comets. Astronomy and Astrophysics, 316, 263269.Google Scholar
Richter, I., Koenders, C., Glassmeier, K. H., Tsurutani, B. T., and Goldstein, R. (2011). Deep Space 1 at comet 19P/Borrelly: Magnetic field and plasma observations. Planetary and Space Science, 59(8), 691698.CrossRefGoogle Scholar
Rosenbush, V. K., Rosenbush, A. E., and Dement’ev, M. S. (1994). Comets Okazaki–Levy–Rudenko (1989 XIX) and Levy (1990 XX): Polarimetry and stellar occultations. Icarus, 108, 8191.CrossRefGoogle Scholar
Rosenbush, V. K., Shakhovskoy, N. M., and Rosenbush, A. E. (1997). Polarimetry of Comet Hale–Bopp: Linear and circular polarization, stellar occultation. Earth, Moon, and Planets, 78, 373379.CrossRefGoogle Scholar
Rosenbush, V. K., Kiselev, N. N., and Velichko, S. F. (2002). Polarimetric and photometric observations of split comet C/2001 A2 (LINEAR). Earth, Moon, and Planets, 90, 423433.CrossRefGoogle Scholar
Rosenbush, V., Kolokolova, L., Lazarian, A., Shakhovskoy, N., and Kiselev, N. (2007a). Circular polarization in comets: Observations of comet C/1999 S4 (LINEAR) and tentative interpretation. Icarus, 186, 317330.CrossRefGoogle Scholar
Rosenbush, V., Kiselev, N., Shakhovskoy, N., Kolesnikov, S., and Breus, V. (2007b). Circular and linear polarization of comet C/2001 Q4 (NEAT). Why circular polarization in comets is predominantly left-handed? In Videen, G., Mishchenko, M., Mengüҁ, M. P. and Zakharova, N., eds., Proceedings of the Tenth Conference on Electromagnetic and Light Scattering, Bodrum, Turkey. IHMT, pp. 181184.CrossRefGoogle Scholar
Rosenbush, V., Kiselev, N., Kolokolova, L.et al. (2008a). Atypical polarization in some recent comets. In Proceedings of the 11th Conference on Electromagnetic and Light Scattering, Hertfordshire, UK. IHMT, pp. 193196.Google Scholar
Rosenbush, V., Kiselev, N., Antoniuk, K., and Kolesnikov, S. (2008b). Optical properties of recent bright comets C/2001 Q4 (NEAT), 73P/Schwassmann–Wachmann 3, 17P/Holmes, and 8P/Tuttle derived from aperture and imaging polarimetry. LPI Contr. No. 1405, ID 8393. Houston: LPI.Google Scholar
Rosenbush, V., Kiselev, N., and Kolokolova, L. (2008c). Predominantly left-handed circular polarization in comets: does it indicate L-enantiomeric excess in cometary organics? In S. Kwok and S. Sandford, eds., Proceedings of the IAU Symposium on Organic Matter in Space, Vol. 251. Hong Kong, China, pp. 311312.Google Scholar
Rosenbush, V., Kiselev, N., Kolokolova, L.et al. (2009). Polarization properties of odd comet 17P/Holmes. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 17191725.CrossRefGoogle Scholar
Rosenbush, V., Afanasiev, V., and Kiselev, N. (2013). One more evidence of left-handed circular polarization in comets: Comet C/2009 P1 (Garradd). In Electromagnetic & Light Scattering XIV, Abstracts, 51.Google Scholar
Scarrott, S. M., Warren-Smith, R. F., Pallister, W. S., Axon, D. J., and Bingham, R. G. (1983). Electronographic polarimetry – The Durham polarimeter. Monthly Notices of the Royal Astronomical Society, 204, 11631177.CrossRefGoogle Scholar
Schulz, R., Hilchenbach, M., Langevin, Y.et al. (2015). Comet 67P/Churyumov-Gerasimenko sheds dust coat accumulated over the past four years. Nature, 518, 216218.CrossRefGoogle ScholarPubMed
Sephton, M. (2002). Organic compounds in carbonaceous meteorite. Natural Product Reports, 19, 292311.CrossRefGoogle Scholar
Shen, Y., Draine, B. T., and Johnson, E. T. (2009). Modeling porous dust grains with ballistic aggregates. II. Light scattering properties. The Astrophysical Journal, 696, 21262137.CrossRefGoogle Scholar
Sitko, M., Lynch, D., Russell, R., and Hanner, M. (2004). 3–14 micron spectroscopy of comets C/2002 O4 (Hönig), C/2002 V1 (NEAT), C/2002 X5 (Kudo–Fujikawa), C/2002 Y1 (Juels–Holvorcem), and 69P/Taylor and the relationships among grain temperature, silicate band strength, and structure among comet families. The Astrophysical Journal, 612, 576587.CrossRefGoogle Scholar
Swamy, K. S. K. (1986). Physics of Comets. Singapore: World Scientific Publication.CrossRefGoogle Scholar
Tozzi, G. P., Cimatti, A., di Serego Alighieri, S., and Cellino, A. (1997). Imaging polarimetryof comet C/1996 B2 (Hyakutake) at the perigee. Planetary and Space Science, 45, 535540.CrossRefGoogle Scholar
Tozzi, G. P., Bagnulo, S., Boehnhardt, H.et al. (2006). Observations of comet 73P/SW3 at its closest approach to the Earth. In Proceedings of the European Planetary Science Congress 2006. Berlin, Germany, p. 725.Google Scholar
Tozzi, G. T., Bagnulo, S., Boehnhardt, H., and Kolokolova, L. (2012). Polarimetry of Comet 9P/Tempel 1 around the epoch of the Deep Impact Event. Geophysical Research Abstracts, 14, EGU201211671.Google Scholar
Van de Hulst, H. C. (1957). Light Scattering by Small Particles. New York: John Wiley & Sons, Inc.CrossRefGoogle Scholar
Weaver, H. A., Chin, G., Bockelée–Morvan, D.et al. (1999). An infrared investigation of volatiles in comet 21P/Giacobini–Zinner. Icarus, 142(2), 482497.CrossRefGoogle Scholar
Weiss-Wrana, K. (1983). Optical properties of interplanetary dust − Comparison with light scattering by larger meteoritic and terrestrial grains. Astronomy and Astrophysics, 126, 240250.Google Scholar
Whipple, F. L. (1957). Some problems of meteor astronomy (Introductory Lecture). In Van de Hulst, H. Ch., ed., Radio Astronomy. Proceedings of the 4th IAU Symposium. Cambridge University Press, pp. 375389.Google Scholar
Wolf, G. W. (1972). A search for elliptical polarization in starlight. The Astronomical Journal, 77, 576583.CrossRefGoogle Scholar
Woodward, C. E., Jones, T. J., Brown, B.et al. (2011). Dust in Comet C/2007 N3 (Lulin). The Astronomical Journal, 141(6), 181190.CrossRefGoogle Scholar
Xing, Z. and Hanner, M. S. (1997). Light scattering by aggregate particles. Astronomy and Astrophysics, 324, 805820.Google Scholar
Yurkin, M. A. and Hoekstra, A. G. (2007). The discrete dipole approximation: An overview and recent developments. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 558589.CrossRefGoogle Scholar
Zubko, E., Petrov, D., Shkuratov, Y., and Videen, G. (2005). Discrete dipole approximation simulations of scattering by particles with hierarchical structure. Applied Optics, 44, 64796485.CrossRefGoogle ScholarPubMed
Zubko, E., Shkuratov, Y., Kiselev, N. N., and Videen, G. (2006). DDA simulations of light scattering by small irregular particles with various structure. Journal of Quantitative Spectroscopy and Radiative Transfer, 101(3), 416434.CrossRefGoogle Scholar
Zubko, E., Furusho, R., Kawabata, K.et al. (2011). Interpretation of photo-polarimetric observations of comet 17P/Holmes. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 18481863.CrossRefGoogle Scholar
Zubko, E., Muinonen, K., Shkuratov, Y.et al. (2012). Evaluating the carbon depletion found by the Stardust mission in Comet 81P/Wild 2. Astronomy and Astrophysics, 544, L8L11.CrossRefGoogle Scholar

References

Albrecht, R., Barbieri, C., Adorf, H.-M.et al. (1994). High-resolution imaging of the Pluto–Charon system with the Faint Object Camera of the Hubble Space Telescope. The Astrophysical Journal, 435, L75L78.CrossRefGoogle Scholar
Alvarez-Candal, A., Barucci, M. A., Merlin, F., Guilbert, A., and de Bergh, C. (2007). A search for rotational variations on trans-Neptunian objects. Astronomy and Astrophysics, 475, 369374.CrossRefGoogle Scholar
Appenzeller, I. (1967). A new polarimeter for faint astronomical objects. Publications of the Astronomical Society, 79, 136139.CrossRefGoogle Scholar
Appenzeller, I., Fricke, K., Fürtig, W.et al. (1998). Successful commissioning of FORS1 − the first optical instrument on the VLT. The Messenger, 94, 16.Google Scholar
Avramchuk, V. V., Rakhimov, V. Iu., Chernova, G. P., and Shavlovskii, V. I. (1992). Photometry and polarimetry of Pluto near its perihelion. Kinematics and Physics of Celestial Bodies, 8, 3037.Google Scholar
Bagnulo, S., Boehnhardt, H., Muinonen, K.et al. (2006). Exploring the surface properties of Transneptunian Objects and Centaurs with polarimetric FORS1/VLT observations. Astronomy and Astrophysics, 450, 12391248.CrossRefGoogle Scholar
Bagnulo, S., Belskaya, I., Muinonen, K.et al. (2008). Discovery of two distinct polarimetric behaviours of trans-Neptunian objects. Astronomy and Astrophysics, 491, L33L36.CrossRefGoogle Scholar
Bagnulo, S., Landolfi, M., Landstreet, J. D.et al. (2009). Stellar spectropolarimetry with retarder waveplate and beam splitter devices. Publications of the Astronomical Society of the Pacific, 121, 9931015.CrossRefGoogle Scholar
Bagnulo, S., Tozzi, G. P., Boehnhardt, H., Vincent, J.-B., and Muinonen, K. (2010). Polarimetry and photometry of the peculiar main-belt object 7968 = 133P/Elst–Pizarro. Astronomy and Astrophysics, 514, A99, pp. 13.CrossRefGoogle Scholar
Bagnulo, S., Belskaya, I., Boehnhardt, H.et al. (2011). Polarimetry of small objects of the solar system with large telescope. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 20592067.CrossRefGoogle Scholar
Barkume, K. M., Brown, M. E., and Schaller, E. L. (2008). Near-infrared spectra of Centaurs and Kuiper Belt objects. The Astronomical Journal, 135, 5567.CrossRefGoogle Scholar
Barucci, M.-A., Boehnhardt, H., Cruikshank, D. P., and Morbidelli, A., eds. (2008). The Solar System Beyond Neptune. Tucson: University of Arizona Press.Google Scholar
Barucci, M. A., Alvarez-Candal, A., Merlin, F.et al. (2011). New insights on ices in Centaur and Transneptunian populations. Icarus, 214, 297307.CrossRefGoogle Scholar
Belskaya, I. N., ed. (2013). Polarimetry of Transneptunian Objects and Centaurs V3.0. EAR-A-COMPIL-3-TNO-CEN-POLARIM-V3.0. NASA Planetary Data System.Google Scholar
Belskaya, I. N., Ortiz, J. L., Rousselot, P.et al. (2006). Low phase angle effects in photometry of trans-Neptunian objects: 20000 Varuna and 1996 TO66. Icarus, 184, 277284.CrossRefGoogle Scholar
Belskaya, I., Bagnulo, S., Muinonen, K.et al. (2008a). Polarimetry of the dwarf planet (136199) Eris. Astronomy and Astrophysics, 479, 265269.CrossRefGoogle Scholar
Belskaya, I. N., Levasseur-Regourd, A.-C., Shkuratov, Y. G., and Muinonen, K. (2008b). Surface properties of Kuiper Belt objects and Centaurs from photometry and polarimetry. In Barucci, M.-A., Boehnhardt, H., Cruikshank, D. P., and Morbidelli, A., eds., The Solar System Beyond Neptune. Tucson: University of Arizona Press, pp. 115127.Google Scholar
Belskaya, I. N., Bagnulo, S., Barucci, M. A.et al. (2010). Polarimetry of Centaurs (2060) Chiron, (5145) Pholus and (10199) Chariklo. Icarus, 210, 472479.CrossRefGoogle Scholar
Belskaya, I. N., Bagnulo, S., Stinson, A.et al. (2012). Polarimetry of trans-Neptunian objects (136472) Makemake and (90482) Orcus. Astronomy and Astrophysics, 547, id. A101.CrossRefGoogle Scholar
Boehnhardt, H., Bagnulo, S., Muinonen, K.et al. (2004). Surface characterization of 28978 Ixion (2001 KX76). Astronomy and Astrophysics, 415, L21L25.CrossRefGoogle Scholar
Boehnhardt, H., Tozzi, G. P., Bagnulo, S.et al. (2008). Photometry and polarimetry of the nucleus of comet 2P/Encke. Astronomy and Astrophysics, 489, 13371343.CrossRefGoogle Scholar
Braga-Ribas, F., Sicardy, B., Ortiz, J. L.et al. (2013). The size, shape, albedo, density, and atmospheric limit of transneptunian object (50000) Quaoar from multi-chord stellar occultations. The Astrophysical Journal, 773, id. 26, 13 pp.CrossRefGoogle Scholar
Breger, M. and Cochran, W. D. (1982). Polarimetry of Pluto. Icarus, 49, 120124.CrossRefGoogle Scholar
Brown, M. E. (2008). The largest Kuiper Belt objects. In Barucci, M.-A., Boehnhardt, H., Cruikshank, D. P., and Morbidelli, A., eds., The Solar System Beyond Neptune. Tucson: University of Arizona Press, pp. 335344.Google Scholar
Brown, M. E., Trujillo, C., and Rabinowitz, D. L. (2005). Discovery of a planetary-sized object in the scattered Kuiper belt. The Astrophysical Journal Letters, 635, L97L100.CrossRefGoogle Scholar
Brown, M. E., Barkume, K. M., Ragozzine, D., andSchaller, E. L. (2007a). A collisional family of icy objects in the Kuiper belt. Nature, 446, 294296.CrossRefGoogle ScholarPubMed
Brown, M. E., Barkume, K. M., Blake, G. A. (2007b). Methane and ethane on the bright Kuiper Belt object 2005 FY9. The Astronomical Journal, 133, 284289.CrossRefGoogle Scholar
Brown, M. E., Ragozzine, D., Stansberry, J., and Fraser, W. C. (2010). The size, density, and formation of the Orcus-Vanth system in the Kuiper Belt. The Astronomical Journal, 139, 27002705.CrossRefGoogle Scholar
Buie, M. W., Grundy, W. M., Young, E. F., Young, L. A., and Stern, S. A. (2010). Pluto and Charon with the Hubble Space Telescope. I. Monitoring global change and improved surface properties from light curves. The Astronomical Journal, 139, 11171127.CrossRefGoogle Scholar
Buratti, B. J., Bauer, J. M., Hicks, M. D.et al. (2011). Photometry of Triton 1992–2004: Surface volatile transport and discovery of a remarkable opposition surge. Icarus, 212, 835846.CrossRefGoogle Scholar
Bus, S. J. and Binzel, R. P. (2002). Phase II of the small main-belt asteroid spectroscopic survey: A feature-based taxonomy. Icarus, 158, 146177.CrossRefGoogle Scholar
Carry, B., Hestroffer, D., DeMeo, F. E.et al. (2011). Integral-field spectroscopy of (90482) Orcus-Vanth. Astronomy and Astrophysics, 534, id. A115.CrossRefGoogle Scholar
Choi, Y. J., Brosch, N., and Prialnik, D. (2003). Rotation and cometary activity of KBO (29981) 1999 TD10. Icarus, 165, 101111.CrossRefGoogle Scholar
Cruikshank, D. P., Roush, T. L., Bartholomew, M. J.et al. (1998). The composition of Centaur 5145 Pholus. Icarus, 135, 389407.CrossRefGoogle Scholar
Dalle Ore, C. M., Barucci, M. A., Emery, J. P.et al. (2009). Composition of KBO (50000) Quaoar. Astronomy and Astrophysics, 501, 349357.CrossRefGoogle Scholar
Dougherty, I. M. and Geake, J. E. (1994). Polarization by frost formed at very low temperatures, as relevant to icy planetary surfaces. Monthly Notices of the Royal Astronomical Society, 271, 343354.CrossRefGoogle Scholar
Duffard, R., Lazzaro, D., Pinto, S.et al. (2002). New activity of Chiron: Results from 5 years of photometric monitoring. Icarus, 160, 4451.CrossRefGoogle Scholar
Duffard, R., Pinilla-Alonso, N., Santos-Sanz, P.et al. (2014). TNOs are cool: A survey of the transneptunian region: A Herschel-PACS view of 16 Centaurs. Astronomy and Astrophysics, 564, A92.CrossRefGoogle Scholar
Emel’yanenko, V. V., Asher, D. J., and Bailey, M. E. (2005). Centaurs from the Oort cloud and the origin of Jupiter-family comets. Monthly Notices of the Royal Astronomical Society, 361, 13451351.CrossRefGoogle Scholar
Fornasier, S., Doressoundiram, A., Tozzi, G. P.et al. (2004). ESO Large Program on physical studies of Trans-Neptunian objects and Centaurs: Final results of the visible spectrophotometric observations. Astronomy and Astrophysics, 421, 353363.CrossRefGoogle Scholar
Fornasier, S., Barucci, M. A., de Bergh, C.et al. (2009). Visible spectroscopy of the new ESO large programme on trans-Neptunian objects and Centaurs: Final results. Astronomy and Astrophysics, 508, 457465.CrossRefGoogle Scholar
Fornasier, S., Lellouch, E., Müller, T.et al. (2013). TNOs are cool: A survey of the trans-Neptunian region. VIII. Combined Herschel PACS and SPIRE observations of nine bright targets at 70–500 μm. Astronomy and Astrophysics, 555, A15, 12 pp.CrossRefGoogle Scholar
Fossati, L., Bagnulo, S., Mason, E., and Landi Degl’Innocenti, E. (2007). Standard stars for linear polarization observed with FORS1. In Sterken, C., ed., The Future of Photometric, Spectrophotometric and Polarimetric Standardization. San Francisco: Astronomical Society of Pacific, pp. 503507.Google Scholar
Fraser, W. C., Trujillo, C., Stephens, A. W.et al. (2013). Limits on Quaoar’s atmosphere. The Astrophysical Journal Letters, 774, id. L18, 4 pp.CrossRefGoogle Scholar
Fulchignoni, M., Belskaya, I., Barucci, M. A., De Santis, M. C., and Doressoundiram, A. (2008). Transneptunian object taxonomy. In Barucci, M.-A., Boehnhardt, H., Cruikshank, D. P., and Morbidelli, A., eds., The Solar System Beyond Neptune. Tucson: University of Arizona Press, pp. 181192.Google Scholar
Gladman, B., Marsden, B. G., and Vanlaerhoven, C. (2008). Nomenclature in the Outer Solar System. In: Barucci, M.-A., Boehnhardt, H., Cruikshank, D. P., and Morbidelli, A., eds., The Solar System Beyond Neptune. Tucson: University of Arizona Press, pp. 4357.Google Scholar
Guilbert, A., Barucci, M. A., Brunetto, R.et al. (2009). A portrait of Centaur 10199 Chariklo. Astronomy and Astrophysics, 501, 777784.CrossRefGoogle Scholar
Jewitt, D. C. and Luu, J. X. (1993). Discovery of the candidate Kuiper belt object 1992 QB1. Nature, 362, 730732.CrossRefGoogle Scholar
Jewitt, D. C. and Luu, J. (2004). Crystalline water ice on the Kuiper belt object (50000) Quaoar. Nature, 432, 731733.CrossRefGoogle ScholarPubMed
Kelsey, J. D. and Fix, L. A. (1973). Polarimetry of Pluto. The Astrophysical Journal, 184, 633636.Google Scholar
Lacerda, P., Jewitt, D., and Peixinho, N. (2008). High-precision photometry of extreme KBO 2003 EL61. The Astronomical Journal, 135, 17491756.CrossRefGoogle Scholar
Lellouch, E., Santos-Sanz, P., Lacerda, P.et al. (2013). TNOs are cool: A survey of the trans-Neptunian region. IX. Thermal properties of Kuiper belt objects and Centaurs from combined Herschel and Spitzer observations. Astronomy and Astrophysics, 557, id. A60, 19 pp.CrossRefGoogle Scholar
Luu, J., Jewitt, D., and Trujillo, C. (2000). Water ice in 2060 Chiron and its implications for Centaurs and Kuiper belt objects. The Astrophysical Journal Letters, 531, L151L154.CrossRefGoogle ScholarPubMed
Merlin, F., Alvarez-Candal, A., Delsanti, A.et al. (2009). Stratification of methane ice on Eris’ surface. The Astronomical Journal, 137, 315328.CrossRefGoogle Scholar
Merlin, F., Barucci, M. A., de Bergh, C.et al. (2010). Chemical and physical properties of the variegated Pluto and Charon surfaces. Icarus, 210, 930943.CrossRefGoogle Scholar
Merlin, F., Quirico, E., Barucci, M. A., and de Bergh, C. (2012). Methanol ice on the surface of minor bodies in the solar system. Astronomy and Astrophysics, 544, A20, 8 pp.CrossRefGoogle Scholar
Muinonen, K. (2004). Coherent backscattering of light by complex random media of spherical scatterers: Numerical solution. Waves in Random Media, 14(3), 365388.CrossRefGoogle Scholar
Noll, K. S., Grundy, W. M., Schlichting, H., Murray-Clay, R., and Benecchi, S. D. (2012). (38628) Huya. International Astronomical Union Circulars, 9253, 2.Google Scholar
Ortiz, J. L., Sicardy, B., Braga-Ribas, F.et al. (2012). Albedo and atmospheric constraints of dwarf planet Makemake from a stellar occultation. Nature, 491, 566569.CrossRefGoogle ScholarPubMed
Pinilla-Alonso, N., Brunetto, R., Licandro, J.et al. (2009). The surface of (136108) Haumea (2003 EL61), the largest carbon-depleted object in the trans-Neptunian belt. Astronomy and Astrophysics, 496, 547556.CrossRefGoogle Scholar
Rabinowitz, D. L., Schaefer, B. E., and Tourtellotte, S. W. (2007). The diverse solar phase curves of distant icy bodies. I. Photometric observations of 18 trans-Neptunian objects, 7 Centaurs, and Nereid. The Astronomical Journal, 133, 2643.CrossRefGoogle Scholar
Rousselot, P., Levasseur-Regourd, A. C., Muinonen, K., and Petit, J.-M. (2005). Polarimetric and photometric phase effects observed on transneptunian object (29981) 1999 TD10. Earth, Moon, and Planets, 97, 353364.CrossRefGoogle Scholar
Santoz-Sans, P., Lellouch, E., Fornasier, S.et al. (2012). TNOs are cool: A survey of the trans-Neptunian region. IV. Size/albedo characterization of 15 scattered disk and detached objects observed with Herschel-PACS. Astronomy and Astrophysics, 541, id. A92, 18 pp.Google Scholar
Scarrott, S. M., Warren-Smith, R. F., Pallister, W. S., Axon, D. J., and Bingham, R. G. (1983). Electronographic polarimetry – The Durham polarimeter. Monthly Notices of the Royal Astronomical Society, 204, 11631177.CrossRefGoogle Scholar
Shkuratov, Yu. G., Muinonen, K., Bowell, E.et al. (1994). A critical review of theoretical models for the negative polarization of light scattered by atmosphereless solar system bodies. Earth, Moon, and Planets, 65(3), 201246.CrossRefGoogle Scholar
Shkuratov, Yu., Ovcharenko, A., Zubko, E.et al. (2002). The opposition effect and negative polarization of structurally simulated planetary regoliths. Icarus, 159, 396416.CrossRefGoogle Scholar
Sicardy, B., Ortiz, J. L., Assafin, M.et al. (2011). A Pluto-like radius and a high albedo for the dwarf planet Eris from an occultation. Nature, 478, 493496.CrossRefGoogle Scholar
Stansberry, J., Grundy, W., Brown, M.et al. (2008). Physical properties of Kuiper belt and Centaurs objects: Constraints from Spitzer space telescope. In Barucci, M.-A., Boehnhardt, H., Cruikshank, D. P., and Morbidelli, A., eds., The Solar System Beyond Neptune. Tucson: University of Arizona Press, pp. 161179.Google Scholar
Stern, S. A. and Trafton, L. M. (2008). On the atmospheres of objects in the Kuiper Belt. In Barucci, M.-A., Boehnhardt, H., Cruikshank, D. P., and Morbidelli, A., eds., The Solar System Beyond Neptune. Tucson: University of Arizona Press, pp. 365380.Google Scholar
Tancredi, G. and Favre, S. (2008). Which are the dwarfs in the Solar System?Icarus, 195, 851862.CrossRefGoogle Scholar
Tegler, S. C., Cornelison, D. M., Grundy, W. M.et al. (2010). Methane and nitrogen abundances on Pluto and Eris. The Astrophysical Journal, 725, 12961305.CrossRefGoogle Scholar
Tegler, S. C., Grundy, W. M., Olkin, C. B.et al., (2012). Ice mineralogy across and into the surfaces of Pluto, Triton, and Eris. The Astrophysical Journal, 751, 76, 10pp.CrossRefGoogle Scholar
Tozzi, G. P., Bagnulo, S., Barucci, M. A.et al. (2012). Search for coma in Centaurs (2060) Chiron, (5145) Pholus and (10199) Chariklo. Abstract for DPS meeting #44, #310.15.Google Scholar

References

Berriman, G. B., Boggess, N. W., Hauser, M. G.et al. (1994). COBE DIRBE near-infrared polarimetry of the zodiacal light: Initial results. The Astrophysical Journal, 431, L63L66.CrossRefGoogle Scholar
Blackwell, D. E., Ingham, M. F., and Petford, A. D. (1967). The distribution of dust in interplanetary space. Monthly Notices of the Royal Astronomical Society, 136, 313328.CrossRefGoogle Scholar
Brorsen, T. (1854). Über eine neue Erscheinung am Zodiacallichtes. Geographie und Witterungskunde, 8, 156160.Google Scholar
Cassini, J. D. (1690). Découverte de la lumière céleste qui apparaît dans le zodiaque. Paris: Imprimerie Royale.Google Scholar
Clemett, S. J., Maechling, C. R., Zare, R. N.et al. (1993). Identification of complex aromatic molecules in individual interplanetary dust particles. Science, 262, 721725.CrossRefGoogle ScholarPubMed
CNES internal report (2013). Eyesat end of phase A internal review, EYESAT-PR-0-022-CNES.Google Scholar
Dermott, S. F., Grogan, K., Gustafson, B. A. S.et al. (1996). Sources of interplanetary dust. In Gustafson, B. A. S. and Hanner, M. S., eds., Physics, Chemistry, and Dynamics of Interplanetary Dust. ASP Conference Series, Vol. 104. San Francisco: Astronomical Society of the Pacific Press, pp. 143154.Google Scholar
Dermott, S. F., Grogan, K., Durda, D. D. et al. (2001). Orbital evolution of interplanetary dust. In Grün, E., Gustafson, B. A. S., Dermott, S. F., and Fechtig, H., eds., Interplanetary Dust. Berlin: Springer-Verlag, pp. 569639.CrossRefGoogle Scholar
Divine, N. (1993). Five populations of interplanetary meteoroids. Journal of Geophysical Research, 98(E9), 1702917048.CrossRefGoogle Scholar
Dolginov, A. Z. and Mitrofanov, I. G. (1975). Circular polarization of the zodiacal light and the structure of the interplanetary magnetic field. Soviet Astronomy Letters, 1–6, 246248.Google Scholar
Dorschner, J., Begemann, B., Henning, T.et al. (1995). Steps toward interstellar silicate mineralogy. II. Study of Mg-Fe-silicate glasses of variable composition. Astronomy and Astrophysics, 300, 503520.Google Scholar
Dufay, M. J. (1925). La polarisation de la lumière zodiacale. Comptes Rendus de l’Académie des sciences, 181, 399401.Google Scholar
Dufay, M. J. (1929). Spectre, couleur et polarisation de la lumière du ciel nocturne. Journal de Physique et Le Radium, 10, 219240.CrossRefGoogle Scholar
Dumont, R. (1965). Séparation des composantes atmosphérique, interplanétaire et stellaire du ciel nocturne à 5000 Å. Application à la photométrie de la lumière zodiacale et du gegenschein. Annales d’Astrophysique, 28, 265320.Google Scholar
Dumont, R. (1973). Phase function and polarization of interplanetary scatters from zodiacal light photopolarimetry. Planetary and Space Science, 21, 21492155.CrossRefGoogle Scholar
Dumont, R. and Levasseur-Regourd, A. C. (1978). Zodiacal light photopolarimetry. IV. Annual variations of brightness and the symmetry plane of the zodiacal cloud. Astronomy and Astrophysics, 64, 916.Google Scholar
Dumont, R. and Levasseur-Regourd, A. C. (1985). Zodiacal light gathered along the line of sight – Retrieval of the local scattering coefficient from photometric surveys of the ecliptic plane. Planetary and Space Science, 33, 19.CrossRefGoogle Scholar
Dumont, R. and Sanchez, F. (1975a). Zodiacal light photopolarimetry. I. Observations, reductions, disturbing phenomena, accuracy. Astronomy and Astrophysics, 38, 397403.Google Scholar
Dumont, R. and Sanchez, F. (1975b). Zodiacal light photopolarimetry. II. Gradients along the ecliptic and the phase functions of interplanetary matter. Astronomy and Astrophysics, 38, 405412.Google Scholar
Fechtig, H., Leinert, C., and Grün, E. (1981). Interplanetary dust and zodiacal light. In Landolt-Börnstein New Series VI/2A, pp. 228243.Google Scholar
Fechtig, H., Leinert, C., and Berg, O. E. (2001). Historical perspectives. In Grün, E., Gustafson, B. A. S., Dermott, S. F., and Fechtig, H., eds., Interplanetary Dust. Berlin: Springer-Verlag, pp. 156.Google Scholar
Giese, R. H. (1963). Light scattering by small particles and models of interplanetary matter derived from the zodiacal light. Space Science Reviews, 1, 589611.CrossRefGoogle Scholar
Giese, R. H. (1973). Optical properties of single-component zodiacal light models. Planetary and Space Science, 33, 19.Google Scholar
Giese, R. H., Weiss, K., Zerull, R. H., and Ono, T. (1978). Large fluffy particle – A possible explanation of the optical properties of interplanetary dust. Astronomy and Astrophysics, 65, 265272.Google Scholar
Graham, J. R., Kalas, P. G., and Matthews, B. C. (2007). The signature of primordial grain growth in the polarized light of the AU Microscopii debris disk. The Astrophysical Journal, 654, 595605.CrossRefGoogle Scholar
Greenberg, J. M. and Hage, J. I. (1990). From interstellar dust to comets – A unification of observational constraints. The Astrophysical Journal, 361, 260274.CrossRefGoogle Scholar
Grün, E., Zook, H. A., Fechtig, H. and Giese, R. H. (1985). Collisional balance of the meteoritic complex. Icarus, 62(2), 244272.CrossRefGoogle Scholar
Grün, E., Zook, H. A., and Baguhl, M. (1993). Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature, 362, 428430.CrossRefGoogle Scholar
Grün, E., Baguhl, M., Svedhem, H., and Zook, H. A. (2001). In situ measurements of cosmic dust. In Grün, E., Gustafson, B. A. S., Dermott, S. F., and Fechtig, H., eds., Interplanetary Dust. Berlin: Springer-Verlag, pp. 295346.CrossRefGoogle Scholar
Guirado, D., Hovenier, J. W., and Moreno, F. (2007). Circular polarization of light scattered by asymmetrical particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 6373.CrossRefGoogle Scholar
Hadamcik, E., Renard, J. B., Levasseur-Regourd, A. C., and Lasue, J. (2006). Light scattering by fluffy particles with the PROGRA2 experiment: Mixtures of materials. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 143156.CrossRefGoogle Scholar
Hadamcik, E., Renard, J. B., Szopa, C.et al. (2011). Light scattering by organic materials in dust clouds when approaching the Sun: Laboratory simulations. EPSC-DPS, 20111827.Google Scholar
Hahn, J. M., Zook, H. A., Cooper, B., and Sunkara, B. (2002). Clementine observations of the zodiacal light and the dust content of the inner solar system. Icarus, 158, 360378.CrossRefGoogle Scholar
Hanner, M. S. and Bradley, J. P. (2004). Composition and mineralogy of cometary dust. In: Festou, M., Keller, H. U., and Weaver, H. A., eds., Comets II. Tucson: University of Arizona Press, pp. 555564.CrossRefGoogle Scholar
Hanner, M. S., Sparrow, J. G., Weinberg, J. L., and Beeson, D. E. (1976). Pioneer 10 observations of zodiacal light brightness near the ecliptic: Changes with heliocentric distance. In Elsässer, H., and Fechtig, H., eds., Interplanetary Dust and Zodiacal Light. Lecture notes in Physics 48. Berlin: Springer-Verlag, pp. 2935.CrossRefGoogle Scholar
Hanner, M. S., Giese, R. H., Weiss, K., and Zerull, R. (1981). On the definition of albedo and application to irregular particles. Astronomy and Astrophysics, 104, 4246.Google Scholar
Haudebourg, V., Cabane, M., and Levasseur-Regourd, A. C. (1999). Theoretical polarimetric responses of fractal aggregates, in relation with experimental studies of dust in the solar system. Physics and Chemistry of the Earth C, 24, 603608.Google Scholar
Hoang, T. and Lazarian, A. (2014). Grain alignment by radiative torques in special conditions and implications. Monthly Notices of the Royal Astronomical Society, 438, 680703.CrossRefGoogle Scholar
Hörz, F., Bastien, R., Borg, J.et al. (2006). Impact features on Stardust: Implications for Comet 81P/Wild 2 Dust. Science, 314, 17161719.CrossRefGoogle ScholarPubMed
Ishiguro, M., Yang, H., Usui, F.et al. (2013). High-resolution imaging of the gegenschein and the geometric albedo of interplanetary dust. The Astrophysical Journal, 767(75), 13 pp.CrossRefGoogle Scholar
Isobe, S., Hirayama, T., Baba, N., and Miura, N. (1985). Optical polarization observations of circumsolar dust during the 1983 solar eclipse. Nature, 318, 644646.CrossRefGoogle Scholar
Isobe, S., Hirayama, T., Baba, N., and Miura, N. (1987). Optical coronal polarization and solar dust ring. Publications of the Astronomical Society of Japan, 39, 667677.Google Scholar
Jenniskens, P. (1993). Optical constants of organic refractory residue. Astronomy and Astrophysics, 274, 653661.Google Scholar
Jenniskens, P. (2006). Meteor Showers and Their Parent Comets. Cambridge University Press.CrossRefGoogle Scholar
Jessberger, E. K., Stephan, T., Rost, D.et al. (2001). Properties of interplanetary dust: Information from collected samples. In Grün, E., Gustafson, B. A. S., Dermott, S. F., and Fechtig, H., eds., Interplanetary Dust. Berlin: Springer-Verlag, pp. 253294.CrossRefGoogle Scholar
Kasuga, T., Yamamoto, T., Kimura, H., and Watanabe, J. (2006). Thermal desorption of Na in meteoroids: Dependence on perihelion distance of meteor showers. Astronomy and Astrophysics, 453, L17L20.CrossRefGoogle Scholar
Kimura, H. (2001). Light-scattering properties of fractal aggregates: Numerical calculations by a superposition technique and the discrete-dipole approximation. Journal of Quantitative Spectroscopy and Radiative Transfer, 70, 581594.CrossRefGoogle Scholar
Kimura, H., Kolokolova, L., and Mann, I. (2003). Optical properties of cometary dust. Constraints from numerical studies on light scattering by aggregate particles. Astronomy and Astrophysics, 407, L5L8.CrossRefGoogle Scholar
Kimura, H., Kolokolova, L., and Mann, I. (2006). Light scattering by cometary dust numerically simulated with aggregate particles consisting of identical spheres. Astronomy and Astrophysics, 449, 12431254.CrossRefGoogle Scholar
Kissel, J., Sagdeev, R. Z., Bertaux, J. L.et al. (1986). Composition of comet Halley dust particles from Vega observations. Nature, 321, 280282.CrossRefGoogle Scholar
Kolokolova, L. and Kimura, H. (2010). Effects of electromagnetic interaction in the polarization of light scattered by cometary and other types of cosmic dust. Astronomy and Astrophysics, 513, A40.CrossRefGoogle Scholar
Kwon, S. M., Hong, S. S., and Weinberg, J. L. (2004). An observational model of the zodiacal light brightness distribution. New Astronomy, 10, 91107.CrossRefGoogle Scholar
Lasue, J. and Levasseur-Regourd, A. C. (2006). Porous irregular aggregates of sub-micron sized grains to reproduce cometary dust light scattering observations. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 220236.CrossRefGoogle Scholar
Lasue, J., Levasseur-Regourd, A. C., Fray, N., and Cottin, H. (2007). Inferring the interplanetary dust properties from remote observations and simulations. Astronomy and Astrophysics, 473, 641649.CrossRefGoogle Scholar
Lazarian, A. (2007). Tracing magnetic fields with aligned grains. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 225256.CrossRefGoogle Scholar
Lazarian, A. and Hoang, T. (2007). Radiative torques: Analytical model and basic properties. Monthly Notices of the Royal Astronomical Society, 378, 910946.CrossRefGoogle Scholar
Leinert, C. (1975). Zodiacal light – A measure of the interplanetary environment. Space Science Reviews, 18, 281335.CrossRefGoogle Scholar
Leinert, C. and Grün, E. (1990). Interplanetary dust. In Schwenn, R., and Marsch, E., eds., Physics of the Inner Heliosphere I. Berlin: Springer-Verlag, pp. 207275.CrossRefGoogle Scholar
Leinert, C. and Moster, B. (2007). Evidence for dust accumulation just outside the orbit of Venus. Astronomy and Astrophysics, 472, 335340.CrossRefGoogle Scholar
Leinert, C., Hanner, M. S., Richter, I., and Pitz, E. (1980). The plane of symmetry of interplanetary dust in the inner solar system. Astronomy and Astrophysics, 82, 328336.Google Scholar
Leinert, C., Richter, I., Pitz, E., and Planck, B. (1981). The zodiacal light from 1 to 0.3 au as observed by the Helios space probes. Astronomy and Astrophysics, 103, 177188.Google Scholar
Leinert, C., Richter, I., Pitz, E., and Hanner, M. S. (1982). Helios zodiacal light measurements, a tabulated summary. Astronomy and Astrophysics, 110, 355357.Google Scholar
Leinert, C., Röser, S., and Buitrago, J. (1983). How to maintain the spatial distribution of interplanetary dust. Astronomy and Astrophysics, 118, 345357.Google Scholar
Leinert, C., Bowyer, S., Haikala, L. K.et al. (1998). The 1997 reference of diffuse night sky brightness. Astronomy and Astrophysics Supplement, 127, 199.CrossRefGoogle Scholar
Levasseur, A. C. and Blamont, J. (1973). Satellite observations of intensity variations of the zodiacal light. Nature, 246, 2628.CrossRefGoogle Scholar
Levasseur-Regourd, A. C. (1994). Natural background radiation, the light of the night sky. In McNally, D., ed., The Vanishing Universe. Cambridge University Press, pp. 6468.Google Scholar
Levasseur-Regourd, A. C. (1995). Physical properties of dust grains deduced by optical probing techniques. Advances in Space Research, 17, 117122.CrossRefGoogle Scholar
Levasseur-Regourd, A. C. (1996). Optical and thermal properties of zodiacal dust. In Gustafson, B. A. S. and Hanner, M. S., eds., Physics, Chemistry, and Dynamics of Interplanetary Dust. ASP Conference Series, Vol. 104. San Francisco: Astronomical Society of the Pacific Press, pp. 301308.Google Scholar
Levasseur-Regourd, A. C. (1998). Zodiacal light, certitudes and questions. Earth Planets Space, 50, 607610.CrossRefGoogle Scholar
Levasseur-Regourd, A. C. and Dumont, R. (1980). Absolute photometry of zodiacal light. Astronomy and Astrophysics, 84, 277279.Google Scholar
Levasseur-Regourd, A. C., Dumont, R., and Renard, J. B. (1990). A comparison between polarimetric properties of cometary dust and interplanetary dust particles. Icarus, 86, 264272.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Renard, J. B., and Dumont, R. (1991). Dust optical properties: A comparison between cometary and interplanetary grains. Advances in Space Research, 11, 175182.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Cabane, M., Worms, J. C., and Haudebourg, V. (1997). Physical properties of dust in the solar system: Relevance of a computational approach and of measurements under microgravity conditions. Advances in Space Research, 20, 15851594.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Cabane, M., and Haudebourg, V. (1999). Observational evidence for the scattering properties of interplanetary and cometary dust clouds: An update. Journal of Quantitative Spectroscopy and Radiative Transfer, 63, 631641.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Mann, I., Dumont, R., and Hanner, M. S. (2001). Optical and thermal properties of interplanetary dust. In Grün, E., Gustafson, B. A. S., Dermott, S. F., and Fechtig, H., eds., Interplanetary Dust. Berlin: Springer-Verlag, pp. 5794.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Mukai, T., Lasue, J., and Okada, Y. (2007). Physical properties of cometary and interplanetary dust. Planetary and Space Science, 55, 10101020.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Lasue, J., Gaboriaud, A.et al. (2014). Eye-Sat, a triple Cubesat to monitor the zodiacal light intensity and polarization. European Planetary Science Congress, 9, EPSC2014-587-2.Google Scholar
Li, A. and Greenberg, J. M. (1997). A unified model of interstellar dust. Astronomy and Astrophysics, 323, 566584.Google Scholar
Liou, J. C., Dermott, S. F., and Xu, Y. L. (1995). The contribution of cometary dust to the zodiacal cloud. Planetary and Space Science, 43(6), 717722.CrossRefGoogle Scholar
Lumme, K. (2000). Scattering properties of interplanetary dust particles. In Mishchenko, M. I., Hovenier, J. W., and Travis, L. D., eds., Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications. San Diego: Academic Press, pp. 555583.CrossRefGoogle Scholar
Lumme, K., Rahola, J., and Hovenier, J. W. (1997). Light scattering by dense clusters of spheres. Icarus, 126, 455469.CrossRefGoogle Scholar
Mann, I. (1993). The influence of circumsolar dust on the whitelight corona – study of the visual F-corona brightness. Planetary and Space Science, 41, 301305.CrossRefGoogle Scholar
Mann, I. (1996). Interstellar grains in the solar system: Requirements for an analysis. Space Science Reviews, 78, 259264.CrossRefGoogle Scholar
Mann, I. (1998). Zodiacal cloud complexes. Earth Planets Space, 50, 465471.CrossRefGoogle Scholar
Mann, I., Okamoto, H., Mukai, T.et al. (1994). Fractal aggregates analogues for near solar dust properties. Astronomy and Astrophysics, 291, 10111018.Google Scholar
Mann, I., Kimura, H., Biesecker, D. A.et al. (2004). Dust near the Sun. Space Science Reviews, 110, 269305.CrossRefGoogle Scholar
Masiero, J. R., Mainzer, A. K., Grav, T.et al. (2012). A revised asteroid polarization-albedo relationship using WISE/NEOWISE data. Annales d’Astrophysique, 749, 104, 6 pp.Google Scholar
Matrajt, G., Ito, M., Wirick, S.et al. (2008). Carbon investigation of two Stardust particles: A TEM, NanoSIMS, and XANES study. Meteoritics and Planetary Science, 43, 315334.CrossRefGoogle Scholar
Mishchenko, M. I., Travis, L. D., and Lacis, A. A. (2002). Scattering, Absorption and Emission of Light by Small Particles. Cambridge University Press.Google Scholar
Muñoz, O., Volten, H., de Haan, J. F.et al. (2000). Experimental determination of scattering matrices of olivine and Allende meteorite particles. Astronomy and Astrophysics, 360, 777788.Google Scholar
Mukai, T. (1996). Sublimation of interplanetary dust. In Gustafson, B. A. S. and Hanner, M. S., eds., Physics, Chemistry, and Dynamics of Interplanetary Dust. ASP Conference Series, Vol. 104. San Francisco: Astronomical Society of the Pacific Press, pp. 453461.Google Scholar
Mukai, T., Fujino, M., Ishiguro, M.et al. (2003). The influence of the brightness of the asteroidal dust bands on the gegenschein. Icarus, 162, 337343.CrossRefGoogle Scholar
Nagdimunov, L., Kolokolova, L., and Sparks, W. (2013). Polarimetric technique to study (pre)biological organics in cosmic dust and planetary aerosols. Earth, Planets and Space, 65, 11671173.CrossRefGoogle Scholar
Nakamura, R. and Okamoto, H. (1999). Optical properties of fluffy aggregates as analogue of interplanetary dust particles. Advances in Space Research, 23, 12091212.CrossRefGoogle Scholar
Nesvorny, D., Jenniskens, P., Levison, H. F.et al. (2010). Cometary origin of the zodiacal cloud and carbonaceous micrometeorites: Implications for hot debris disks. The Astrophysical Journal, 713, 816836.CrossRefGoogle Scholar
Pitz, E., Leinert, C., Schulz, A., and Link, H. (1979). Colour and polarization of the zodiacal light from the ultraviolet to the near infrared. Astronomy and Astrophysics, 74, 1520.Google Scholar
Planck Collaboration (2013). Planck 2013 results. XIV. Zodiacal emission. Astronomy and Astrophysics, 571, id. A14, 25 pp.Google Scholar
Reach, W. T., Morris, P., Boulanger, F., and Okumura, K. (2003). The mid-infrared spectrum of the zodiacal and exozodiacal light. Icarus, 164, 384403.CrossRefGoogle Scholar
Reach, W. T., Kelley, M. S., and Sykes, M. V. (2007). A survey of debris trails from short-period comets. Icarus, 191, 298322.CrossRefGoogle Scholar
Renard, J. B., Levasseur-Regourd, A. C., and Dumont, R. (1995). Properties of interplanetary dust from infrared and optical observations. II Brightness, polarization, temperature, albedo and their dependence on the elevation above the ecliptic. Astronomy and Astrophysics, 304, 602608.Google Scholar
Rosenbush, V., Kolokolova, L., Lazarian, A.et al. (2007). Circular polarization in comets: Observations of Comet C/1999 S4 (LINEAR) and tentative interpretation. Icarus, 186, 317330.CrossRefGoogle Scholar
Rowan-Robinson, M. and May, B. (2013). An improved model for the infrared emission from the zodiacal dust cloud: Cometary, asteroidal and interstellar dust. Monthly Notices of the Royal Astronomical Society, 429, 28942902.CrossRefGoogle Scholar
Sandford, S. A., Aléon, J., Alexander, C. M. O’D.et al. (2006). Organics captured from comet 81P/Wild 2 by the Stardust spacecraft. Science, 314, 17201724.CrossRefGoogle ScholarPubMed
Satoh, T., Nakamura, M., Uemizu, K.et al. (2011). In-flight observations performed by Akatsuki/IR2. EPSC-DPS, 2011-965-1.Google Scholar
Schiffer, R. (1985). The effect of surface roughness on the spectral reflectance of dielectric particles. Applications to the zodiacal light. Astronomy and Astrophysics, 148, 347358.Google Scholar
Schuerman, D. W. (1979). Inverting the zodiacal brightness integral. Planetary and Space Science, 27, 551556.CrossRefGoogle Scholar
Skomorovsky, V. I., Trifonov, V. D., Mashnich, G. P.et al. (2012). White-light observations and polarimetric analysis of the solar corona during the eclipse of 1 August 2008. Solar Physics, 277, 267281.CrossRefGoogle Scholar
Staude, J. and Schmidt, T. (1972). Circular polarization measurements of the zodiacal light. Astronomy and Astrophysics, 20, 163164.Google Scholar
Tamura, M., Fukagawa, M., Kimura, H.et al. (2006). First two-micron imaging polarimetry of β Pictoris. The Astrophysical Journal 641, 11721177.CrossRefGoogle Scholar
Tanabe, T., Tsumuraya, F., Baba, N.et al. (1992). Optical polarization observations of the solar corona during the total solar eclipse of 1991 July 11. Publications of the Astronomical Society of Japan, 44, L221L226.Google Scholar
Umov, N. (1905). Chromatische depolarisation durch Lichtzerstreuung. Physik, 6, 674676.Google Scholar
Van de Hulst, H. C. (1957). Light Scattering by Small Particles. New York: John Wiley and Sons.CrossRefGoogle Scholar
Weinberg, J. L. (1964). The zodiacal light at 5300 Å. Annales d’Astrophysique, 27, 718738.Google Scholar
Weinberg, J. L (1974). Polarization of the zodiacal light. In Gehrels, T., ed., Planets, Stars, and Nebulae: Studied with Photopolarimetry. Tucson AZ: University of Arizona Press, p. 781.Google Scholar
Weinberg, J. L (1985). Zodiacal light and interplanetary dust. In Giese, R. H. and Lamy, P., eds., Properties and Interactions of Interplanetary Dust. Dordrecht: D. Reidel, pp. 16.Google Scholar
Weinberg, J. L. and Hahn, R. C. (1980). Brightness and polarization of the zodiacal light: Results of fixed position observations from Skylab. In Halliday, I. and McIntosh, B. A., eds., Solid Particles in the Solar System. Dordrecht: Reidel Publishing, pp. 1922.CrossRefGoogle Scholar
Weinberg, J. L. and Sparrow, J. G. (1978). Zodiacal light as an indicator of interplanetary dust. In McDonnell, J. A. M., ed., Cosmic Dust. Chichester: John Wiley and Sons, pp. 75122.Google Scholar
Weiss-Wrana, K. (1983). Optical properties of interplanetary dust: Comparison with light scattering by larger meteoritic and terrestrial grains. Astronomy and Astrophysics, 126, 240250.Google Scholar
Whipple, F. L. (1951). A comet model. II. Physical relations for comets and meteors. The Astrophysical Journal, 113, 464474.CrossRefGoogle Scholar
Wolstencroft, R. D. and Kemp, J. C. (1972). Circular polarization of the nightsky radiation. The Astrophysical Journal, 177, L137L140.CrossRefGoogle Scholar
Wolstencroft, R. D. and Rose, L. J. (1967). Observations of the zodiacal light from a sounding rocket. The Astrophysical Journal, 147, 271292.CrossRefGoogle Scholar
Worms, J. C., Renard, J. B., Hadamcik, E.et al. (2000). Light scattering by dust particles with the PROGRA2 instrument, comparative measurements between clouds under microgravity and layers on the ground. Planetary and Space Science, 48, 493505.CrossRefGoogle Scholar
Wright, A. W. (1874). On the polarization of the zodiacal light. American Journal of Science and Arts, VII, 451459.CrossRefGoogle Scholar
Yang, H., Ishiguro, M., Usui, F., and Ueno, M. (2012). High-resolution map of zodiacal dust bands by WIZARD measurements. Asteroids, Comets, Meteors, 6277.Google Scholar
Zolensky, M. E., Zega, T. J., Yano, H.et al. (2006). Mineralogy and petrology of Comet 81P/Wild 2 nucleus samples. Science, 314, 17351739.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×