Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T20:28:02.941Z Has data issue: false hasContentIssue false

19 - Gas giant planets, Saturn’s rings, and Titan

from IV - Solar system

Published online by Cambridge University Press:  05 May 2015

Ludmilla Kolokolova
Affiliation:
University of Maryland, College Park
James Hough
Affiliation:
University of Hertfordshire
Anny-Chantal Levasseur-Regourd
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, A. L., Baker, L. R., Beshore, E.et al. (1975). Imaging photopolarimeter experiment on Pioneer 11. Science, 188, 468472.CrossRefGoogle ScholarPubMed
Bar-Nun, A., Kleinfeld, I., and Ganor, E. (1988). Shape and optical properties of aerosols formed by photolysis of acetylene, ethylene, and hydrogen cyanide. Journal of Geophysical Research, 93, 83838387.CrossRefGoogle Scholar
Bar-Nun, A., Dimitrov, V., and Tomasko, M. (2008). Titan’s aerosols: Comparison between our model and DISR findings. Planetary and Space Science, 56, 708714.CrossRefGoogle Scholar
Barrado-Izagirre, N., Sánchez-Lavega, A., Pérez-Hoyos, S., and Hueso, R. (2008). Jupiter’s polar clouds and waves from Cassini and HST images: 1993–2006. Icarus, 194, 173185.CrossRefGoogle Scholar
Bazzon, A., Schmid, H. M., and Buenzli, E. (2010). HST observations of the limb polarization of Titan. In Boccaletti, A., ed., Proceedings of the Conference In the Spirit of Lyot 2010: Direct Detection of Exoplanets and Circumstellar Disks. October 25–29, 2010. University of Paris Diderot, Paris, France.Google Scholar
Beebe, R. F., Suggs, R. M., and Little, T. (1986). Seasonal north-south asymmetry in solar radiation incident on Jupiter’s atmosphere. Icarus, 66(2), 359365.CrossRefGoogle Scholar
Braak, C. J., de Haan, J. F., van der Mee, C. V. M., Hovenier, J. W., and Travis, L. D. (2001). Parameterized scattering matrices for small particles in planetary atmospheres. Journal of Quantitative Spectroscopy and Radiative Transfer, 69, 585604.CrossRefGoogle Scholar
Braak, C. J., de Haan, J. F., Hovenier, J. W., and Travis, L. D. (2002). Galileo photopolarimetry of Jupiter at 678.5 nm. Icarus, 157, 401418.CrossRefGoogle Scholar
Buenzli, E. and Schmid, H. M. (2009). A grid of polarization models for Rayleigh scattering planetary atmospheres. Astronomy and Astrophysics, 504, 259276.CrossRefGoogle Scholar
Cabane, M., Chassefiere, E., and Israel, G. (1992). Formation and growth of photochemical aerosols in Titan’s atmosphere. Icarus, 96, 176189.CrossRefGoogle Scholar
Cabane, M., Rannou, P., Chassefiere, E., and Israel, G. (1993). Fractal aggregates in Titan’s atmosphere. Planetary and Space Science, 41, 257267.CrossRefGoogle Scholar
Coffeen, D. L. (1974a). Optical polarimeters in space. In Gehrels, T, ed., Planets, Stars, and Nebulae Studied with Photopolarimetry. Tucson AZ: University of Arizona Press, pp. 189217.Google Scholar
Coffeen, D. L. (1974b). Optical polarization measurements of Jupiter atmosphere at 103 degrees phase angle. Journal of Geophysical Research, 79, 36453652.CrossRefGoogle Scholar
Dlugach, J. A. and Mishchenko, M. I. (2004). The effect of particle shape on microphysical properties of Jovian aerosols retrieved from ground-based spectropolarimetric observations. Journal of Quantitative Spectroscopy and Radiative Transfer, 88, 3746.CrossRefGoogle Scholar
Dlugach, J. M. and. Mishchenko, M. I. (2008). Photopolarimetry of planetary atmospheres: What observational data are essential for a unique retrieval of aerosol microphysics?Monthly Notices of the Royal Astronomical Society, 384, 6470.CrossRefGoogle Scholar
Dollfus, A. (1978). Optical reflectance polarimetry of Saturn’s globe and rings. I. Measurements on the B ring. Icarus, 37, 404442.CrossRefGoogle Scholar
Dollfus, A. (1979). Optical reflectance polarimetry of Saturn’s globe and rings. II. Interpretations for the B Ring. Icarus, 40, 171179.CrossRefGoogle Scholar
Doose, L. R. (1976). Light scattering properties of Jupiter’s red spot. Ph.D. dissertation, The University of Arizona, Tucson AZ.Google Scholar
Draine, B. T. (1988). The discrete-dipole approximation and its application to interstellar graphite grains. The Astrophysical Journal, 333, 848872.CrossRefGoogle Scholar
Fimmel, R. O., Van Allen, J., and Burgess, E. (1980). Pioneer First to Jupiter, Saturn and Beyond. Washington DC: NASA SP-446.Google Scholar
Fountain, J. W., Coffeen, D. L., Doose, L. R.et al. (1974). Jupiter’s clouds – Equatorial plumes and other cloud forms in Pioneer-10 images. Science, 184, 12791281.CrossRefGoogle ScholarPubMed
Friedson, A. J., Wong, A.-S., and Yung, Y. L. (2002). Models for polar haze formation in Jupiter’s stratosphere. Icarus, 158(2), 389400.CrossRefGoogle Scholar
Gehrels, T., Herman, B. M., and Owen, T. (1969). Wavelength dependence of polarization XIV. Atmosphere of Jupiter. The Astronomical Journal, 74, 190199.CrossRefGoogle Scholar
Gehrels, T., Coffeen, D., Tomasko, M.et al. (1974). The imaging photopolarimeter experiment on Pioneer 10. Science, 183, 318320.CrossRefGoogle ScholarPubMed
Gehrels, T., Baker, L. R., Beshore, E.et al. (1980). Imaging photopolarimeter on Pioneer Saturn. Science, 207, 434439.CrossRefGoogle ScholarPubMed
Hall, J. S. and Riley, L. A. (1969). Polarization studies of Jupiter and Saturn. Journal of the Atmospheric Sciences, 26, 920923.2.0.CO;2>CrossRefGoogle Scholar
Hall, J. S. and Riley, L. A. (1976). A polarimetric search for fine structure on Jupiter’s disk. Icarus, 29, 231234.CrossRefGoogle Scholar
Hansen, J. E. and Hovenier, J. W. (1974). Interpretation of the polarization of Venus. Journal of the Atmospheric Sciences, 31, 11371160.2.0.CO;2>CrossRefGoogle Scholar
Hord, C. W., West, R. A., Simmons, K. E.et al. (1979). Photometric observations of Jupiter at 2400 Å. Science, 806, 956958.CrossRefGoogle Scholar
Joos, F. and Schmid, H. M. (2007). Limb polarization of Uranus and Neptune. II. Spectropolarimetric observations. Astronomy and Astrophysics, 463, 12011210.CrossRefGoogle Scholar
Karkoschka, E. and Tomasko, M. (2005). Saturn’s vertical and latitudinal cloud structure 1991–2004 from HST imaging in 30 filters. Icarus, 179, 195221.CrossRefGoogle Scholar
Karkoschka, E. and Tomasko, M. (2009). The haze and methane distributions on Uranus from HST-STIS spectroscopy. Icarus, 202, 287309.CrossRefGoogle Scholar
Kawata, Y. (1978). Circular polarization of sunlight reflected by planetary atmospheres. Icarus, 33, 217232.CrossRefGoogle Scholar
Kemp, K. G., Rudy, R. J., Lebofsky, M. J., and Reike, G. H. (1978). Near infrared polarization studies of Saturn and Jupiter. Icarus, 35(2), 263271.CrossRefGoogle Scholar
Kim, S. J., Drossart, P., and Caldwell, J. (1991). The 2-µm polar haze of Jupiter. Icarus, 91, 145153.CrossRefGoogle Scholar
Korokhin, V. V., Beletskii, S. A., and Velikodsky, Yu. I. (2000). The experience of application of CCD-photodetectors at the Astronomical Observatory of the Kharkiv National University. Kinematics and Physics of Celestial Bodies, 16(1), 6367.Google Scholar
Kuiper, G. P. (1944). Titan: A satellite with atmosphere. The Astrophysical Journal, 100, 378383.CrossRefGoogle Scholar
Lane, A. L., Hord, C. W., West, R. A.et al. (1982). Photopolarimetry from Voyager 2. Preliminary Results on Saturn, Titan and the Rings. Science, 215, 537543.CrossRefGoogle ScholarPubMed
Lavvas, P., Yelle, R. V., and Vuitton, V. (2009). The detached haze layer in Titan’s mesosphere. Icarus, 201, 626633.CrossRefGoogle Scholar
Lillie, C. F., Hord, C. W., Pang, K., Coffeen, D. L., and Hansen, J. E. (1977). The Voyager mission photopolarimeter experiment. Space Science Reviews, 21, 159181.CrossRefGoogle Scholar
Lyot, B. (1929). Recherches sur le polarization de la lumière des planèts et de quelques substances terrestres. Annales de l'Observatoire de Paris, section de Meudon VIII (in English, NASA TT F-187).Google Scholar
Mallama, A., Krobusek, B. F., Collins, D. A. (2000). The radius of Jupiter and its polar haze. Icarus, 144, 99103.CrossRefGoogle Scholar
Mishchenko, M. I. (1990). Physical properties of the upper tropospheric aerosols in the equatorial region of Jupiter. Icarus, 84, 296304.CrossRefGoogle Scholar
Morozhenko, A. V. and Yanovitskii, E. G. (1973). The optical properties of Venus and the Jovian planets. I. The atmosphere of Jupiter according to polarimetric observations. Icarus, 18, 583592.CrossRefGoogle Scholar
Owen, T. and Terrile, R. J. (1981). Colors on Jupiter. Journal of Geophysical Research, 86, 87978814.CrossRefGoogle Scholar
Pellicori, S. F., Russell, E. E., and Watts, L. A. (1973). Pioneer imaging photopolarimeter optical system. Applied Optics, 12, 12461258.CrossRefGoogle ScholarPubMed
Pope, S. K., Tomasko, M. G., Williams, M. S.et al. (1992). Clouds of ammonia ice: Laboratory measurements of the single-scattering properties. Icarus, 100, 203220.CrossRefGoogle Scholar
Porco, C. C., West, R. A., Squyres, S.et al. (2004). Cassini imaging science: Instrument characteristics and anticipated scientific investigations at Saturn. Space Science Reviews, 115, 363497.CrossRefGoogle Scholar
Pryor, W. R. and Hord, C. W. (1991). A study of photopolarimeter system UV absorption data on Jupiter, Saturn, Uranus, and Neptune: Implications for auroral haze formation. Icarus, 91, 161172.CrossRefGoogle Scholar
Pryor, W. R., West, R. A., Simmons, K. E., and Delitsky, M. (1992). High-phase-angle observations of Neptune at 2650-Angstrom and 7500-Angstrom – Haze structure and particle properties. Icarus, 99, 302317.CrossRefGoogle Scholar
Rages, K. and Pollack, J. B. (1981). High phase angle Voyager images of Titan’s main aerosol layer. Bulletin of the American Astronomical Society, 13, 703.Google Scholar
Rannou, P., McKay, C. P., and Lorenz, R. D. (2003). A model of Titan’s haze of fractal aerosols constrained by multiple observations. Planetary and Space Science, 51, 963976.CrossRefGoogle Scholar
Russell, E. E., Brown, F. G., Chandos, R. A.et al. (1992). Galileo photopolarimeter/radiometer experiment. Space Science Reviews, 60, 531563.CrossRefGoogle Scholar
Sato, T. M., Satoh, T., and Kasaba, Y. (2013). Retrieval of Jovian cloud structure from the Cassini ISS limb-darkening data I. Continuum scattering phase functions for cloud and haze in the South Tropical Zone. Icarus, 222, 100121.CrossRefGoogle Scholar
Schmid, H. M., Joos, F., Buenzli, E., and Gisler, D. (2011). Long-slit polarimetry of Jupiter and Saturn. Icarus, 212(2), 701713.CrossRefGoogle Scholar
Shalygina, O. S., Korokhin, V. V., Starukhina, L. V.et al. (2008). The north-south asymmetry of polarization of Jupiter: The causes of seasonal variations. Solar System Research, 42(1), 817, doi: 10.1134/S0038094608010024.CrossRefGoogle Scholar
Shalygina, O. S., Shalygin, E. V., Korokhin, V. V., and Velikodsky, Yu. I. (2011). Appearance of linear polarization at polar regions of Jupiter. Proceedings of the 42nd Lunar and Planetary Science Conference. Houston, USA: LPI.Google Scholar
Smith, P. H. and Tomasko, M. G. (1984). Photometry and polarimetry of Jupiter at large phase angles. II. Polarimetry of the South Tropical Zone, South Equatorial Belt, and the Polar Regions from the Pioneer 10 and 11 Missions. Icarus, 58, 3573.CrossRefGoogle Scholar
Sromovsky, L. A. and Fry, P. M. (2010). The source of widespread 3-μm absorption in Jupiter’s clouds: Constraints from 2000 Cassini VIMS observations. Icarus, 210, 230257.CrossRefGoogle Scholar
Starodubtseva, O. M. and Tejfel, V. G. (1984). Light polarization in the polar regions of Jupiter. Solar System Research, 18(3), 115122.Google Scholar
Starodubtseva, O. M., Akimov, L. A., and Korokhin, V. V. (1997). Temporal changes in the north-south asymmetry of polarized light of Jupiter may be associated with the comet SL9 visit to the Jovian system. Planetary and Space Science, 45, 11831188.CrossRefGoogle Scholar
Starodubtseva, O. M., Akimov, L. A., and Korokhin, V. V. (2002). Seasonal variation of the north-south asymmetry of polarized light of Jupiter. Icarus, 157(2), 419425.CrossRefGoogle Scholar
Stoll, C. P. (1980). Polarimetry of Jupiter at large phase angles. Ph.D. dissertation, The University of Arizona, Tucson AZ.Google Scholar
Swedlund, J. B., Kemp, J. C., and Wolstencroft, R. D. (1973). Circular polarization of Saturn. The Astrophysical Journal, 178, 257266.CrossRefGoogle Scholar
Tejfel, V. G. (1985). Polar regions of Jupiter and Saturn. Solar System Research, 19(1), 3344.Google Scholar
Tomasko, M. G. (1980). Preliminary results of polarimetry and photometry of Titan at large phase angles from Pioneer 11. Journal of Geophysical Research, 85, 59375942.CrossRefGoogle Scholar
Tomasko, M. G. and Doose, L. R. (1984). Polarimetry and photometry of Saturn from Pioneer 11: Observations and constraints on the distribution and properties of cloud and aerosol particles. Icarus, 58, 134.CrossRefGoogle Scholar
Tomasko, M. G. and Smith, P. H. (1982). Photometry and polarimetry of Titan: Pioneer 11 observations and their implications for aerosol properties. Icarus, 51, 6595.CrossRefGoogle Scholar
Tomasko, M. G., Buchhauser, D., Bushroe, M.et al. (2002). The Descent Imager/Spectral Radiometer (DISR) experiment on the Huygens entry probe of Titan. Space Science Reviews, 104, 469551.CrossRefGoogle Scholar
Tomasko, M. G., Archinal, B., Becker, T.et al. (2005). Rain, winds and haze during the Huygens probe’s descent to Titan’s surface. Nature, 438, 765778.CrossRefGoogle ScholarPubMed
Tomasko, M. G., Doose, L., Engel, S.et al. (2008). A model of Titan’s aerosols based on measurements made inside the atmosphere. Planetary and Space Science, 56, 669707.CrossRefGoogle Scholar
Tomasko, M. G., Doose, L. R., Dafoe, L. E., and See, C. (2009). Limits on the size of aerosols from measurements of linear polarization in Titan’s atmosphere. Icarus, 204, 271283.CrossRefGoogle Scholar
Veverka, J. (1973). Titan: Polarimetric evidence for an optically thick atmosphere?Icarus, 18, 657660.CrossRefGoogle Scholar
Wauben, W. M. F., de Haan, J. F., and Hovenier, J. W. (1993). Influence of particle shape on the polarized radiation in planetary atmospheres. J. Quant. Spectrosc. Radiat. Transfer, 50, 237246.CrossRefGoogle Scholar
West, R. A. (1979). Spatially resolved methane band photometry of Jupiter. I. Absolute reflectivity and center-to-limb variations in the 6190-, 7250-, and 8900-A bands. Icarus, 38, 1233.CrossRefGoogle Scholar
West, R. A. (1988). Voyager 2 imaging eclipse observations of the Jovian high altitude haze. Icarus, 75, 381398.CrossRefGoogle Scholar
West, R. A. (1991). Optical properties of aggregate particles whose outer diameter is comparable to the wavelength. Applied Optics, 30, 53165324.CrossRefGoogle ScholarPubMed
West, R. A. and Smith, P. H. (1991). Evidence for aggregate particles in the atmospheres of Titan and Jupiter. Icarus, 90, 330333.CrossRefGoogle Scholar
West, R. A. and Tomasko, M. G. (1980). Spatially resolved methane band photometry of Jupiter. III. Cloud vertical structures for several axisymmetric bands and the great red spot. Icarus, 41, 278292.CrossRefGoogle Scholar
West, R. A., Tomasko, M. G., Smith, B. A.et al. (1982). Spatially resolved methane band photometry of Saturn. I. Absolute reflectivity and center-to-limb variations in the 6190, 7250 and 8900 Å Bands. Icarus, 51, 5164.CrossRefGoogle Scholar
West, R. A., Sato, M., Hart, H.et al. (1983a). Photometry and polarimetry of Saturn at 2640 and 7500 Å. Journal of Geophysical Research, 88, 86798697.CrossRefGoogle Scholar
West, R. A., Lane, A. L., Hart, H.et al. (1983b). Voyager 2 photopolarimeter observations of Titan. Journal of Geophysical Research, 88, 86998708.CrossRefGoogle Scholar
West, R. A., Orton, G. S., Draine, B. T., and Hubbell, E. A. (1989). Infrared absorption features for tetrahedral ammonia ice crystals. Icarus, 80, 220223.CrossRefGoogle Scholar
West, R. A., Baines, K. H., Friedson, J. A.et al. (2004). Jovian clouds and haze. In Bagenal, F., Dowling, T., and McKinnon, W., eds., Jupiter the Planet, Satellites and Magnetosphere. Cambridge University Press.Google Scholar
West, R. A., Baines, K. H., Karkoschka, E., and Sánchez-Lavega, A. (2009). Clouds and aerosols in Saturn’s atmosphere. In Dougherty, M., Esposito, L. W., and, Krimigis, S. M., eds., Saturn from Cassini/Huygens. New York: Springer.Google Scholar
West, R. W., Knowles, B., Birath, E.et al. (2010). In-flight calibration of the Cassini imaging science sub-system cameras. Planetary and Space Science, 58, 14751488.CrossRefGoogle Scholar
Wolstencroft, R. D. (1976). The circular polarization of the light from Jupiter. Icarus, 29, 235243.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×