We study an interesting class of Banach function algebras of infinitely differentiable functions on perfect, compact plane sets. These algebras were introduced by H. G. Dales and A. M. Davie in 1973, called Dales-Davie algebras and denoted by D(X, M), where X is a perfect, compact plane set and M = {Mn}∞n = 0 is a sequence of positive numbers such that M0 = 1 and (m + n)!/Mm+n ≤ (m!/Mm)(n!/Mn) for m, n ∈ N. Let d = lim sup(n!/Mn)1/n and Xd = {z ∈ C : dist(z, X) ≤ d}. We show that, under certain conditions on X, every f ∈ D(X, M) has an analytic extension to Xd. Let DP [DR]) be the subalgebra of all f ∈ D(X, M) that can be approximated by the restriction to X of polynomials [rational functions with poles off X]. We show that the maximal ideal space of DP is , the polynomial convex hull of Xd, and the maximal ideal space of DR is Xd. Using some formulae from combinatorial analysis, we find the maximal ideal space of certain subalgebras of Dales-Davie algebras.