We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider a dual risk model with constant expense rate and i.i.d. exponentially distributed gains
$C_i$
(
$i=1,2,\dots$
) that arrive according to a renewal process with general interarrival times. We add to this classical dual risk model the proportional gain feature; that is, if the surplus process just before the ith arrival is at level u, then for
$a>0$
the capital jumps up to the level
$(1+a)u+C_i$
. The ruin probability and the distribution of the time to ruin are determined. We furthermore identify the value of discounted cumulative dividend payments, for the case of a Poisson arrival process of proportional gains. In the dividend calculations, we also consider a random perturbation of our basic risk process modeled by an independent Brownian motion with drift.
We clarify and refine the definition of a reciprocal random field on an undirected graph, with the reciprocal chain as a special case, by introducing four new properties: the factorizing, global, local, and pairwise reciprocal properties, in decreasing order of strength, with respect to a set of nodes
$\delta$
. They reduce to the better-known Markov properties if
$\delta$
is the empty set, or, with the exception of the local property, if
$\delta$
is a complete set. Conditions for each reciprocal property to imply the next stronger property are derived, and it is shown that, conditionally on the values at a set of nodes
$\delta_0$
, all four properties are preserved for the subgraph induced by the remaining nodes, with respect to the node set
$\delta\setminus\delta_0$
. We note that many of the above results are new even for reciprocal chains.
For a quadratic Markov branching process (QMBP), we show that the decay parameter is equal to the first eigenvalue of a Sturm–Liouville operator associated with the partial differential equation that the generating function of the transition probability satisfies. The proof is based on the spectral properties of the Sturm–Liouville operator. Both the upper and lower bounds of the decay parameter are given explicitly by means of a version of Hardy’s inequality. Two examples are provided to illustrate our results. The important quantity, the Hardy index, which is closely linked to the decay parameter of the QMBP, is deeply investigated and estimated.
We consider the critical Galton–Watson process with overlapping generations stemming from a single founder. Assuming that both the variance of the offspring number and the average generation length are finite, we establish the convergence of the finite-dimensional distributions, conditioned on non-extinction at a remote time of observation. The limiting process is identified as a pure death process coming down from infinity.
This result brings a new perspective on Vatutin’s dichotomy, claiming that in the critical regime of age-dependent reproduction, an extant population either contains a large number of short-living individuals or consists of few long-living individuals.
From the Poisson–Dirichlet diffusions to the Z-measure diffusions, they all have explicit transition densities. We show that the transition densities of the Z-measure diffusions can also be expressed as a mixture of a sequence of probability measures on the Thoma simplex. The coefficients are the same as the coefficients in the Poisson–Dirichlet diffusions. This fact will be uncovered by a dual process method in a special case where the Z-measure diffusions are established through an up–down chain in the Young graph.
The invariant Galton–Watson (IGW) tree measures are a one-parameter family of critical Galton–Watson measures invariant with respect to a large class of tree reduction operations. Such operations include the generalized dynamical pruning (also known as hereditary reduction in a real tree setting) that eliminates descendant subtrees according to the value of an arbitrary subtree function that is monotone nondecreasing with respect to an isometry-induced partial tree order. We show that, under a mild regularity condition, the IGW measures are attractors of arbitrary critical Galton–Watson measures with respect to the generalized dynamical pruning. We also derive the distributions of height, length, and size of the IGW trees.
Under the assumption that sequences of graphs equipped with resistances, associated measures, walks and local times converge in a suitable Gromov-Hausdorff topology, we establish asymptotic bounds on the distribution of the
$\varepsilon$
-blanket times of the random walks in the sequence. The precise nature of these bounds ensures convergence of the
$\varepsilon$
-blanket times of the random walks if the
$\varepsilon$
-blanket time of the limiting diffusion is continuous at
$\varepsilon$
with probability 1. This result enables us to prove annealed convergence in various examples of critical random graphs, including critical Galton-Watson trees and the Erdős-Rényi random graph in the critical window. We highlight that proving continuity of the
$\varepsilon$
-blanket time of the limiting diffusion relies on the scale invariance of a finite measure that gives rise to realizations of the limiting compact random metric space, and therefore we expect our results to hold for other examples of random graphs with a similar scale invariance property.
Let G be a finite group. Let
$H, K$
be subgroups of G and
$H \backslash G / K$
the double coset space. If Q is a probability on G which is constant on conjugacy classes (
$Q(s^{-1} t s) = Q(t)$
), then the random walk driven by Q on G projects to a Markov chain on
$H \backslash G /K$
. This allows analysis of the lumped chain using the representation theory of G. Examples include coagulation-fragmentation processes and natural Markov chains on contingency tables. Our main example projects the random transvections walk on
$GL_n(q)$
onto a Markov chain on
$S_n$
via the Bruhat decomposition. The chain on
$S_n$
has a Mallows stationary distribution and interesting mixing time behavior. The projection illuminates the combinatorics of Gaussian elimination. Along the way, we give a representation of the sum of transvections in the Hecke algebra of double cosets, which describes the Markov chain as a mixture of Metropolis chains. Some extensions and examples of double coset Markov chains with G a compact group are discussed.
We present a Markov chain example where non-reversibility and an added edge jointly improve mixing time. When a random edge is added to a cycle of n vertices and a Markov chain with a drift is introduced, we get a mixing time of
$O(n^{3/2})$
with probability bounded away from 0. If only one of the two modifications were performed, the mixing time would stay
$\Omega(n^2)$
.
In the classical framework, a random walk on a group is a Markov chain with independent and identically distributed increments. In some sense, random walks are time and space homogeneous. This paper is devoted to a class of inhomogeneous random walks on
$\mathbb{Z}^d$
termed ‘Markov additive processes’ (also known as Markov random walks, random walks with internal degrees of freedom, or semi-Markov processes). In this model, the increments of the walk are still independent but their distributions are dictated by a Markov chain, termed the internal Markov chain. While this model is largely studied in the literature, most of the results involve internal Markov chains whose operator is quasi-compact. This paper extends two results for more general internal operators: a local limit theorem and a sufficient criterion for their transience. These results are thereafter applied to a new family of models of drifted random walks on the lattice
$\mathbb{Z}^d$
.
We establish exponential ergodicity for a class of Markov processes with interactions, including two-factor type processes and Gruschin type processes. The proof is elementary and direct via the Markov coupling technique.
We prove new mixing rate estimates for the random walks on homogeneous spaces determined by a probability distribution on a finite group
$G$
. We introduce the switched random walk determined by a finite set of probability distributions on
$G$
, prove that its long-term behaviour is determined by the Fourier joint spectral radius of the distributions, and give Hermitian sum-of-squares algorithms for the effective estimation of this quantity.
We prove that the hitting measure is singular with respect to the Lebesgue measure for random walks driven by finitely supported measures on cocompact, hyperelliptic Fuchsian groups. Moreover, the Hausdorff dimension of the hitting measure is strictly less than one. Equivalently, the inequality between entropy and drift is strict. A similar statement is proven for Coxeter groups.
We consider a risk model with a counting process whose intensity is a Markovian shot-noise process, to resolve one of the disadvantages of the Cramér–Lundberg model, namely the constant intensity of the Poisson process. Due to this structure, we can apply the theory of piecewise deterministic Markov processes on a multivariate process containing the intensity and the reserve process, which allows us to identify a family of martingales. Eventually, we use change of measure techniques to derive an upper bound for the ruin probability in this model. Exploiting a recurrent structure of the shot-noise process, even the asymptotic behaviour of the ruin probability can be determined.
We provide a general purpose result for the coupling of exploration processes of random graphs, both undirected and directed, with their local weak limits when this limit is a marked Galton–Watson process. This class includes in particular the configuration model and the family of inhomogeneous random graphs with rank-1 kernel. Vertices in the graph are allowed to have attributes on a general separable metric space and can potentially influence the construction of the graph itself. The coupling holds for any fixed depth of a breadth-first exploration process.
We present an affine-invariant random walk for drawing uniform random samples from a convex body
$\mathcal{K} \subset \mathbb{R}^n$
that uses maximum-volume inscribed ellipsoids, known as John’s ellipsoids, for the proposal distribution. Our algorithm makes steps using uniform sampling from the John’s ellipsoid of the symmetrization of
$\mathcal{K}$
at the current point. We show that from a warm start, the random walk mixes in
${\widetilde{O}}\!\left(n^7\right)$
steps, where the log factors hidden in the
${\widetilde{O}}$
depend only on constants associated with the warm start and desired total variation distance to uniformity. We also prove polynomial mixing bounds starting from any fixed point x such that for any chord pq of
$\mathcal{K}$
containing x,
$\left|\log \frac{|p-x|}{|q-x|}\right|$
is bounded above by a polynomial in n.
Using one-dimensional branching Brownian motion in a periodic environment, we give probabilistic proofs of the asymptotics and uniqueness of pulsating traveling waves of the Fisher–Kolmogorov–Petrovskii–Piskounov (F-KPP) equation in a periodic environment. This paper is a sequel to ‘Branching Brownian motion in a periodic environment and existence of pulsating travelling waves’ (Ren et al., 2022), in which we proved the existence of the pulsating traveling waves in the supercritical and critical cases, using the limits of the additive and derivative martingales of branching Brownian motion in a periodic environment.
Growth-fragmentation processes describe the evolution of systems in which cells grow slowly and fragment suddenly. Despite originating as a way to describe biological phenomena, they have recently been found to describe the lengths of certain curves in statistical physics models. In this note, we describe a new growth-fragmentation process connected to random planar maps with faces of large degree, having as a key ingredient the ricocheted stable process recently discovered by Budd. The process has applications to the excursions of planar Brownian motion and Liouville quantum gravity.
We consider continuous space–time decay–surge population models, which are semi-stochastic processes for which deterministically declining populations, bound to fade away, are reinvigorated at random times by bursts or surges of random sizes. In a particular separable framework (in a sense made precise below) we provide explicit formulae for the scale (or harmonic) function and the speed measure of the process. The behavior of the scale function at infinity allows us to formulate conditions under which such processes either explode or are transient at infinity, or Harris recurrent. A description of the structures of both the discrete-time embedded chain and extreme record chain of such continuous-time processes is supplied.
We study approximations for the Lévy area of Brownian motion which are based on the Fourier series expansion and a polynomial expansion of the associated Brownian bridge. Comparing the asymptotic convergence rates of the Lévy area approximations, we see that the approximation resulting from the polynomial expansion of the Brownian bridge is more accurate than the Kloeden–Platen–Wright approximation, whilst still only using independent normal random vectors. We then link the asymptotic convergence rates of these approximations to the limiting fluctuations for the corresponding series expansions of the Brownian bridge. Moreover, and of interest in its own right, the analysis we use to identify the fluctuation processes for the Karhunen–Loève and Fourier series expansions of the Brownian bridge is extended to give a stand-alone derivation of the values of the Riemann zeta function at even positive integers.