We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give an arithmetic count of the lines on a smooth cubic surface over an arbitrary field $k$, generalizing the counts that over ${\mathbf {C}}$ there are $27$ lines, and over ${\mathbf {R}}$ the number of hyperbolic lines minus the number of elliptic lines is $3$. In general, the lines are defined over a field extension $L$ and have an associated arithmetic type $\alpha$ in $L^*/(L^*)^2$. There is an equality in the Grothendieck–Witt group $\operatorname {GW}(k)$ of $k$,
where $\operatorname {Tr}_{L/k}$ denotes the trace $\operatorname {GW}(L) \to \operatorname {GW}(k)$. Taking the rank and signature recovers the results over ${\mathbf {C}}$ and ${\mathbf {R}}$. To do this, we develop an elementary theory of the Euler number in $\mathbf {A}^1$-homotopy theory for algebraic vector bundles. We expect that further arithmetic counts generalizing enumerative results in complex and real algebraic geometry can be obtained with similar methods.
We study the cohomology of Jacobians and Hilbert schemes of points on reduced and locally planar curves, which are however allowed to be singular and reducible. We show that the cohomologies of all Hilbert schemes of all subcurves are encoded in the cohomologies of the fine compactified Jacobians of connected subcurves, via the perverse Leray filtration. We also prove, along the way, a result of independent interest, giving sufficient conditions for smoothness of the total space of the relative compactified Jacobian of a family of locally planar curves.
We prove an equivalence between the Bryan-Steinberg theory of $\pi $-stable pairs on
$Y = \mathcal {A}_{m-1} \times \mathbb {C}$ and the theory of quasimaps to
$X = \text{Hilb}(\mathcal {A}_{m-1})$, in the form of an equality of K-theoretic equivariant vertices. In particular, the combinatorics of both vertices are described explicitly via box counting. Then we apply the equivalence to study the implications for sheaf-counting theories on Y arising from 3D mirror symmetry for quasimaps to X, including the Donaldson-Thomas crepant resolution conjecture.
We prove a higher genus version of the genus $0$ local-relative correspondence of van Garrel-Graber-Ruddat: for $(X,D)$ a pair with X a smooth projective variety and D a nef smooth divisor, maximal contact Gromov-Witten theory of $(X,D)$ with $\lambda _g$-insertion is related to Gromov-Witten theory of the total space of ${\mathcal O}_X(-D)$ and local Gromov-Witten theory of D.
Specializing to
$(X,D)=(S,E)$ for S a del Pezzo surface or a rational elliptic surface and E a smooth anticanonical divisor, we show that maximal contact Gromov-Witten theory of $(S,E)$ is determined by the Gromov-Witten theory of the Calabi-Yau 3-fold ${\mathcal O}_S(-E)$ and the stationary Gromov-Witten theory of the elliptic curve E.
Specializing further to $S={\mathbb P}^2$, we prove that higher genus generating series of maximal contact Gromov-Witten invariants of $({\mathbb P}^2,E)$ are quasimodular and satisfy a holomorphic anomaly equation. The proof combines the quasimodularity results and the holomorphic anomaly equations previously known for local ${\mathbb P}^2$ and the elliptic curve.
Furthermore, using the connection between maximal contact Gromov-Witten invariants of $({\mathbb P}^2,E)$ and Betti numbers of moduli spaces of semistable one-dimensional sheaves on ${\mathbb P}^2$, we obtain a proof of the quasimodularity and holomorphic anomaly equation predicted in the physics literature for the refined topological string free energy of local ${\mathbb P}^2$ in the Nekrasov-Shatashvili limit.
We prove a conjecture of Maulik, Pandharipande and Thomas expressing the Gromov–Witten invariants of K3 surfaces for divisibility 2 curve classes in all genera in terms of weakly holomorphic quasi-modular forms of level 2. Then we establish the holomorphic anomaly equation in divisibility 2 in all genera. Our approach involves a refined boundary induction, relying on the top tautological group of the moduli space of smooth curves, together with a degeneration formula for the reduced virtual fundamental class with imprimitive curve classes. We use double ramification relations with target variety as a new tool to prove the initial condition. The relationship between the holomorphic anomaly equation for higher divisibility and the conjectural multiple cover formula of Oberdieck and Pandharipande is discussed in detail and illustrated with several examples.
We exploit the critical structure on the Quot scheme $\text {Quot}_{{{\mathbb {A}}}^3}({\mathscr {O}}^{\oplus r}\!,n)$, in particular the associated symmetric obstruction theory, in order to study rank r K-theoretic Donaldson-Thomas (DT) invariants of the local Calabi-Yau $3$-fold ${{\mathbb {A}}}^3$. We compute the associated partition function as a plethystic exponential, proving a conjecture proposed in string theory by Awata-Kanno and Benini-Bonelli-Poggi-Tanzini. A crucial step in the proof is the fact, nontrival if $r>1$, that the invariants do not depend on the equivariant parameters of the framing torus $({{\mathbb {C}}}^\ast )^r$. Reducing from K-theoretic to cohomological invariants, we compute the corresponding DT invariants, proving a conjecture of Szabo. Reducing further to enumerative DT invariants, we solve the higher rank DT theory of a pair $(X,F)$, where F is an equivariant exceptional locally free sheaf on a projective toric $3$-fold X.
As a further refinement of the K-theoretic DT invariants, we formulate a mathematical definition of the chiral elliptic genus studied in physics. This allows us to define elliptic DT invariants of ${{\mathbb {A}}}^3$ in arbitrary rank, which we use to tackle a conjecture of Benini-Bonelli-Poggi-Tanzini.
In [12], Kim and the first author proved a result comparing the virtual fundamental classes of the moduli spaces of $\varepsilon $-stable quasimaps and $\varepsilon $-stable $LG$-quasimaps by studying localized Chern characters for $2$-periodic complexes.
In this paper, we study a K-theoretic analogue of the localized Chern character map and show that for a Koszul $2$-periodic complex it coincides with the cosection-localized Gysin map of Kiem and Li [11]. As an application, we compare the virtual structure sheaves of the moduli space of $\varepsilon $-stable quasimaps and $\varepsilon $-stable $LG$-quasimaps.
We prove a decomposition formula of logarithmic Gromov–Witten invariants in a degeneration setting. A one-parameter log smooth family $X \longrightarrow B$ with singular fibre over $b_0\in B$ yields a family $\mathscr {M}(X/B,\beta ) \longrightarrow B$ of moduli stacks of stable logarithmic maps. We give a virtual decomposition of the fibre of this family over $b_0$ in terms of rigid tropical maps to the tropicalization of $X/B$. This generalizes one aspect of known results in the case that the fibre $X_{b_0}$ is a normal crossings union of two divisors. We exhibit our formulas in explicit examples.
We express nested Hilbert schemes of points and curves on a smooth projective surface as ‘virtual resolutions’ of degeneracy loci of maps of vector bundles on smooth ambient spaces. We show how to modify the resulting obstruction theories to produce the virtual cycles of Vafa–Witten theory and other sheaf-counting problems. The result is an effective way of calculating invariants (VW, SW, local PT and local DT) via Thom–Porteous-like Chern class formulae.
We compute the
$g=1$
,
$n=1$
B-model Gromov–Witten invariant of an elliptic curve
$E$
directly from the derived category
$\mathsf{D}_{\mathsf{coh}}^{b}(E)$
. More precisely, we carry out the computation of the categorical Gromov–Witten invariant defined by Costello using as target a cyclic
$\mathscr{A}_{\infty }$
model of
$\mathsf{D}_{\mathsf{coh}}^{b}(E)$
described by Polishchuk. This is the first non-trivial computation of a positive-genus categorical Gromov–Witten invariant, and the result agrees with the prediction of mirror symmetry: it matches the classical (non-categorical) Gromov–Witten invariants of a symplectic 2-torus computed by Dijkgraaf.
We focus on various dynamical invariants associated to monomial correspondences on toric varieties, using algebraic and arithmetic geometry. We find a formula for their dynamical degrees, relate the exponential growth of the degree sequences to a strict log-concavity condition on the dynamical degrees and compute the asymptotic rate of the growth of heights of points of such correspondences.
Let
$W\subset \operatorname{GL}(V)$
be a complex reflection group and
$\mathscr{A}(W)$
the set of the mirrors of the complex reflections in
$W$
. It is known that the complement
$X(\mathscr{A}(W))$
of the reflection arrangement
$\mathscr{A}(W)$
is a
$K(\unicode[STIX]{x1D70B},1)$
space. For
$Y$
an intersection of hyperplanes in
$\mathscr{A}(W)$
, let
$X(\mathscr{A}(W)^{Y})$
be the complement in
$Y$
of the hyperplanes in
$\mathscr{A}(W)$
not containing
$Y$
. We hope that
$X(\mathscr{A}(W)^{Y})$
is always a
$K(\unicode[STIX]{x1D70B},1)$
. We prove it in case of the monomial groups
$W=G(r,p,\ell )$
. Using known results, we then show that there remain only three irreducible complex reflection groups, leading to just eight such induced arrangements for which this
$K(\unicode[STIX]{x1D70B},1)$
property remains to be proved.
Gross, Hacking and Keel have constructed mirrors of log Calabi–Yau surfaces in terms of counts of rational curves. Using
$q$
-deformed scattering diagrams defined in terms of higher-genus log Gromov–Witten invariants, we construct deformation quantizations of these mirrors and we produce canonical bases of the corresponding non-commutative algebras of functions.
Almost perfect obstruction theories were introduced in an earlier paper by the authors as the appropriate notion in order to define virtual structure sheaves and K-theoretic invariants for many moduli stacks of interest, including K-theoretic Donaldson-Thomas invariants of sheaves and complexes on Calabi-Yau threefolds. The construction of virtual structure sheaves is based on the K-theory and Gysin maps of sheaf stacks.
In this paper, we generalize the virtual torus localization and cosection localization formulas and their combination to the setting of almost perfect obstruction theory. To this end, we further investigate the K-theory of sheaf stacks and its functoriality properties. As applications of the localization formulas, we establish a K-theoretic wall-crossing formula for simple
$\mathbb{C} ^\ast $
-wall crossings and define K-theoretic invariants refining the Jiang-Thomas virtual signed Euler characteristics.
We prove the genus-one restriction of the all-genus Landau–Ginzburg/Calabi–Yau conjecture of Chiodo and Ruan, stated in terms of the geometric quantization of an explicit symplectomorphism determined by genus-zero invariants. This gives the first evidence supporting the higher-genus Landau–Ginzburg/Calabi–Yau correspondence for the quintic
$3$
-fold, and exhibits the first instance of the ‘genus zero controls higher genus’ principle, in the sense of Givental’s quantization formalism, for non-semisimple cohomological field theories.
We study a class of flat bundles, of finite rank $N$, which arise naturally from the Donaldson–Thomas theory of a Calabi–Yau threefold $X$ via the notion of a variation of BPS structure. We prove that in a large $N$ limit their flat sections converge to the solutions to certain infinite-dimensional Riemann–Hilbert problems recently found by Bridgeland. In particular this implies an expression for the positive degree, genus 0 Gopakumar–Vafa contribution to the Gromov–Witten partition function of $X$ in terms of solutions to confluent hypergeometric differential equations.
A generalisation of von Staudt’s theorem that every permutation of the projective line that preserves harmonic quadruples is a projective semilinear map is given. It is then concluded that any proper supergroup of permutations of the projective semilinear group over an algebraically closed field of transcendence degree at least 1 is 4-transitive.
We compare two cohomological Hall algebras (CoHA). The first one is the preprojective CoHA introduced in [19] associated with each quiver Q, and each algebraic oriented cohomology theory A. It is defined as the A-homology of the moduli of representations of the preprojective algebra of Q, generalizing the K-theoretic Hall algebra of commuting varieties of Schiffmann-Vasserot [15]. The other one is the critical CoHA defined by Kontsevich-Soibelman associated with each quiver with potentials. It is defined using the equivariant cohomology with compact support with coefficients in the sheaf of vanishing cycles. In the present paper, we show that the critical CoHA, for the quiver with potential of Ginzburg, is isomorphic to the preprojective CoHA as algebras. As applications, we obtain an algebra homomorphism from the positive part of the Yangian to the critical CoHA.
We prove that if $C$ is a reflexive smooth plane curve of degree $d$ defined over a finite field $\mathbb{F}_{q}$ with $d\leqslant q+1$, then there is an $\mathbb{F}_{q}$-line $L$ that intersects $C$ transversely. We also prove the same result for non-reflexive curves of degree $p+1$ and $2p+1$ when $q=p^{r}$.