
Forum of Mathematics, Sigma (2024), Vol. 12:e61 1–25
doi:10.1017/fms.2024.48

RESEARCH ARTICLE

Quasimaps to moduli spaces of sheaves on a 𝑲3 surface
Denis Nesterov

Universität Wien, Universitätsring 1, 1010 Wien, Österreich; E-mail: denis.nesterov@univie.ac.at

Received: 2 August 2022; Revised: 22 March 2024; Accepted: 6 April 2024

2020 Mathematics Subject Classification: Primary – 14N35; Secondary – 14J15, 14J27, 14J28, 14J30, 14J42, 14J60

Abstract
In this article, we study quasimaps to moduli spaces of sheaves on a 𝐾3 surface S. We construct a surjective cosection
of the obstruction theory of moduli spaces of 𝜖-stable quasimaps. We then establish reduced wall-crossing formulas
which relate the reduced Gromov–Witten theory of moduli spaces of sheaves on S and the reduced Donaldson–
Thomas theory of 𝑆 ×𝐶, where C is a nodal curve. As applications, we prove the Hilbert-schemes part of the Igusa
cusp form conjecture; higher-rank/rank-one Donaldson–Thomas correspondence with relative insertions on 𝑆 ×𝐶,
if 𝑔(𝐶) ≤ 1; Donaldson–Thomas/Pandharipande–Thomas correspondence with relative insertions on 𝑆 × P1.
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2 D. Nesterov

1. Introduction

1.1. Overview

In [Nes21], 𝜖-stable quasimaps to a moduli space of sheaves on a surface S were introduced. When applied
to a Hilbert scheme of points 𝑆 [𝑛] , moduli spaces of 𝜖-stable quasimaps 𝑄 𝜖

𝑔,𝑁 (𝑆
[𝑛] , 𝛽) interpolate

between moduli spaces of stable maps to 𝑆 [𝑛] and moduli spaces of one-dimensional subschemes on
𝑆 × 𝐶 for a moving nodal curve C,

𝑀𝑔,𝑁 (𝑆
[𝑛] , 𝛽) ← 𝜖→ Hilb𝑛,𝛽 (𝑆 × 𝐶𝑔,𝑁 ) . (1.1)

Zhou’s master-space technique [Zho22] leads to quasimap wall-crossing formulas associated to a varia-
tion of the stability parameter 𝜖 ∈ R>0. By Equation (1.1), these wall-crossing formulas therefore relate
the Gromov–Witten (GW) theory of 𝑆 [𝑛] and the Donaldson–Thomas (DT) theory of 𝑆×𝐶 with relative
insertions.

The case of moduli spaces of sheaves on a 𝐾3 surface requires a special treatment due to the presence
of holomorphic symplectic forms and, consequently, the vanishing of the standard virtual fundamental
class on 𝑀𝑔,𝑁 (𝑆

[𝑛] , 𝛽). In more precise terms, the vanishing is due to existence of a surjective cosection
of the obstruction-theory complex E•,

𝜎 : E• � O[−1] .

A nontrivial reduced enumerative theory is obtained by taking the cone of 𝜎. The same phenomenon
happens on the DT side. The obstruction theory of moduli spaces Hilb𝑛,𝛽 (𝑆×𝐶𝑔,𝑁 ) admits a surjective
cosection, hence the reduction is also necessary. In order to relate the reduced GW theory of 𝑆 [𝑛] and
the reduced DT theory of 𝑆 × 𝐶, we have to furnish 𝑄 𝜖

𝑔,𝑁 (𝑆
[𝑛] , 𝛽) with a surjective cosection and,

consequently, with a reduced obstruction theory. This is the principle aim of the present work.
Once the reduced wall-crossing formula is established in Theorem 3.7, we proceed to proving the

following results:
◦ the (reduced) quantum cohomology of 𝑆 [𝑛] is determined by the relative Pandharipande–Thomas

(PT) theory of 𝑆 × P1, if S is a 𝐾3 surface, conjectured in [Obe19];
◦ the Hilbert-schemes part of the Igusa cusp form conjecture, conjectured in [OP10];
◦ higher-rank/rank-one DT correspondence with relative insertions for 𝑆 × P1 and 𝑆 × 𝐸 , if S is a 𝐾3

surface and E is an elliptic curve;
◦ DT/PT correspondence with relative insertions for 𝑆 × P1, if S is a 𝐾3 surface.

1.2. Cosection

Let S be a 𝐾3 surface and 𝑀 (v) be a projective moduli space of slope stable sheaves on S in a class
v ∈ 𝐾num(𝑆). To give a short motivation for our forthcoming considerations, let us recall the origin
of reduced perfect obstruction theory of the GW theory of 𝑀 (v). Since 𝑀 (v) is hyper-Kähler, for any
algebraic curve class 𝛽 ∈ 𝐻2(𝑀 (v),Z), there exists a deformation of 𝑀 (v) over a small disk Δ ,

M→ Δ ,

for which the horizontal lift of 𝛽 is of (𝑘, 𝑘) type only at the central fiber (for our purposes, Δ can be
replaced by a first-order neighbourhood of the origin Spec(C[𝜖]/𝜖2)). In particular, the standard GW
invariants vanish. We will call such family a twistor family associated to the class 𝛽 and refer to [KT14,
Section 2.1] for more about twistor families in the context of enumerative geometry.

To get a nontrivial enumerative theory, we have to remove obstructions that arise via such deformations
of 𝑀 (v). However, in the case of 𝜖-stable quasimaps, we need twistor families not just of the moduli
space 𝑀 (v) but of the pair (𝑀 (v),ℭ𝔬𝔥𝑟 (𝑆, v)), where ℭ𝔬𝔥𝑟 (𝑆, v) is the rigidified stack of all sheaves
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in the given class [Nes21]. Such twistor families can be given by noncommutative deformations of S.
Let us now elaborate on this point by slightly changing the point of view.

For simplicity, assume 𝑀 (v) = 𝑆 [1] = 𝑆. A map 𝑓 : 𝐶 → 𝑆 of degree 𝛽 is determined by its graph
on 𝑆 × 𝐶. Let I be the associated ideal sheaf of this graph. Deformation theories of I, as a sheaf with
fixed determinant, and of f are equivalent. Assuming C is smooth and 𝛽 ≠ 0, the existence of a first-
order twistor family associated to the class 𝛽 is therefore equivalent to the surjectivity of the following
composition

𝐻1(𝑇𝑆) ↩→ 𝐻1(𝑇𝑆×𝐶 )
·At(𝐼 )
−−−−−→ Ext2(𝐼, 𝐼)0

𝜎𝐼
−−→ 𝐻3(Ω1

𝑆×𝐶 ) � C, (1.2)

that is, to the existence of a class 𝜅𝛽 ∈ 𝐻1 (𝑇𝑆) whose image is nonzero with respect to the composition
above, where 𝜎𝐼 := tr(∗ · −At(𝐼)) for the Atiyah class At(𝐼) ∈ Ext1(𝐼, 𝐼 ⊗Ω1

𝑆×𝐶 ). To see this, recall that
the second map gives the obstruction to deform I along a first-order deformation 𝜅 ∈ 𝐻1(𝑇𝑆), while the
third map, called semiregularity map [BF03], relates obstructions of deforming I to the obstructions of

ch2(𝐼) = (−𝛽,−1) ∈ 𝐻4(𝑆 × 𝐶,Z) = 𝐻2(𝑆,Z) ⊕ Z

to stay of Hodge type (𝑘, 𝑘). With these interpretations in mind, it is not difficult to grasp that 𝜅𝛽 is
indeed our first-order twistor family associated to 𝛽.

The semiregularity map 𝜎𝐼 globalises, that is, there exists a cosection

𝜎 : E• � O[−1]

of the obstruction-theory complex of the moduli space of ideals Hilb(𝑆 × 𝐶). This cosection 𝜎 is
surjective by the existence of first-order twistor families, if the second Chern character of ideals is equal
to (𝛽, 𝑛) for 𝛽 ≠ 0. By the cosection localisation introduced by Kiem–Li [KL13], the standard virtual
fundamental class therefore vanishes. To make the enumerative theory nontrivial, we have to consider
the reduced obstruction-theory complex E•red := cone(𝜎) [−1]. Proving that E•red defines an obstruction
theory,

THilb → E
•
red,

is difficult, we show it under a certain assumption in Proposition A.1. Instead, [KL13] provides a
construction of the reduced virtual fundamental class without an obstruction-theory morphism.

Let us come back to the case of a general moduli space of sheaves 𝑀 (v). By construction of 𝑀 (v),
the deformation theory of quasimaps to 𝑀 (v) is equivalent to the one of sheaves on threefolds of the
type 𝑆×𝐶; see [Nes21, Proposition 5.1)] for more details. The obstruction theory of higher-rank sheaves
on 𝑆 × 𝐶 also admits a cosection given by the semiregularity map. We want to show it is surjective.
However, already for 𝑀 (v) = 𝑆 [𝑛] with 𝑛 > 1, there is a problem with the argument presented above.
If the degree of 𝑓 : 𝐶 → 𝑆 [𝑛] is equal to a multiple of the exceptional curve class,1 then Equation
(1.2) is zero. Indeed, in this case, ch2(𝐼) = (0, 𝑛), and the composition (1.2) is equal to the contraction
〈−, ch2 (𝐼)〉, which therefore pairs trivially with classes in 𝐻1 (𝑇𝑆). The geometric interpretation of this
phenomenon is that the exceptional curve class of 𝑆 [𝑛] stays of Hodge type (𝑘, 𝑘) along commutative
deformations of S because punctorial Hilbert schemes deform to punctorial Hilbert schemes under
commutative deformations of S. To fix the argument, we have to consider classes not just in 𝐻1(𝑇𝑆), but
in a larger space

𝐻0(∧2𝑇𝑆) ⊕ 𝐻1(𝑇𝑆) ⊕ 𝐻2(O𝑆),

that is, we have to consider noncommutative first-order twistor families to prove the surjectivity of the
semiregularity map.

1The curve class dual to a multiple of the exceptional divisor associated to the resolution of singularities 𝑆 [𝑛] → 𝑆 (𝑑) .
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4 D. Nesterov

1.3. Strategy

For surjectivity of the semiregularity map, we will largely follow [BF03, Section 4] and [MPT10,
Proposition 11] with few extra layers of complications. Firstly, since our threefold 𝑆 × 𝐶 might be
singular (because C is nodal), we have to consider Atiyah classes valued in Ω1

𝑆 � 𝜔𝐶 ,

At𝜔 (𝐹) ∈ Ext1 (𝐹, 𝐹 ⊗ (Ω1
𝑆 � 𝜔𝐶 )),

instead of Ω1
𝑆 �L𝐶 = Ω1

𝑆 �Ω
1
𝐶 , as the latter does not behave well under degenerations. Chern characters

of sheaves are then defined via the Atiyah class of the form as above. Secondly, after establishing the
expected correspondence between degrees of quasimaps and Chern characters of sheaves, we allow
contractions with classes in

𝐻0(∧2𝑇𝑆) ⊕ 𝐻1(𝑇𝑆) ⊕ 𝐻2(O𝑆),

instead of just 𝐻1 (𝑇𝑆), unlike in [BF03, Section 4]. Proposition 2.3 is a vast extension of [MPT10,
Proposition 11] and implies surjectivity of the global semiregularity map for higher-rank sheaves,
Corollary 3.2.

Having constructed a surjective cosection of the obstruction theory, ideally one would like to reduce
the obstruction theory. However, due to the involvement of noncommutative geometry in our considera-
tions, we can reduce the obstruction theory only under a certain assumption, which is not unnatural; see
Proposition A.1 for more details. For that reason, we do not use our reduced obstruction theory for the
construction of the reduced virtual fundamental class. We instead choose to work with reduced classes
of [KL13].

1.4. Applications of the quasimap wall-crossing

1.4.1. Enumerative geometry of 𝑆 [𝑛]
Let E be a fixed elliptic curve. A moduli space of nonconstant maps from E to 𝑆 [𝑛] up to translations
by E is of reduced virtual dimension 0. Hence, the associated GW invariants do not require insertions,
and we can define a virtual count of E inside 𝑆 [𝑛] . Applying the reduced wall-crossing to these GW
invariants, we obtain that, up to the wall-crossing terms, they are equal to rank-one DT invariants on the
Calabi–Yau threefold 𝑆 × 𝐸 ,

GW𝐸 (𝑆
[𝑛] ) = DTrk=1 (𝑆 × 𝐸) +Wall. (1.3)

In [Obe21b], the wall-crossing terms are shown to be virtual Euler numbers of certain Quot schemes,
which are computed for 𝑆 [𝑛] , if S is a 𝐾3 surface. Both theories in Equation (1.3) are subjects of the
Igusa cusp form conjecture [OP16, Conjecture A], which consists of two parts:

◦ expressing DT invariants of 𝑆 × 𝐸 in terms of the Igusa cusp form;
◦ expressing the difference of DT invariants of 𝑆 × 𝐸 and GW invariants of 𝑆 [𝑛] associated to E in

terms of an explicit correction term.

The first part was proved in a series of papers [OS20], [OP18]. While the second part is therefore a
consequence of the reduced quasimap wall-crossing (1.3) together with the computations of [Obe21b].
This completes the proof of the Igusa cusp form conjecture and provides an expression for GW invariants
of 𝑆 [𝑛] associated to E. We refer to Section 4.2 for more details about this conjecture.

In a similar vein, in [Obe22], a holomorphic anomaly equation is established for 𝑆 [𝑛] for genus-0
GW invariants with at most three markings. The proof crucially uses the quisimap wall-crossing, which
relates genus-0 GW invariants of 𝑆 [𝑛] to PT invariants of 𝑆 × P1 and then to GW invariants of 𝑆 × P1

by [Obe21a].
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quasimap
wall-crossing

quasimap
wall-crossing

GW(𝑆 [𝑛] )GW(𝑀 (v)) deformation
invariance

DTrel,rk>1(𝑆 × 𝐶𝑔,𝑁 ) DTrel,rk=1(𝑆 × 𝐶𝑔,𝑁 )
DTrk>1/DTrk=1

Figure 1. Higher-rank/rank-one DT correspondence.

1.4.2. Higher-rank/rank-one DT correspondence for 𝐾3 × 𝐶

Assume 𝑀 (v) satisfies various assumptions of [Nes21] which are listed in Section 3.1. In particular,
𝑀 (v) is a smooth projective hyper-Kähler variety. Hence, by [Huy99, Theorem 4.6], it is deformation
equivalent to 𝑆 [𝑛] . Using the quasimap wall-crossing on both sides, we can relate higher-rank DT theory
to rank-one DT theory. The pictorial representation of this procedure is given in Figure 1.

If (𝑔, 𝑁) = (0, 3), the rank-one DT side of the square is concerned with moduli spaces of one-
dimensional subschemes on 𝑆 × P1, which are transversal to the vertical divisors over {0, 1,∞} ⊂ P1,

𝑆𝑝 = 𝑆 × {𝑝} ⊂ 𝑆 × P1, 𝑝 ∈ {0, 1,∞}.

We allow P1 to sprout rational tails at {0, 1,∞} in order to make the space proper. The resulting space
is denoted by

Hilb𝑛,𝛽 (𝑆 × P
1/𝑆0,1,∞). (1.4)

Intersecting a vertical divisor with a subscheme, we obtain evaluation maps to 𝑆 [𝑛] ,

ev𝑝 : Hilb𝑛,𝛽 (𝑆 × P
1/𝑆0,1,∞) → 𝑆 [𝑛] , 𝑝 ∈ {0, 1,∞}.

Relative insertions are defined to be pullbacks of classes from 𝑆 [𝑛] via these evaluation maps. These
are the insertions that can be compared to primary GW insertions in Figure 1. For the higher-rank DT
side, there exist similar spaces, for the definition of which we refer to Section 4.3.1.

If (𝑔, 𝑁) = (0, 3), the wall-crossing is trivial; hence, Figure 1 gives us the following relation between
DT invariants with relative insertions,

DTrel,rk=1 (𝑆 × P
1/𝑆0,1,∞) = GW0,3(𝑆

[𝑛] ) = DTrel,rk>1(𝑆 × P
1/𝑆0,1,∞).

In the case of 𝑆 × 𝐸 , where E is an elliptic curve, we also get a wall-crossing statement for absolute
invariants and equality of certain relative invariants, as is explained in Section 4.3.2.

1.4.3. DT/PT correspondence for 𝐾3 × 𝐶

By results from [Nes21, Section 6.3], there also exists a theory of quasimaps that interpolates between
moduli spaces of stable maps to 𝑆 [𝑛] and stable pairs on 𝑆 × 𝐶 in the sense of [PT09],

𝑀𝑔,𝑁 (𝑆
[𝑛] , 𝛽) ← 𝜖→ P𝑛,𝛽 (𝑆 × 𝐶𝑔,𝑁 ) . (1.5)
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��

�� ��

��
GW(𝑆 [𝑛] )

quasimap
wall-crossing

quasimap
wall-crossing

DTrel,rk=1(𝑆 × 𝐶𝑔,𝑁 ) PTrel,rk=1 (𝑆 × 𝐶𝑔,𝑁 )
DT/PT

Figure 2. DT/PT correspondence.

The resulting wall-crossing formulas therefore relate the GW theory of 𝑆 [𝑛] to the PT theory of 𝑆 × 𝐶
with relative insertions. We refer to this wall-crossing as perverse quasimap wall-crossing, for more
details on this terminology we refer to [Nes21, Section 6.3].

Using both standard and perverse quasimap wall-crossings, we can reduce the DT/PT correspondence
for a relative geometry of the form

𝑆 × 𝐶𝑔,𝑁 → 𝑀𝑔,𝑁

to the DT/PT correspondence of wall-crossing invariants, as is illustrated in Figure 2. As before, if
(𝑔, 𝑁) = (0, 3), the wall-crossing is trivial. We therefore obtain the following relation:

DTrel,rk=1 (𝑆 × P
1/𝑆0,1,∞) = GW0,3(𝑆

[𝑛] ) = PTrel,rk=1(𝑆 × P
1/𝑆0,1,∞).

Note that this is an equality of invariants, unlike the more conventional DT/PT correspondence for
Calabi–Yau threefolds which involves dividing by zero-dimensional DT invariants, as it was conjectured
in [PT09, Conjecture 3.3] and proved in [Bri11, Theorem 1.1]. This form of DT/PT correspondence is
not surprising due to the nature of reduced virtual fundamental classes. Moreover, since we are in the
setting of a non-Calabi–Yau relative geometry, the techniques of wall-crossings in derived categories
of [KS08] and [JS12] cannot be applied to prove wall-crossing statements as above.

1.5. Notation and conventions

We work over the field of complex numbers C. We set 𝑒C∗ (Cstd) = 𝑧, where Cstd is the weight 1 repre-
sentation of C∗ on the vector space C. All functors are derived, unless stated otherwise. Cohomologies
and homologies have rational coefficients, unless stated otherwise.

2. Semiregularity map

2.1. Preliminaries

Let S to be a 𝐾3 surface over the field of complex numbers C, and let F be a sheaf on 𝑆 × 𝐶 flat over a
nodal curve C. More generally, the following discussion also applies to perfect complexes with the help
of [HT10]. In particular, we may assume that F is a stable pair in the sense of [PT09], which is flat over
nodes of C.

Consider the Atiyah class

At(𝐹) ∈ Ext1(𝐹, 𝐹 ⊗ Ω1
𝑆×𝐶 ),

represented by the canonical exact sequence

0→ 𝐹 ⊗ Ω1
𝑆×𝐶 → P1(𝐹) → 𝐹 → 0,
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where P1 (𝐹) is the sheaf of principle parts. Composing the Atiyah class with the natural map

Ω1
𝑆×𝐶 = Ω1

𝑆 �Ω
1
𝐶 → Ω1

𝑆 � 𝜔𝐶 ,

we obtain a class

At𝜔 (𝐹) ∈ Ext1(𝐹, 𝐹 ⊗ (Ω1
𝑆 � 𝜔𝐶 )).

We then define the Chern character of a sheaf F on 𝑆 × 𝐶 for a possibly singular C as follows:

ch𝑘 (𝐹) := tr
(
(−1)𝑘

𝑘!
At𝜔 (𝐹)𝑘

)
∈ 𝐻𝑘 (∧𝑘 (Ω1

𝑆 � 𝜔𝐶 )). (2.1)

If C is smooth, it agrees with the standard definition of the Chern character. Using the canonical
identification 𝐻1(𝜔𝐶 ) � C, and

∧𝑘 (Ω1
𝑆 � 𝜔𝐶 ) � Ω𝑘

𝑆 � (Ω
𝑘−1
𝑆 � 𝜔𝑆),

we get a Künneth’s decomposition of the cohomology

𝐻𝑘 (∧𝑘 (Ω1
𝑆 � 𝜔𝐶 )) � 𝐻𝑘 (Ω𝑘

𝑆) ⊕ 𝐻𝑘−1(Ω𝑘−1
𝑆 ),

hence ⊕
𝑘

𝐻𝑘 (∧𝑘 (Ω1
𝑆 � 𝜔𝐶 )) � Λ ⊕ Λ(−1), (2.2)

where

Λ :=
⊕
𝑘

𝐻𝑘,𝑘 (𝑆).

With respect to this decomposition above, the Chern character ch(𝐹) has two components

ch(𝐹) = (ch(𝐹)f , ch(𝐹)d) ∈ Λ ⊕ Λ(−1)

such that the first component is determined by the Chern character of a fiber of F over a point 𝑝 ∈ 𝐶,

ch(𝐹)f = ch(𝐹𝑝).

On the other hand, if C is smooth, then ch(𝐹)d is determined by the degree of the quasimap associated
to F; see [Nes21, Lemma 3.3] for more details. We will show that the definition of ch(𝐹) in Equation
(2.1) is compatible with the definition in [Nes21, Definition 3.5] for a singular curve C. So let C be
singular, and let

𝜋 : 𝑆 × 𝐶̃ → 𝑆 × 𝐶

be the normalisation map and 𝜋∗𝐹𝑖 be the restriction of 𝜋∗𝐹 to the connected components 𝐶̃𝑖 of 𝐶̃. The
above decomposition of the Chern character satisfies the following property.

Lemma 2.1. Under the identification (2.2), we have

ch(𝐹) = (ch(𝐹𝑝),
∑
𝑖

ch(𝜋∗𝐹𝑖)d) ∈ Λ ⊕ Λ(−1).
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Proof. Firstly, there exist canonical maps making the following diagram commutative:

0 𝜋∗𝐹 ⊗ 𝜋∗Ω1
𝑆×𝐶 𝜋∗P1(𝐹) 𝜋∗𝐹 0

0 𝜋∗𝐹 ⊗ Ω1
𝑆×𝐶̃

P1 (𝜋∗𝐹) 𝜋∗𝐹 0,

where the first row is exact on the left, because 𝐿𝜋∗𝐹 � 𝜋∗𝐹, by flatness2 of F over C. The diagram above
implies that the pullback of the Atiyah class 𝜋∗At(𝐹) is mapped to At(𝜋∗𝐹) with respect to the map

Ext1(𝜋∗𝐹, 𝜋∗𝐹 ⊗ 𝜋∗Ω1
𝑆×𝐶 ) → Ext1(𝜋∗𝐹, 𝜋∗𝐹 ⊗ Ω1

𝑆×𝐶̃
).

The same holds for 𝜋∗At𝑘 (𝐹). Consider now the following commutative diagram:

𝑅H𝑜𝑚(𝐹, 𝐹 ⊗ Ω𝑘
𝑆×𝐶 ) Ω𝑘

𝑆×𝐶

𝜋∗𝑅H𝑜𝑚(𝜋∗𝐹, 𝜋∗𝐹 ⊗ 𝜋∗Ω𝑘
𝑆×𝐶 )

𝜋∗𝑅H𝑜𝑚(𝜋∗𝐹, 𝜋∗𝐹 ⊗ Ω𝑘
𝑆×𝐶̃
) 𝜋∗Ω𝑘

𝑆×𝐶̃
∧𝑘 (Ω1

𝑆 � 𝜔𝐶 )

such that the first vertical map is the composition

𝑅H𝑜𝑚(𝐹, 𝐹 ⊗ Ω𝑘
𝑆×𝐶 ) → 𝜋∗𝐿𝜋

∗𝑅H𝑜𝑚(𝐹, 𝐹 ⊗ Ω𝑘
𝑆×𝐶 ) = 𝜋∗𝑅H𝑜𝑚(𝜋∗𝐹, 𝜋∗𝐹 ⊗ 𝐿𝜋∗Ω𝑘

𝑆×𝐶 )

→ 𝜋∗𝑅H𝑜𝑚(𝜋∗𝐹, 𝜋∗𝐹 ⊗ 𝜋∗Ω𝑘
𝑆×𝐶 ),

where we used that 𝐿𝜋∗𝐹 � 𝜋∗𝐹. Taking the cohomology of the diagram above and using the exactness
of 𝜋∗, we can therefore factor the map

Ext𝑘 (𝐹, 𝐹 ⊗ Ω𝑘
𝑆×𝐶 ) → 𝐻𝑘 (∧𝑘 (Ω1

𝑆 � 𝜔𝐶 ))

as follows:

Ext𝑘 (𝐹, 𝐹 ⊗ Ω𝑘
𝑆×𝐶 ) → Ext𝑘 (𝜋∗𝐹, 𝜋∗𝐹 ⊗ 𝜋∗Ω𝑘

𝑆×𝐶 ) → Ext𝑘 (𝜋∗𝐹, 𝜋∗𝐹 ⊗ Ω𝑘
𝑆×𝐶̃
)

→ 𝐻𝑘 (Ω𝑘
𝑆×𝐶̃
) � 𝐻𝑘 (Ω𝑘

𝑆) ⊕
⊕
𝑖

𝐻𝑘−1(Ω𝑘−1
𝑆 ) ⊗ 𝐻1(𝜔𝐶̃𝑖

)

→ 𝐻𝑘 (Ω𝑘
𝑆) ⊕ 𝐻𝑘−1(Ω𝑘−1

𝑆 ) ⊗ 𝐻1 (𝜔𝐶 ) � 𝐻𝑘 (∧𝑘 (Ω1
𝑆 � 𝜔𝐶 )).

With respect to the natural identifications 𝐻1(𝜔𝐶̃𝑖
) � C and 𝐻1(𝜔𝐶 ) � C, the last map in the sequence

becomes

𝐻𝑘 (Ω𝑘
𝑆) ⊕

⊕
𝑖

𝐻𝑘−1(Ω𝑘−1
𝑆 )

(id,+)
−−−−→ 𝐻𝑘 (Ω𝑘

𝑆) ⊕ 𝐻𝑘−1(Ω𝑘−1
𝑆 ).

The claim then follows by tracking the powers of the Atiyah class At𝑘 (𝐹) along the maps above. �

2To see that, one can use the standard locally free resolution of a flat sheaf; these resolutions are functorial with respect to
pullbacks.
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2.2. Semiregularity map

By pulling back classes in

𝐻𝑇2 (𝑆) := 𝐻0(∧2𝑇𝑆) ⊕ 𝐻1 (𝑇𝑆) ⊕ 𝐻2 (O𝑆)

from S to 𝑆 × 𝐶, we will treat 𝐻𝑇2 (𝑆) as classes on 𝑆 × 𝐶. Let

𝜎𝑖 := tr
(
∗ ·
(−1)𝑖

𝑖!
At𝜔 (𝐹)𝑖

)
: Ext2(𝐹, 𝐹) → 𝐻𝑖+2(∧𝑖 (Ω1

𝑆 � 𝜔𝐶 ))

be a semiregularity map.

Lemma 2.2. The following diagram is commutative:

𝐻2−𝑘 (∧𝑘𝑇𝑆) Ext2(𝐹, 𝐹)

𝐻𝑖+2(∧𝑖 (Ω1
𝑆 � 𝜔𝐶 )).

·
(−1)𝑘
𝑘! At𝜔 (𝐹 )𝑘

〈∗,ch𝑘+𝑖 (𝐹 ) 〉 𝜎𝑖

Proof. If 𝑖 = 0, then 𝜎0 = tr and the commutativity is implied by the following property of the
contraction pairing,

〈𝜅, tr(At𝜔 (𝐹)𝑘 ))〉 = tr〈𝜅, At𝜔 (𝐹)𝑘〉.

The proof is presented in [BF03, Proposition 4.2] for 𝑘 = 1 and is the same for other values of k.
If 𝑖 = 1, then for the commutativity of the diagram we have to prove that〈

𝜅, tr
(

At𝜔 (𝐹)𝑘+1

𝑘 + 1!

)〉
= tr

(〈
𝜅,

At𝑘𝜔 (𝐹)
𝑘!

〉
· At𝜔 (𝐹)

)
.

If 𝜅 ∈ 𝐻2 (O𝑆), the equality follows trivially since there is no contraction. The case of 𝜅 ∈ 𝐻1 (𝑇𝑆) is
treated in [BF03, Proposition 4.2]. For 𝜅 ∈ 𝐻0(∧2𝑇𝑆), we use the derivation property for contraction
with a two-vector field

〈𝜉, At3𝜔 (𝐹)〉 = 3〈𝜉, At2𝜔 (𝐹)〉 · At𝜔 (𝐹),

which can be checked locally on a two-vector field of the form 𝑉 ∧𝑊 . �

Due to the decomposition

𝐻𝑖 (∧𝑖 (Ω1
𝑆 � 𝜔𝐶 )) � 𝐻𝑖 (Ω𝑖

𝑆) ⊕ 𝐻𝑖−1(Ω𝑖−1
𝑆 ),

there are two ways to contract a class in 𝐻𝑖 (∧𝑖 (Ω1
𝑆 � 𝜔𝐶 )) with a class in 𝐻2−𝑘 (∧𝑘𝑇𝑆): either via the

first component of the decomposition above or via the second. Hence, due to the wedge degree or the
cohomological degree, only one component of 𝐻𝑖 (∧𝑖 (Ω1

𝑆 � 𝜔𝐶 )) pairs nontrivially with 𝐻2−𝑘 (∧𝑘𝑇𝑆)
for a fixed k. It is not difficult to check that contraction with the Chern character,

𝐻2−𝑘 (∧𝑘𝑇𝑆)
〈−,ch𝑘+𝑖 (𝐹 ) 〉
−−−−−−−−−−→ 𝐻𝑖+2(∧𝑖 (Ω1

𝑆 � 𝜔𝐶 )),

is therefore equal to 〈−, ch(𝐹)f〉 for 𝑖 = 0 and to 〈−, ch(𝐹)d〉 for 𝑖 = 1. Moreover, using the identification

𝐻𝑖+2(∧𝑖 (Ω1
𝑆 � 𝜔𝐶 )) � 𝐻2(O𝑆),

the contraction 〈−, ch(𝐹)d/f〉 with classes on 𝑆 × 𝐶 is identified with the contraction with classes on S.
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Proposition 2.3. Assume

ch(𝐹)f ∧ ch(𝐹)d ≠ 0,

then there exists 𝜅 ∈ 𝐻𝑇2 (𝑆) such that

〈𝜅, ch(𝐹)f〉 = 0 and 〈𝜅, ch(𝐹)d〉 ≠ 0.

In particular, the restriction of the semiregularity map to the traceless part of Ext2(𝐹, 𝐹),

𝜎1 : Ext2 (𝐹, 𝐹)0 → 𝐻3 (Ω1
𝑆 � 𝜔𝐶 ),

is nonzero.

Proof. Using a symplectic form on S, we have the following identifications,

∧2𝑇𝑆 � O𝑆 , 𝑇𝑆 � Ω1
𝑆 , O𝑆 � Ω2

𝑆 .

After applying these identifications and taking the cohomology, the pairing

𝐻𝑇2 (𝑆) ⊗ 𝐻Ω0(𝑆) → 𝐻2(O𝑆), (2.3)

which is given by the contraction of classes, becomes the intersection pairing

𝐻Ω0(𝑆) ⊗ 𝐻Ω0(𝑆) → 𝐻2(Ω2
𝑆),

where 𝐻Ω0(𝑆) =
⊕

𝑖 𝐻
𝑖 (Ω𝑖). In particular, the pairing (2.3) is nondegenerate. We conclude that ch(𝐹)⊥d

and ch(𝐹)⊥f are distinct, if and only if ch(𝐹)d is not a multiple of ch(𝐹)f . Hence, there exists a class
𝜅 ∈ 𝐻𝑇2 (𝑆) such that

〈𝜅, ch(𝐹)f〉 = 0 and 〈𝜅, ch(𝐹)d〉 ≠ 0.

By Lemma 2.2 and the discussion afterwards, the property〈𝜅, ch(𝐹)f〉 = 0 implies that

𝜅 · exp(−At𝜔 (𝐹) ∈ Ext2(𝐹, 𝐹)0,

while the property 〈𝜅, ch(𝐹)d〉 = 0 implies that the restriction of the semiregularity map to Ext2 (𝐹, 𝐹)0
is nonzero, as it is nonzero when applied to the element 𝜅 · exp(−At𝜔 (𝐹)). �

Remark 2.4. From the point of view of quasimaps, the condition

ch(𝐹)f ∧ ch(𝐹)d ≠ 0,

is equivalent to the fact that the quasimap 𝑓 : 𝐶 → ℭ𝔬𝔥𝑟 (𝑆) associated to F is not constant.

The above result has a following geometric interpretation. With respect to the Hochschild–Kostant–
Rosenberg (HKR) isomorphism,

𝐻𝑇2 (𝑆) � 𝐻𝐻2 (𝑆),

the space 𝐻𝑇2 (𝑆) parametrises first-order noncommutative deformations of S, that is, deformations
of D𝑏 (𝑆). Given a first-order deformation 𝜅 ∈ 𝐻𝑇2 (𝑆), the unique horizontal lift of ch(𝐹)d/f rela-
tive to a Gauss–Manin connection associated to 𝜅 should stay of Hodge type (𝑘, 𝑘), if and only if
〈𝜅, ch(𝐹)d/f〉 = 0. On the other hand, 〈𝜅, exp(−At𝜔 (𝐹)) gives an obstruction for deforming F on 𝑆 ×𝐶
in the direction 𝜅. Hence, by Lemma 2.2, the semiregularity map 𝜎𝑖 relates obstructions to deform F
along 𝜅 with obstructions of ch(𝐹)d/f to stay of Hodge type (𝑘, 𝑘). Proposition 2.3 states that there exists
a deformation 𝜅 ∈ 𝐻𝑇2 (𝑆), for which ch(𝐹)f stays of Hodge type (𝑘, 𝑘), but ch(𝐹)d does not. From the
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point of view of quasimaps, this means that the moduli space of stable sheaves M on S associated to the
class ch(𝐹)f deforms along 𝜅, but the quasimap associated to F does not.

For example, let S be a 𝐾3 surface associated to a cubic fourfold Y, such that the Fano variety of
lines 𝐹 (𝑌 ) is isomorphic to 𝑆 [2] . Then if we deform Y away from the Hassett divisor [Has00], 𝐹 (𝑌 )
deforms along, but the point class of S does not. Therefore, such deformation of Y will give the first-
order noncommutative deformation 𝜅 ∈ 𝐻𝑇2 (𝑆) of S such that ch(𝐹)f = (1, 0,−2) stays of Hodge type
(𝑘, 𝑘), but ch(𝐹)d = (0, 0, 𝑘) does not. Note that ch(𝐹)d = (0, 0, 𝑘) corresponds to multiplies of the
exceptional curve class in 𝑆 [2] . Indeed, there are no commutative deformations of S that will make
(0, 0, 𝑘) non-Hodge because, in this case, the exceptional divisor deforms along with 𝑆 [2] .

3. Reduced wall-crossing

3.1. Surjective cosection

We fix a very ample line bundle O𝑆 (1) ∈ Pic(𝑆), a class v ∈ 𝐾num(𝑆) and another class u ∈ 𝐾0(𝑆) such
that:

◦ rk(v) > 0,
◦ 𝜒(v · u) = 1,
◦ there are no strictly slope O𝑆 (1)-semistable sheaves in the class v.

Let 𝑀 (v) be the moduli space of slope O𝑆 (1)-stable sheaves on S in the class v. The second assumption
implies that 𝑀 (v) is a fine moduli space, while the last assumption implies that 𝑀 (v) is smooth and
projective. The first two assumptions are made for technical reasons and, in principle, can be dropped.
We refer to [Nes21, Section 1.6] for a more detailed discussion about why these assumptions are made.

Remark 3.1. An example of a moduli space 𝑀 (v) which satisfies the assumptions above will be a moduli
space of sheaves in the class ch(v) = (2, 𝛼, 2𝑘 +1) for a polarisation such that deg(𝛼) is odd (or a generic
polarisation that is close to a polarisation for which deg(𝛼) is odd). Firstly, rk(v) and deg(v) are coprime;
therefore, there are no strictly slope semistable sheaves. The class u = [O𝑆] − (𝑘 + 2) [Opt] ∈ 𝐾0(𝑆)
has the property 𝜒(v · u) = 1. Moreover, [Nes21, Corollary A.6] holds in this case; therefore, the space
𝑀v,𝛽 (𝑆 × 𝐶) is a moduli space of all stable sheaves for some suitable polarisation. More specifically,
such setup can be arranged on an elliptic 𝐾3 surface.

By [Nes21, Theorem 3.15], there exists an identification between a space of 𝜖-stable quasimaps
𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽) and a certain relative moduli space of sheaves 𝑀 𝜖

v,𝛽
(𝑆 × 𝐶𝑔,𝑁 ),

𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽) � 𝑀 𝜖

v,𝛽 (𝑆 × 𝐶𝑔,𝑁 ) (3.1)

such that the corresponding obstructions theories are isomorphic. The product 𝑆 × 𝐶𝑔,𝑁 stands for the
relative geometry

𝑆 × 𝐶𝑔,𝑁 → 𝑀𝑔,𝑁 ,

where 𝐶𝑔,𝑁 is the universal curve over 𝑀𝑔,𝑁 . This identification depends on the choice of the class
u ∈ 𝐾0(𝑆), which we suppress from the notation. For 𝜖 = 0+, the C-valued points of 𝑀0+

v,𝛽
(𝑆 × 𝐶𝑔,𝑁 )

are triples

(𝐶, p, 𝐹) (3.2)

such that:

◦ (𝐶, p) is a prestable nodal curve (no rational tails),
◦ a sheaf F on 𝑆 × 𝐶 flat over C,
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◦ ch(𝐹) = (ch(v), 𝛽),
◦ 𝐹𝑝 is stable for a general 𝑝 ∈ 𝐶,
◦ 𝐹𝑝 is stable, if p is a node or a marking,
◦ the group of automorphisms of (𝐶, p) fixing F is finite,
◦ det(𝑝𝐶∗(𝑝∗𝑆u ⊗ 𝐹)) � O𝐶 .
We will frequently use the identification (3.1) to transfer various constructions from sheaves to
quasimaps and vice versa. If 𝑀 (v) = 𝑆 [𝑛] , then one can consider a moduli space of perverse quasimaps
𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽)

♯, which admits an identification with a relative moduli space stable pairs of [PT09],

𝑄 𝜖
𝑔,𝑁 (𝑆

[𝑛] , 𝛽)♯ � P𝜖
𝑛,𝛽
(𝑆 × 𝐶𝑔,𝑁 ).

The following discussion applies to both kinds of quasimaps.
Let

𝜋 : 𝑆 × C 𝜖𝑔,𝑁 → 𝑀 𝜖
v,𝛽 (𝑆 × 𝐶𝑔,𝑁 ),

F ∈ Coh(𝑆 × C 𝜖𝑔,𝑁 )

be the universal threefold and the universal sheaf of 𝑀 𝜖
v,𝛽
(𝑆 × 𝐶𝑔,𝑁 ), respectively. Let

tr : 𝑅H𝑜𝑚𝜋 (F, F) → 𝑅𝜋∗(O𝑆×C 𝜖
𝑔,𝑁
)

be the universal trace map. The complex

E• := 𝑅H𝑜𝑚𝜋 (F, F)0 [1] = Cone(tr)

defines a perfect obstruction theory on 𝑀 𝜖
v,𝛽
(𝑆 × 𝐶𝑔,𝑁 ) relative to the moduli stack of nodal curves

𝔐𝑔,𝑁 . We construct a cosection of the obstruction theory via the global relative semiregularity map,

sr : E• → 𝑅3𝜋∗(Ω
1
𝑆 � 𝜔C 𝜖

𝑔,𝑁
) [−1],

and since

𝑅3𝜋∗(Ω
1
𝑆 � 𝜔C 𝜖

𝑔,𝑁
) � 𝐻2(O𝑆) ⊗ O𝑀 𝜖

v,𝛽̌
(𝑆×𝐶𝑔,𝑁 ) ,

we have

sr : E• → 𝐻2(O𝑆) ⊗ O𝑀 𝜖
v,𝛽̌
(𝑆×𝐶𝑔,𝑁 ) [−1] � O𝑀 𝜖

v,𝛽̌
(𝑆×𝐶𝑔,𝑁 ) [−1] . (3.3)

By the identification (3.1), we get a cosection for the obstruction theory of 𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽). Surjectivity

of the cosection follows from the preceding results.
Corollary 3.2. Assuming 𝛽 ≠ 0, the semiregularity map sr is surjective.
Proof. Under the given assumption, the surjectivity of the semiregularity map sr follows from
Proposition 2.3 and Lemma 2.1. �

Consider now the composition

Ext1𝐶 (Ω𝐶 ,O𝐶 (−p)) → Ext2(𝐹, 𝐹)0
𝜎1
−−→ 𝐻3(Ω1

𝑆 � 𝜔𝐶 ), (3.4)

where the first map defined by the following composition,

Ext1𝐶 (Ω𝐶 ,O𝐶 (−p)) → Ext1𝐶 (𝜔𝐶 ,O𝐶 )
·−At𝜔 (𝐹 )
−−−−−−−−→ Ext2 (𝐹, 𝐹)0.
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The composition (3.4) is zero by the same arguments as in Lemma 2.2. The semiregularity map therefore
descends to the absolute obstruction theory,

T𝔐𝑔,𝑁 [−1] E• E•abs

O𝑀 𝜖
v,𝛽̌
(𝑆×𝐶𝑔,𝑁 ) [−1] .

sr srabs

Hence, the results of [KL13] apply.
The obstruction theory of the master space 𝑀𝑄 𝜖0

𝑔,𝑁 (𝑀 (v), 𝛽) also has a surjective cosection; see
[Nes21, Section 7.2] for the definition of the master space. Like in the case of 𝑄 𝜖

𝑔,𝑁 (𝑀 (v)𝛽), it is
constructed by identifying the master space with a moduli spaces of sheaves.

3.2. Invariants

In what follows, we use Kiem–Li’s construction of reduced virtual fundamental classes via the cosection
localisation [KL13]. By using the identification (3.1), we define

[𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽)]

red ∈ 𝐻∗(𝑄
𝜖
𝑔,𝑁 (𝑀 (v), 𝛽))

to be the associated reduced virtual fundamental class. From now on, by a virtual fundamental class
we always will mean a reduced virtual fundamental class, except for 𝛽 = 0, since the standard virtual
fundamental class does not vanish in this case. These classes can be seen as virtual fundamental classes
associated to the reduced obstruction-theory complex E•red, defined as the cone of the cosection,

E•red = cone(srabs) [−1] → E•abs
srabs
−−−→ O[−1] . (3.5)

However, we are unable to prove that E•red defines an obstruction theory in full generality, cf. Proposition
A.1. Luckily, Kiem–Li’s class is good enough for all purposes; for example, see [CKL17] for the virtual
torus localisation of Kiem–Li’s reduced classes.

Definition 3.3. We define descendent quasimap invariants,

〈𝛾1𝜓
𝑘1 , . . . , 𝛾𝑁𝜓𝑘𝑁 〉

𝑀 (v) , 𝜖
𝑔,𝑁 ,𝛽 :=

∫
[𝑄𝜖

𝑔,𝑁 (𝑀 (v) ,𝛽) ]red

𝑖=𝑁∏
𝑖=1

ev∗𝑖 (𝛾𝑖)𝜓
𝑘𝑖
𝑖 ,

where 𝛾1, . . . , 𝛾𝑁 ∈ 𝐻∗(𝑀 (v)), 𝜓1, . . . 𝜓𝑁 are 𝜓-classes associated to markings and 𝑘1, . . . 𝑘𝑁 are
nonnegative integers. We similarly define the perverse invariants 〈𝛾1𝜓

𝑘1 , . . . , 𝛾𝑁𝜓𝑘𝑁 〉
♯,𝑆 [𝑛] , 𝜖
𝑔,𝛽 , us-

ing perverse quasimaps from [Nes21, Section 6.3]. With respect to the identification (3.1), primary
𝜖-invariants (no 𝜓-classes) correspond to relative DT invariants.

Consider now the diagram

𝑆 × C 𝜖𝑔,𝑁

𝑆 × 𝐶𝑔,𝑁 𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽),

𝑝 𝜋

where 𝐶𝑔,𝑁 is the universal curve over 𝑀𝑔,𝑁 and p is the stabilisation of curves. For the unstable values
of g and N, we set the product 𝑆 × 𝑀𝑔,𝑁+1 to be S.
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Definition 3.4. For a class 𝛾̃ ∈ 𝐻𝑙 (𝑆 × 𝐶𝑔,𝑁 ), define the following operation on cohomology:

ch𝑘+2(𝛾̃) : 𝐻∗(𝑄
𝜖
𝑔,𝑁 (𝑀 (v), 𝛽)) → 𝐻∗−2𝑘+2−𝑙 (𝑄

𝜖
𝑔,𝑁 (𝑀 (v), 𝛽)),

ch𝑘+2(𝛾̃) (𝜉) = 𝜋∗(ch𝑘+2(F) · 𝑝∗(𝛾̃) ∩ 𝜋∗(𝜉)).

The descendent DT invariants are then defined by

〈𝜏𝑘1 (𝛾̃1), . . . , 𝜏𝑘𝑟 (𝛾̃𝑟 )〉
𝜖
𝑔,𝑁 ,𝛽 = (−1)𝑘1+1ch𝑘1+2(𝛾̃1) ◦ . . . ◦ (−1)𝑘𝑟+1ch𝑘𝑟+2(𝛾̃𝑟 )

(
[𝑄 𝜖

𝑔,𝑁 (𝑀 (v), 𝛽)]
red

)
.

By combing Definition 3.3 with the definition above, we obtain a mix of descendent quasimap invariants
and descendent DT invariants,

〈𝛾1𝜓
𝑘1 , . . . , 𝛾𝑁𝜓𝑘𝑁 | 𝜏𝑘1 (𝛾̃1), . . . , 𝜏𝑘𝑟 (𝛾̃𝑟 )〉

𝑀 (v) , 𝜖
𝑔,𝑁 ,𝛽 .

The same applies to the perverse invariants. For 𝜖 = 0+ and for a fixed marked curve3 (𝐶, p), we denote
the invariants above by

〈𝛾1𝜓
𝑘1 , . . . , 𝛾𝑁𝜓𝑘𝑁 | 𝜏𝑘1 (𝛾̃1), . . . , 𝜏𝑘𝑟 (𝛾̃𝑟 )〉

𝑆×𝐶
𝛽

to emphasize that we are considering the DT theory of 𝑆 × 𝐶.

3.3. Wall-crossing

We fix a parametrized projective line P1 with a C∗-action,

𝑡 [𝑥 : 𝑦] = [𝑡𝑥 : 𝑦], 𝑡 ∈ C∗

such that 0 := [0 : 1] and∞ := [1 : 0]. By convention, we set

𝑧 := 𝑒C∗ (Cstd),

where Cstd is the weight 1 representation of C∗. We now define a Vertex space,

𝑉 (𝑀 (v), 𝛽),

to be a moduli space of sheaves F on 𝑆 × P1 subject to the following conditions:
◦ F is torsion-free,
◦ ch(𝐹) = (ch(v), 𝛽),
◦ fibers 𝐹𝑝 are stable for a general 𝑝 ∈ P1,
◦ the fiber 𝐹∞ is stable,
◦ det(𝑝𝐶∗(𝑝∗𝑆u ⊗ 𝐹)) � O𝐶 .
By construction, there is a natural evaluation map,

ev : 𝑉 (𝑀 (v), 𝛽) → 𝑀 (v),
𝐹 ↦→ 𝐹∞.

Moreover, by acting on P1, we obtain a C∗-action on 𝑉 (𝑀 (v), 𝛽). By the same arguments as in
Section 3.1, the obstruction theory of 𝑉 (𝑀 (v), 𝛽) has a surjective cosection. Moreover, the cosection is
C∗-equivariant. The Vertex space is not proper, but its C∗-fixed locus

𝑉 (𝑀 (v), 𝛽)C∗

3We take a fiber of 𝑄0+
𝑔,𝑁 (𝑀 (v) , 𝛽) over a nonstacky closed point [ (𝐶, p) ] ∈ 𝔐𝑔,𝑁 (C) .
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is proper. Indeed, this follows from properness of the space of all prestable quasimaps from P1 and the
fact that 𝑉 (𝑀 (v), 𝛽)C∗ is just a connected component of its C∗-fixed locus. We can therefore use the
virtual torus localisation of reduced classes [CKL17] to define its virtual fundamental class,

[𝑉 (𝑀 (v), 𝛽)]red :=
[𝑉 (𝑀 (v), 𝛽)C∗ ]red

𝑒C∗ (N vir)
∈ 𝐻∗(𝑉 (𝑀 (v), 𝛽)C

∗

) [𝑧±],

where N vir is the virtual normal complex of 𝑉 (𝑀 (v), 𝛽)C∗ inside 𝑉 (𝑀 (v), 𝛽), and z is the equivariant
parameter. We are now ready to define Givental’s I-function, introduced in the context of GIT quasimaps
in [CKM14].

Definition 3.5. We define

𝐼v
𝛽 (𝑧) := ev∗ [𝑉 (𝑀 (v), 𝛽)]red ∈ 𝐻∗(𝑀 (v)) [𝑧±],

𝜇v
𝛽 (𝑧) := [𝑧𝐼v

𝛽 (𝑧)]𝑧≥0 ∈ 𝐻∗(𝑀 (v)) [𝑧] .

Lemma 3.6. The class 𝜇v
𝛽 (𝑧) admits the following expression:

𝜇v
𝛽 (𝑧) = 𝜇v

𝛽 · 1 ∈ 𝐻2 dim(𝑀 (v)),

where 𝜇v
𝛽 ∈ Q.

Proof. This follows from the definition and the fact that the reduced virtual dimension of 𝑉 (𝑀 (v), 𝛽)
is equal to dim(𝑀 (v)) + 1. �

The space R>0 ∪ {0+,∞} of 𝜖-stabilities is divided into chambers, in which the moduli space
𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽) stays the same, and as 𝜖 crosses the a wall between chambers, the moduli space

changes discontinuously. Given a quasimap class 𝛽 ∈ Eff (𝑀 (v),ℭ𝔬𝔥𝑟 (𝑆, v)), then for a class 𝛽′ ∈
Eff (𝑀 (v),ℭ𝔬𝔥𝑟 (𝑆, v)) that appears as a summand of 𝛽, we define

deg(𝛽′) := 𝛽′(L𝛽),

and we define the 𝜖-stability of quasimaps of degree 𝛽′ with respect to the line bundle L𝛽 , constructed
in [Nes21, Section 3.4]. Let 𝜖0 = 1/𝑑0 ∈ R>0 be a wall for 𝛽 ∈ Eff (𝑀 (v),ℭ𝔬𝔥𝑟 (𝑆, v)) and 𝜖−, 𝜖+ be
some values that are close to 𝜖0 from the left and the right of the wall, respectively.

Theorem 3.7. Assuming 2𝑔 − 2 + 𝑁 + 𝜖0 deg(𝛽) > 0, we have

〈𝛾1𝜓
𝑘1 , . . . , 𝛾𝑁𝜓𝑘𝑁 〉

𝑀 (v) , 𝜖−
𝑔,𝑁 ,𝛽 − 〈𝛾1𝜓

𝑘1 , . . . , 𝛾𝑁𝜓𝑘𝑁 〉
𝑀 (v) , 𝜖+
𝑔,𝑁 ,𝛽 = 𝜇v

𝛽 · 〈𝛾1𝜓
𝑘1 , . . . , 𝛾𝑁𝜓𝑘𝑁 ,1〉𝑀 (v) ,∞𝑔,𝑁+1,0,

if deg(𝛽) = 𝑑0, and

〈𝛾1𝜓
𝑘1 , . . . , 𝛾𝑁𝜓𝑘𝑁 〉

𝑀 (v) , 𝜖−
𝑔,𝑁 ,𝛽 = 〈𝛾1𝜓

𝑘1 , . . . , 𝛾𝑁𝜓𝑘𝑁 〉
𝑀 (v) , 𝜖+
𝑔,𝑁 ,𝛽 ,

otherwise.

Sketch of Proof. As in the case of [Nes21, Theorem 7.5], the results from [Zho22, Section 6] apply
almost without change. The difference is that we use reduced classes now. Up to a finite gerbe, the fixed
components of the master space which contribute to the wall-crossing formula are of the following form,

𝑄 𝜖+
𝑔,𝑁+𝑘 (𝑀 (v), 𝛽

′) ×𝑀 (v)𝑘
𝑘∏
𝑖=1

𝑉 (𝑀 (v), 𝛽𝑖)C
∗

,
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where 𝛽 = 𝛽′ + 𝛽1 + · · · + 𝛽𝑘 and deg(𝛽𝑖) = 𝑑0. Recall that 𝑄 𝜖+
𝑔,𝑁+𝑘 (𝑀 (v)𝛽

′) is the base change of
𝑄 𝜖+
𝑔,𝑁 (𝑀 (v), 𝛽) from 𝔐𝑔,𝑁 to 𝔐𝑔,𝑁 ,𝑑 , where the latter is the moduli space of curves with entangled

tails. The reduced class of a product splits as a product of reduced and nonreduced classes on its factors
(cf. [MPT10, Section 3.9]). Hence, by Corollary 3.2 and [KL13], it vanishes, unless 𝛽′ = 0 and 𝑘 = 1.
In this case,

𝑄 𝜖 +

𝑔,𝑁+1(𝑀 (v), 0) = 𝑄∞𝑔,𝑁+1(𝑀 (v), 0) = 𝑀𝑔,𝑁+1(𝑀 (v), 0).

Using the analysis presented in [Zho22, Section 7] and Lemma 3.6, we get that the contribution of this
component to the wall-crossing is

〈𝛾1𝜓
𝑘1 , . . . , 𝛾𝑁𝜓𝑘𝑁 , 𝜇v

𝛽 (−𝜓𝑁+1)〉
𝑀 (v) ,∞
𝑔,𝑁+1,0 = 𝜇v

𝛽 · 〈𝛾1𝜓
𝑘1 , . . . , 𝛾𝑁𝜓𝑘𝑁 ,1〉𝑀 (v) ,∞𝑔,𝑁+1,0;

this concludes the argument. �

Applying Theorem 3.7 inductively to all walls on the way from 𝜖 = 0+ to 𝜖 = ∞, we obtain the
following result.

Corollary 3.8. Assuming (𝑔, 𝑁) ≠ (0, 1), we have

〈𝛾1𝜓
𝑘1 , . . . , 𝛾𝑁𝜓𝑘𝑁 〉

𝑀 (v) ,0+
𝑔,𝑁 ,𝛽 − 〈𝛾1𝜓

𝑘1 , . . . , 𝛾𝑁𝜓𝑘𝑁 〉
𝑀 (v) ,∞
𝑔,𝑁 ,𝛽 = 𝜇v

𝛽 · 〈𝛾1𝜓
𝑘1 , . . . , 𝛾𝑁𝜓𝑘𝑁 ,1〉𝑀 (v) ,∞𝑔,𝑁+1,0.

Another immediate corollary of the wall-crossing formula is the following expression for the wall-
crossing invariants.

Corollary 3.9. We have

𝜇v
𝛽 = 〈[pt],1〉𝑀 (v) ,0

+

0,2,𝛽 .

Proof. The result follows from Corollary 3.8 applied to the invariants 〈[pt],1, 〉𝑀 (v) , 𝜖0,3,𝛽 for 𝜖 ∈ {0+,∞}
and the string equation on the GW side. �

There are invariants that are not covered by the results above and of great interest for us – those of a
fixed elliptic curve. Let E be a fixed elliptic curve and 𝑄 𝜖

𝐸 (𝑀 (v), 𝛽)
• be the fiber of

𝑄 𝜖
1,0 (𝑀 (v), 𝛽) → 𝑀1,0

over the stacky point [𝐸]/𝐸 ∈ 𝑀1,0 (C). In other words, 𝑄 𝜖
𝐸 (𝑀 (v), 𝛽)

• is the moduli space of 𝜖-stable
quasimaps, whose smoothing of the domain is E, and maps are considered up translations of E. For
𝛽 ≠ 0, we define

〈∅〉
𝑀 (v) , 𝜖
𝐸,𝛽 :=

∫
[𝑄𝜖

𝐸 (𝑀 (v) ,𝛽)• ]red
1.

Theorem 3.10. Assuming 𝛽 ≠ 0, we have

〈∅〉
𝑀 (v) , 𝜖−
𝐸,𝛽 = 〈∅〉𝑀 (v) , 𝜖+𝐸,𝛽 + 𝜇v

𝛽 · 𝜒(𝑀 (v)),

if deg(𝛽) = 𝑑0 and

〈∅〉
𝑀 (v) , 𝜖−
𝐸,𝛽 = 〈∅〉𝑀 (v) , 𝜖+𝐸,𝛽 ,

otherwise.

https://doi.org/10.1017/fms.2024.48 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.48


Forum of Mathematics, Sigma 17

Sketch of Proof. As in Theorem 3.7, the only case when the contribution from the wall-crossing
components is nonzero is the one of 𝛽′ = 0 and 𝑘 = 1. In this case,

𝑄 𝜖 +

(𝐸,0𝐸 ) (𝑀 (v), 0) � 𝑀 (v),

and the obstruction bundle is the tangent bundle 𝑇𝑀 (v) . Hence, the virtual fundamental class is
𝜒(𝑀 (v)) [pt]. The corresponding wall-crossing term is therefore equal to

𝜇v
𝛽 · 𝜒(𝑀 (v));

this concludes the argument. �

As before, by applying Theorem 3.10 inductively, we obtain the following result.

Corollary 3.11. Assuming 𝛽 ≠ 0, we have

〈∅〉
𝑀 (v) ,0+
𝐸,𝛽 = 〈∅〉𝑀 (v) ,∞𝐸,𝛽 + 𝜇v

𝛽 · 𝜒(𝑀 (v)).

4. Applications

4.1. Genus-0 invariants of 𝑆 [𝑛]

We start with genus-0 three-point quasimap invariants of 𝑆 [𝑛] . The moduli space of P1 with three marked
points is a point. Hence, by fixing markings, we can identify moduli spaces of 0+-stable quasimaps with
one-dimensional subschemes/stable pairs on 𝑆×P1 relative to the divisor 𝑆0,1,∞ ⊂ 𝑆×P1. In the notation
introduced in Equations (1.4) and (3.1), we therefore obtain

𝑄0+
0,3 (𝑆

[𝑛] , 𝛽) � Hilb0+
𝑛,𝛽
(𝑆 × 𝐶0,3) = Hilb𝑛,𝛽 (𝑆 × P

1/𝑆0,1,∞),

𝑄0+
0,3 (𝑆

[𝑛] , 𝛽)♯ � P0+
𝑛,𝛽
(𝑆 × 𝐶0,3) = P𝑛,𝛽 (𝑆 × P

1/𝑆0,1,∞)
(4.1)

such that relative insertions correspond to primary quasimap insertions. Moreover, by Corollary 3.8 and
the string equation, the wall-crossing is trivial for primary invariants, if (𝑔, 𝑁) = (0, 3). We therefore
obtain that

〈𝛾1, 𝛾2, 𝛾3〉
𝑆 [𝑛] ,0+
0,3,𝛽 = 〈𝛾1, 𝛾2, 𝛾3〉

𝑆 [𝑛] ,∞
0,3,𝛽 = 〈𝛾1, 𝛾2, 𝛾3〉

♯,𝑆 [𝑛] ,0+
0,3,𝛽 .

In light of the identification (4.1), we obtain the following result.

Corollary 4.1. We have

〈𝛾1, 𝛾2, 𝛾3〉
𝑆×P1

𝑛,𝛽
= 〈𝛾1, 𝛾2, 𝛾3〉

𝑆 [𝑛] ,∞
0,3,𝛽 = 〈𝛾1, 𝛾2, 𝛾3〉

♯,𝑆×P1

𝑛,𝛽
.

On one hand, the result above together with the PT/GW correspondence for 𝐾3 geometries of
[Obe21a, Theorem 1.2] confirm the conjecture proposed in [Obe19, Conjecture 1]. The conjecture
claimed that the relative GW theory of 𝑆 × P1 and the genus-0 three-point GW theory of 𝑆 [𝑛] are
equivalent after the change of variables 𝑦 = −𝑒𝑖𝑢 . In fact, Corollary 4.1 is a more natural form of
[Obe19, Conjecture 1], as it asserts equality of invariants without any change of variables. On the other
hand, Corollary 4.1 provides a DT/PT correspondence with relative insertions for 𝑆×P1. More generally,
the results above can be restated for a relative geometry

𝑆 × 𝐶𝑔,𝑁 → 𝑀𝑔,𝑁

such that 𝑁 > 2. In this case, by the string equation, the wall-crossing is also trivial for primary insertions.
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4.2. Genus-1 invariants of 𝑆 [𝑛]and Igusa cusp form conjecture

In this section, we will consider perverse quasimaps. In this case, 0+-stable quasimaps correspond to
stable pairs. Let us firstly establish a relation between degrees 𝛽 of quasimaps and Chern characters 𝛽
of the associated stable pairs.

Firstly, the homology 𝐻2(𝑆
[𝑛] ,Z) admits a Nakajima basis

𝐻2 (𝑆,Z) ⊕ Z
∼
−→ 𝐻2 (𝑆

[𝑛] ,Z),

(𝛾, 𝑘) ↦→ 𝐶𝛾 + 𝑘𝐴,

where the classes above are defined in terms of Nakajima operators as follows:

𝐶𝛾 = 𝔮−1 (𝛾)𝔮−1 ([pt])𝑛−11𝑆 , 𝐴 = 𝔮−2 ([pt])𝔮−1([pt])𝑛−21𝑆 .

We refer to [Obe18a, Section 1] for the notation and the definition of Nakajima operators in the similar
context. In more geometric terms, if a class 𝛾 is represented by a curve Γ ⊂ 𝑆, then the class 𝐶𝛾 is
represented by the curve Γ𝑛 ⊂ 𝑆 [𝑛] which is given by letting one point move along Γ and keeping 𝑛 − 1
other distinct points fixed. The class A is given by the locus of length-2 nonreduced structures on a fixed
point 𝑝 ∈ 𝑆, keeping other 𝑛 − 2 reduced points fixed.

Given now a quasimap 𝑓 : 𝐶 → ℭ𝔬𝔥♯𝑟 (𝑆, v). By [Nes21, Corollary 6.8], the objects associated to
such quasimaps are stable pairs on 𝑆 × 𝐶, hence the class −𝛽 is of the following form

−𝛽 = (0, 𝛾, 𝑘) ∈ 𝐻0 (𝑆) ⊕ 𝐻1,1(𝑆) ⊕ 𝐻4 (𝑆), (4.2)

where the negative sign amounts to considering Chern characters of subschemes rather than their ideals.
For simplicity we will denote a class −𝛽 just by (𝛾, 𝑘). The decomposition above and the one given by
Nakajima basis are related. If we consider a map 𝑓 : 𝐶 → 𝑆 [𝑛] of degree 𝛽 (in the sense of quasimaps)
such that −𝛽 = (𝛾, 𝑘), then by [Obe18a, Lemma 2] we have

𝑓∗ [𝐶] = 𝐶𝛾 + 𝑘𝐴. (4.3)

Hence, from now on, we will write degrees of quasimaps 𝛽 in terms of −𝛽, which by Equation (4.3)
also corresponds to writing degrees in terms Nakajima basis in the case 𝜖 = ∞.

Consider now a generic projective 𝐾3 surface S with of Picard rank 1 such that

NS(𝑆) = Z〈𝛽ℎ〉, 𝛽2
ℎ = 2ℎ − 2.

By the previous discussion and [Nes21, Corollary 6.8], we have the following identification of moduli
spaces

𝑄0+
𝐸 (𝑆

[𝑛] , (𝛽ℎ , 𝑘))
•,♯ � [P𝑛, (𝛽ℎ ,𝑘) (𝑆 × 𝐸)/𝐸] .

As before, the superscript on the moduli space on the left indicates that we consider maps up to
translations of E. For the same reason, we take the quotient by E on the left. On the other hand,

𝑄∞𝐸 (𝑆
[𝑛] , (𝛽ℎ , 𝑘))

•,♯ = 𝑀𝐸 (𝑆
[𝑛] , (𝛽ℎ , 𝑘))

•.

Consider now the following two generating series,

PT(𝑝, 𝑞, 𝑞) :=
∑
𝑛≥0

∑
ℎ≥0

∑
𝑘∈Z

(−𝑝)𝑘𝑞ℎ−1𝑞𝑛−1〈∅〉𝑆
[𝑛] ,0+

𝐸, (𝛽ℎ ,𝑘)
,

GW(𝑝, 𝑞, 𝑞) :=
∑
𝑛>0

∑
ℎ≥0

∑
𝑘≥0
(−𝑝)𝑘𝑞ℎ−1𝑞𝑛−1〈∅〉𝑆

[𝑛] ,∞
𝐸, (𝛽ℎ ,𝑘)

.
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The series are well defined because (𝑆, 𝛽) and (𝑆′, 𝛽′) are deformation equivalent, if and only if

𝛽2 = 𝛽′2 and div(𝛽) = div(𝛽′),

where div(𝛽) is the divisibility of the class. In our case, the classes 𝛽ℎ are primitive by definition. In
[OS20] and [OP18], it was proved that

PT(𝑝, 𝑞, 𝑞) =
1

−𝜒10(𝑝, 𝑞, 𝑞)
,

where 𝜒10(𝑝, 𝑞, 𝑞) is the Igusa cusp form, we refer to [OP18, Section 0.2] for its definition. We can
view both series as generating series of quasimaps for 𝜖 ∈ {0+,∞}. Using Corollary 3.11, we obtain

PT(𝑝, 𝑞, 𝑞) = GW(𝑝, 𝑞, 𝑞) +
∑
𝑛≥0

∑
ℎ≥0

∑
𝑘∈Z

(−𝑝)𝑘𝑞ℎ−1𝑞𝑛−1𝜇𝑛,♯
(𝛽ℎ ,𝑘)

· 𝜒(𝑆 [𝑛] ).

The wall-crossing invariants 𝜇𝑛,♯
(𝛽ℎ ,𝑘)

are equal to virtual Euler characteristics of Quot schemes, as it
is explained in [Obe21b]. In the same article, wall-crossing invariants are also explicitly computed for
𝑆 [𝑛] (see [Obe21b, Theorem 1.2]),

∑
𝑛≥0

∑
ℎ≥0

∑
𝑘∈Z

(−𝑝)𝑘𝑞ℎ−1𝑞𝑛−1𝜇𝑛,♯
(𝛽ℎ ,𝑘)

𝜒(𝑆 [𝑛] ) =
1

Θ2Δ

1
𝑞

∏
𝑛≥1

1
(1 − (𝑞𝐺)𝑛)24 ,

where

Θ(𝑝, 𝑞) = (𝑝1/2 − 𝑝1/2)
∏
𝑚≥1

(1 − 𝑝𝑞𝑚) (1 − 𝑝−1𝑞𝑚)

(1 − 𝑞𝑚)2
,

𝐺 (𝑝, 𝑞) = −Θ(𝑝, 𝑞)2
(
𝑝

𝑑

𝑑𝑝

)2
log(Θ(𝑝, 𝑞)),

and Δ (𝑞) = 𝑞
∏

𝑛≥1 (1 − 𝑞𝑛)24. We therefore obtain the following corollary, which confirms the first
equality in [OP16, Conjecture A].

Corollary 4.2. We have

PT(𝑝, 𝑞, 𝑞) = GW(𝑝, 𝑞, 𝑞) +
1

Θ2Δ

1
𝑞

∏
𝑛≥1

1
(1 − (𝑞𝐺)𝑛)24 .

As in the case of [Obe19, Conjecture 1], the statement of [OP16, Conjecture A] involved the relative
GW theory of 𝑆 × 𝐸 instead of the relative DT theory of 𝑆 × 𝐸 . In light of our wall-crossing, the latter
should be considered more natural in this context. Nevertheless, the two are equivalent by [Obe21a].

4.3. Higher-rank DT invariants

Under our assumptions, a moduli space 𝑀 (v) is deformation equivalent to a punctorial Hilbert scheme
𝑆 [𝑛] , where 2𝑛 = dim(𝑀 (v)). Since we are working with reduced classes, in order to use the deformation
invariance of GW theory, we have to deform 𝑀 (v) together with a curve class 𝛽. In this case, we might
need to deform (𝑀 (v), 𝛽) to a Hilbert scheme of points (𝑆′[𝑛] , 𝛽′) on another 𝐾3 surface 𝑆′. We conclude
that the reduced GW theory of 𝑀 (v) in the class 𝛽 is equivalent to the one of 𝑆′[𝑛] in the class 𝛽′.
Applying the quasimap wall-crossing both to 𝑀 (v) and to 𝑆′[𝑛] , we can therefore express higher-rank
DT invariants of a threefold 𝑆 × 𝐶 in terms of rank-one DT invariants and wall-crossing invariants.
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4.3.1. 𝐾3 × P1

Let us firstly consider invariants on 𝑆 × P1 relative to 𝑆0,1,∞. As previously, by fixing the markings, we
obtain

𝑀0+
v,𝛽 (𝑆 × 𝐶0,3) = 𝑀v,𝛽 (𝑆 × P

1/𝑆0,1,∞).

The C-valued points of 𝑀v,𝛽 (𝑆 × P
1/𝑆0,1,∞) are triples (𝑃, {0, 1,∞}, 𝐹) satisfying the same conditions

as triples in Equation (3.2) such that:

◦ (𝑃, {0, 1,∞}) is a marked curve without rational tails,4 whose smoothing5 is (P1, {0, 1,∞}).

Moreover, as in the case of 𝑆 [𝑛] , there is no wall-crossing by Theorem 3.8 and the string equation,
therefore

〈𝛾1, 𝛾2, 𝛾3〉
𝑀 (v) ,0+
0,3,𝛽 = 〈𝛾1, 𝛾2, 𝛾3〉

𝑀 (v) ,∞
0,3,𝛽 .

Choose a deformation of (𝑀 (v), 𝛽) to (𝑆′[𝑛] , 𝛽′) which keeps the curve class 𝛽 algebraic. The defor-
mation gives an identification of cohomologies

𝐻∗(𝑀 (v)) � 𝐻∗(𝑆′[𝑛] ),

which we use to identify curve classes 𝛽 and 𝛽′ and insertions 𝛾1, . . . , 𝛾𝑁 on both sides. With respect
to this identification, we have

〈𝛾1, 𝛾2, 𝛾3〉
𝑀 (v) ,0+
0,3,𝛽 = 〈𝛾1, 𝛾2, 𝛾3〉

𝑀 (v) ,∞
0,3,𝛽 = 〈𝛾1, 𝛾2, 𝛾3〉

𝑆′[𝑛] ,∞
0,3,𝛽 = 〈𝛾1, 𝛾2, 𝛾3〉

𝑆′[𝑛] ,0+
0,3,𝛽 . (4.4)

Passing from quasimaps to sheaves and using Equation 4.4, we obtain the following result.

Corollary 4.3. Given a deformation of (𝑀 (v), 𝛽) to (𝑆′[𝑛] , 𝛽′). Identifying cohomologies of 𝑀 (v) and
𝑆′[𝑛] , we have

〈𝛾1, 𝛾2, 𝛾3〉
𝑆×P1

v,𝛽 = 〈𝛾1, 𝛾2, 𝛾3〉
𝑆′×P1

𝑛,𝛽
.

4.3.2. 𝐾3 × 𝐸

Consider now 𝑆 × 𝐸 , where E is an elliptic curve. If 𝑀 (v) = 𝑆 [𝑛] , then invariants 〈[pt],1〉𝑆
[𝑛] ,0+

0,2,𝛽 from
Corollary 3.9 are called rubber DT invariants on 𝑆 × P1. These are invariants associated to the moduli
space of subschemes on 𝑆 × P1 relative to the divisor 𝑆0,∞ up to the C∗-action coming from P1-factor
which fixes 0 and∞,

[Hilb𝑛,𝛽 (𝑆 × P
1/𝑆0,∞)/C

∗] .

These invariants can be rigidified to standard relative DT invariants with absolute insertions. In fact,
this holds more generally for any v and also for genus-1 invariants 〈∅〉𝑀 (v) ,0

+

𝐸,𝛽 .

Lemma 4.4. We have

〈𝜏0(𝐷 � 𝜔)〉𝑆×𝐸v,𝛽 = (𝛽1 · 𝐷)〈∅〉
𝑀 (v) ,0+
𝐸,𝛽 ,

〈[pt],1 | 𝜏0〈𝐷 � 𝜔〉〉𝑆×P
1

v,𝛽 = (𝛽1 · 𝐷)〈[pt],1〉𝑀 (v) ,0
+

0,2,𝛽 ,

where 𝐷 ∈ 𝐻2(𝑆),𝜔 ∈ 𝐻2(𝐶) is the point class, and 𝛽1 ∈ 𝐻2(𝑆) is the component of 𝛽 of cohomological
degree 2.

4Rational components with one special point, that is, with one separating marking or one node.
5Equivalently, P is an isotrivial degeneration of P1 at {0, 1,∞}, that is, a bubbling of P1 at {0, 1,∞}.
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Proof. The proof is exactly the same as in [MO09, Lemma 3.3]. For 𝑆 × 𝐸 , see also [Obe18b,
Section 3.4] �

Applying the same procedure as for 𝑆 × P1, using Corollary 3.9 and Lemma 4.4, we obtain the
following result.

Corollary 4.5. We have

〈𝜏0 (𝐷 � 𝜔)〉𝑆×𝐸v,𝛽 = 〈𝜏0 (𝐷 � 𝜔)〉𝑆
′×𝐸

𝑛,𝛽

+ 𝜒(𝑆 [𝑛] )
(
〈[pt],1 | 𝜏0(𝐷 � 𝜔)〉𝑆×P

1

v,𝛽 − 〈[pt],1 | 𝜏0 (𝐷 � 𝜔)〉𝑆
′×P1

𝑛,𝛽

)
.

By degenerating P1 to P1 ∪ P1, sending the interior marking and the relative marking to the first
component and applying the degeneration formula, we obtain

〈[pt],1 | 𝜏0(𝐷 � 𝜔)〉𝑆×P
1

v,𝛽 = 〈[pt] | 𝜏0 (𝐷 � 𝜔)〉𝑆×P
1

v,𝛽 ,

where we used the fact that a reduced class restricts to reduced and nonreduced classes on irreducible
components, which implies that it vanishes, unless 𝛽 = 0 on one of the components. We refer to
[MNOP06, Section 3.4] (see also [LW15]) for the standard degeneration formula and to [Obe21b,
Section 5.1] for the reduced one.

Similarly, by degenerating E to 𝐸 ∪ P1, sending the interior marking to the second component, and
applying the degeneration formula, we obtain

〈𝜏0(𝐷 � 𝜔)〉𝑆×𝐸v,𝛽 = 〈1 | 𝜏0(𝐷 � 𝜔)〉𝑆×𝐸v,𝛽 + 𝜒(𝑀 (v))〈[pt] | 𝜏0(𝐷 � 𝜔)〉𝑆×P
1

v,𝛽 .

The second term on the right is the wall-crossing term. Hence, we obtain the following equality of DT
invariants on 𝑆 × 𝐸 .

Corollary 4.6. We have

〈1 | 𝜏0(𝐷 � 𝜔)〉𝑆×𝐸v,𝛽 = 〈1 | 𝜏0 (𝐷 � 𝜔)〉𝑆
′×𝐸

𝑛,𝛽
.

Using the Igusa cusp form conjecture, we can obtain an explicit expression for these higher-rank
relative DT invariants. Moreover, by [Nes21, Lemma 4.14], the higher-rank invariants associated to the
moduli space 𝑀v,𝛽 (𝑆 × 𝐸) can be related to invariants associated to moduli spaces of sheaves with a
fixed determinant, denoted by 𝑀v,𝛽 (𝑆 × 𝐸),

∫
[𝑀v,𝛽̌ (𝑆×𝐸)/𝐸 ]

red
1 = rk(v)2〈∅〉𝑀 (v) ,0

+

𝐸,𝛽 ,

while the stability of fibers can be related to the slope stability on the threefold by [Nes21, Corollary A.6].

A. Reduced obstruction theory

Consider the reduced obstruction-theory complex E•red from Equation (3.5). In this section, under certain
assumptions, we will construct the obstruction-theory morphism,

(E•red)
∨ → L𝑄𝜖

𝑔,𝑁 (𝑀 (v) ,𝛽)/𝔐𝑔,𝑁 .

The proof closely follows [KT18].
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Proposition A.1. Given (ch(v), 𝛽) ∈ Λ ⊕ Λ(−1). Assume a first-order deformation 𝜅𝑆 ∈ 𝐻𝑇2 (𝑆) �
𝐻𝐻2 (𝑆) from Proposition 2.3 is represented by a C[𝜖]/𝜖2-linear admissible subcategory,

C ⊆ Dperf (Y),

where Y → 𝐵 = SpecC[𝜖]/𝜖2 is flat. Then there exists an obstruction theory morphism,

(E•red)
∨ → L𝑄𝜖

𝑔,𝑁 (𝑀 (v) ,𝛽)/𝔐𝑔,𝑁 .

Proof. Firstly, by taking the central fiber, we get that

Dperf (𝑆) ⊆ Dperf (𝑌 )

is an admissible subcategory, where Y is the central fiber of Y . Therefore, there is an isomorphism of
moduli stacks

ℭ𝔬𝔥(𝑆) � 𝔇Coh(𝑆) (𝑌 ), (A.1)

where 𝔇Coh(𝑆) (𝑌 ) is the moduli stack of objects on Y which are contained in the subcategory Coh(𝑆) ⊆
Dperf (𝑌 ). This also implies that moduli stacks of quasimaps associated to pairs (𝑀 (v),ℭ𝔬𝔥(𝑆)) and
(𝑀 (v),𝔇Coh(𝑆) (𝑌 )) are isomorphic,

𝑄 𝜖
𝑔,𝑁 (𝑀 (v),ℭ𝔬𝔥(𝑆), 𝛽) � 𝑄 𝜖

𝑔,𝑁 (𝑀,𝔇Coh(𝑆) (𝑌 ), 𝛽).

Let

𝑀𝑆 := 𝑀 𝜖
v,𝛽 (𝑆 × 𝐶𝑔,𝑁 ) � 𝑀 𝜖

v,𝛽 (𝑌 × 𝐶𝑔,𝑁 ) =: 𝑀𝑌

be the relative moduli spaces of objects which are associated to moduli spaces 𝑄 𝜖
𝑔,𝑁 (𝑀,ℭ𝔬𝔥(𝑆), 𝛽)

and 𝑄 𝜖
𝑔,𝑁 (𝑀,𝔇Coh(𝑆) (𝑌 ), 𝛽), defined as in [Nes21, Section 3.5].

Secondly, the inclusion

Db(𝑆) ↩→ Dperf (𝑌 )

induces a map between the Hochschild cohomologies,

𝐻𝐻2(𝑌 ) → 𝐻𝐻2 (𝑆), (A.2)

given by restricting the natural transformation of functors,

idDperf (Y) → [2] .

This map sends 𝜅𝑌 to 𝜅𝑆 (see, e.g., [Per, Lemma 4.6]), where 𝜅𝑌 is the class associated to the deformation
Y → 𝐵. Moreover, for a complex 𝐹 ∈ Db (𝑆 × 𝐶), the class

𝜅(𝐹) ∈ Ext2 (𝐹, 𝐹),

which is given by applying the natural transformation associated to 𝜅 ∈ 𝐻𝐻2 (𝑆) to F, is the obstruction
to deform F in the direction of 𝜅. By [Tod09, Proposition 5.2] and [Căl05], it agrees with obstruction
class given by composing the Kodaira–Spencer class with the Atiyah class,

𝜅(𝐹) = 𝜅 · exp(−At(𝐹)),

after applying the HKR isomorphism,

𝐻𝐻2(𝑆) � 𝐻𝑇2 (𝑆).
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We now identify a sheaf 𝐹 ∈ Coh(𝑆 × 𝐶) with its image in Dperf (𝑌 × 𝐶), then the following triangle
commutes

𝐻𝐻2(𝑆) Ext2(𝐹, 𝐹)

𝐻𝐻2(𝑌 ).

Hence, by the choice of 𝜅𝑆 , the deformation of sheaves in the class (v, 𝛽) viewed as complexes on𝑌 ×𝐶
is obstructed in the direction of 𝜅𝑌 because the obstruction class is nonzero by the construction of 𝜅𝑆 .

Now, we will closely follow [KT18, Section 3.2]. By the above discussion the inclusion of the central
fiber over B,

𝑀𝑌 ↩→ 𝑀Y/𝐵,

is an isomorphism. The obstruction complexes of 𝑀𝑌 and 𝑀𝑆 are isomorphic under the natural identi-
fications of the moduli spaces,

𝑅H𝑜𝑚𝜋𝑆 (F𝑆 , F𝑆) � 𝑅H𝑜𝑚𝜋𝑌 (F𝑌 , F𝑌 ) (A.3)

because both complexes can be defined just in terms of Db (𝑆), whereF𝑆/𝑌 are universal families of 𝑀𝑆/𝑌 ,
and 𝜋𝑆/𝑌 are natural projections. Recall that we are interested in the trace-zero part 𝑅H𝑜𝑚𝜋𝑆 (F𝑆 , F𝑆)0
of 𝑅H𝑜𝑚𝜋𝑆 (F𝑆 , F𝑆), cf. Section 3.1. �

Claim. The composition

(E•)∨ = (𝑅H𝑜𝑚𝜋𝑆 (F𝑆 , F𝑆)0 [1])
∨ → (𝑅H𝑜𝑚𝜋𝑌 (F𝑌 , F𝑌 ) [1])

∨ → L𝑀Y/𝐵/𝐵, (A.4)

where the first map is given by identification (A.3) and the second is given by the Atiyah class on
Y × 𝑀Y/𝐵, is a perfect obstruction theory.

Proof of claim. For the proof of the claim, we plan to use the criteria from [BF97, Theorem 4.5]. For
any B-scheme 𝑍0, a B-map 𝑍0 → 𝑀Y/𝐵 factors though the central fiber. Hence, the B-structure map
𝑍0 → 𝐵 factors through the closed point of B. Let F0 be the sheaf associated to the map 𝑍0 → 𝑀Y/𝐵.
The morphism

(𝑅H𝑜𝑚𝜋𝑌 (F𝑌 , F𝑌 ) [1])
∨ → L𝑀Y/𝐵/𝐵

is an obstruction theory. By [BF97, Theorem 4.5], to prove that Equation (A.4) is an obstruction theory,
it suffices to prove that the image of a nonzero obstruction class 𝜛(F0) ∈ Ext2𝑌×𝑍0

(F0,F0 ⊗ 𝑝∗𝑌 𝐼) with
respect to the map

Ext2𝑌×𝑍0
(F0,F0 ⊗ 𝑝∗𝑌 𝐼) � Ext2𝑆×𝑍0

(F0,F0 ⊗ 𝑝∗𝑆 𝐼) → Ext2𝑆×𝑍0
(F0,F0 ⊗ 𝑝∗𝑆 𝐼)0 (A.5)

is nonzero for any square-zero B-extension Z of 𝑍0 given by an ideal I, where 𝑝𝑌 : 𝑌×𝐵𝑍0 = 𝑌×𝑍0 → 𝑍0
and 𝑝𝑆 : 𝑆 × 𝑍0 → 𝑍0 are the natural projections. Given a square-zero B-extension Z of 𝑍0, there are
two possibilities:

1. the B-structure map 𝑍 → 𝐵 factors through the closed point;
2. the B-structure map 𝑍 → 𝐵 does not factor through the closed point.

We will deal with them separately.
1. In this case, the obstruction of lifting the map to 𝑍 → 𝑀Y/𝐵 coincides with the obstruction of

lifting the map to 𝑍 → 𝑀𝑌 � 𝑀𝑆 ; hence, if 𝜛(F0) is nonzero, its image with respect to Equation (A.5)
is nonzero.

2. In this case, a lift to 𝑍 → 𝑀Y/𝐵 is always obstructed, and the obstruction is already present at
a single fiber of 𝑝𝑌 in the following sense. By assumption, there exists a section 𝐵 → 𝑍 which is an
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immersion (we can find an open affine subscheme 𝑈 ⊂ 𝑍 such that 𝑈 → 𝐵 is flat, but then 𝑈 � 𝑈0 × 𝐵
because first-order deformations of affine schemes are trivial, thereby we get a section). Let 𝑧 ∈ 𝑍 be
image of the closed point of B of the section, then the restriction

Ext2𝑌×𝑆0
(F0,F0 ⊗ 𝑝∗𝑌 𝐼) → Ext2𝑌×𝑧 (F0,𝑧 ,F0,𝑧 ⊗ 𝑝∗𝑌 𝐼𝑧)

applied to the obstruction class 𝜛(F0) is nonzero and is the obstruction to lift the sheaf F0,𝑧 on Y to a
sheaf on Y; hence, due to the following commutative diagram,

Ext2𝑌×𝑍0
(F0,F0 ⊗ 𝑝∗𝑌 𝐼) Ext2𝑌×𝑧 (F0,𝑧 ,F0,𝑧 ⊗ 𝑝∗𝑌 𝐼𝑧)

Ext2𝑆×𝑍0
(F0,F0 ⊗ 𝑝∗𝑆 𝐼)0 Ext2𝑆×𝑧 (F0,𝑧 ,F0,𝑧 ⊗ 𝑝∗𝑆 𝐼𝑧)0

we conclude that the image of 𝜛(F0) in Ext2𝑆×𝑍0
(F0,F0 ⊗ 𝑝∗𝐼)0 is nonzero because the image of

𝜛(F0,𝑧) is nonzero in Ext2𝑆×𝑧 (F0,𝑧 ,F0,𝑧 ⊗ 𝑝∗𝐼𝑧)0. This establishes claim.
The absolute perfect obstruction theory (H•)∨ is then defined by taking the cone of (E•)∨ → Ω𝐵 [1].

Hence, we have the following diagram:

(H•)∨ (E•)∨ Ω𝐵 [1]

L𝑀𝑌 L𝑀Y/𝐵/𝐵 Ω𝐵 [1] .

By the same argument as in [KT18, Section 2.3], the composition

(H•)∨ → (E•)∨ → (E•red)
∨

is an isomorphism. This finishes the proof of the proposition. �

For example, if 𝑀 = 𝑆 [𝑛] and 𝛽1 ≠ 0, that is, the curve class is not exceptional, we can use a
commutative deformation given by the infinitesimal twistor family S = Y → 𝐵 with respect to the class
𝛽1. The situation becomes more complicated already in the case of 𝑆 [𝑛] and 𝛽1 = 0 (i.e., an exceptional
curve class). in this case, a commutative first-order deformation can no longer satisfy the property stated
in Proposition 2.3. If 𝑛 = 2 and 𝑆 [2] is isomorphic to a Fano variety of lines of some special cubic
fourfold (e.g., see [Has00, Theorem 1.0.3]), then

𝐷perf (𝑌 ) = 〈𝐷perf (𝑆),O,O(1),O(2)〉,

and the family Y → 𝐵 is given by deformation of Y away from the Hassett divisor.

Remark A.2. In [Tod09], Toda constructed geometric realisations of infinitesimal noncommutative
deformations in 𝐻𝐻2(𝑋) for a smooth projective X. However, it is not clear, if they are of the type
required by Proposition A.1. In principle, there should be no problem in proving Proposition A.1,
dropping the assumption. For that, one has to show that Toda’s infinitesimal deformations behave well
under base change.
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