Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-09T00:32:22.969Z Has data issue: false hasContentIssue false

Chapter 7 - Distinctive Constellations and Other Epilepsies

Published online by Cambridge University Press:  11 October 2019

Vibhangini S. Wasade
Affiliation:
Henry Ford Medical Group HFHS, Michigan
Marianna V. Spanaki
Affiliation:
Wayne State University, Michigan
Get access

Summary

The International League Against Epilepsy recently published an updated classification that better reflects our understanding of epilepsies and their mechanisms.1 This chapter discusses specific epilepsy syndromes, epilepsies that are not associated with a specific age of onset, reflex epilepsies, and the main etiologic groups described in the updated classification, including structural, genetic, infectious, metabolic, and immune mediated.

Type
Chapter
Information
Understanding Epilepsy
A Study Guide for the Boards
, pp. 127 - 164
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Scheffer, IE, Berkovic, S, Capovilla, G, et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58(4):512521.Google Scholar
de Lanerolle, NC, Kim, JH, Williamson, A, et al. A retrospective analysis of hippocampal pathology in human temporal lobe epilepsy: evidence for distinctive patient subcategories. Epilepsia. 2003;44(5):677687.Google Scholar
Noulhiane, M, Samson, S, Clemenceau, S, et al. A volumetric MRI study of the hippocampus and the parahippocampal region after unilateral medial temporal lobe resection. J Neurosci Methods. 2006;156(1-2):293304.Google Scholar
Asadi-Pooya, AA, Stewart, GR, Abrams, DJ, Sharan, A. Prevalence and incidence of drug-resistant mesial temporal lobe epilepsy in the United States. World Neurosurg. 2017;99:662666.Google Scholar
Helmstaedter, C, Kurthen, M, Lux, S, Reuber, M, Elger, CE. Chronic epilepsy and cognition: a longitudinal study in temporal lobe epilepsy. Ann Neurol. 2003;54(4):425432.Google Scholar
Gomez-Ibanez, A, Gasca-Salas, C, Urrestarazu, E, Viteri, C. Clinical phenotypes within non-surgical patients with mesial temporal lobe epilepsy caused by hippocampal sclerosis based on response to antiepileptic drugs. Seizure. 2013;22(1):2023.CrossRefGoogle ScholarPubMed
Engel, J Jr., Williamson, PD, Wieser, HG. Medial temporal lobe epilepsy with hippocampal sclerosis. In: Engel, J, Pedley, TA, eds., Epilepsy: A Comprehensive Textbook. Philadelphia, PA: Lippincott Williams & Wilkins; 2007:24792486.Google Scholar
Wieser, HG, Epilepsy, ICoNo. ILAE Commission Report. Mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia. 2004;45(6):695714.Google Scholar
Ferrari-Marinho, T, Caboclo, LO, Marinho, MM, et al. Auras in temporal lobe epilepsy with hippocampal sclerosis: relation to seizure focus laterality and post surgical outcome. Epilepsy Behav. 2012;24(1):120125.Google Scholar
Palmini, AL, Gloor, P, Jones-Gotman, M. Pure amnestic seizures in temporal lobe epilepsy. Definition, clinical symptomatology and functional anatomical considerations. Brain. 1992;115(Pt 3):749769.CrossRefGoogle ScholarPubMed
Kotagal, P, Bleasel, A, Geller, E, et al. Lateralizing value of asymmetric tonic limb posturing observed in secondarily generalized tonic-clonic seizures. Epilepsia. 2000;41(4):457462.Google Scholar
Loddenkemper, T, Kotagal, P. Lateralizing signs during seizures in focal epilepsy. Epilepsy Behav. 2005;7(1):117.CrossRefGoogle ScholarPubMed
Privitera, MD, Morris, GL, Gilliam, F. Postictal language assessment and lateralization of complex partial seizures. Ann Neurol. 1991;30(3):391396.Google Scholar
Geyer, JD, Payne, TA, Faught, E, Drury, I. Postictal nose-rubbing in the diagnosis, lateralization, and localization of seizures. Neurology. 1999;52(4):743745.Google Scholar
Cendes, F, Sakamoto, AC, Spreafico, R, Bingaman, W, Becker, AJ. Epilepsies associated with hippocampal sclerosis. Acta Neuropathol. 2014;128(1):2137.Google Scholar
Vanli-Yavuz, EN, Erdag, E, Tuzun, E, et al. Neuronal autoantibodies in mesial temporal lobe epilepsy with hippocampal sclerosis. J Neurol Neurosurg Psychiatry. 2016;87(7):684692.Google Scholar
Cendes, F, Andermann, F, Gloor, P, et al. Atrophy of mesial structures in patients with temporal lobe epilepsy: cause or consequence of repeated seizures? Ann Neurol. 1993;34(6):795801.Google Scholar
Thom, M. Review: hippocampal sclerosis in epilepsy. A neuropathology review. Neuropathol Appl Neurobiol. 2014;40(5):520543.Google Scholar
Blumcke, I, Thom, M, Aronica, E, et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a task force report from the ILAE Commission on Diagnostic Methods. Epilepsia. 2013;54(7):13151329.Google Scholar
Blumcke, I, Pauli, E, Clusmann, H, et al. A new clinico-pathological classification system for mesial temporal sclerosis. Acta Neuropathol. 2007;113(3):235244.Google Scholar
Jardim, AP, Neves, RS, Caboclo, LO, et al. Temporal lobe epilepsy with mesial temporal sclerosis: hippocampal neuronal loss as a predictor of surgical outcome. Arq Neuropsiquiatr. 2012;70(5):319324.Google Scholar
Tezer, FI, Xasiyev, F, Soylemezoglu, F, et al. Clinical and electrophysiological findings in mesial temporal lobe epilepsy with hippocampal sclerosis, based on the recent histopathological classifications. Epilepsy Res. 2016;127:5054.Google Scholar
Sirin, NG, Gurses, C, Bebek, N, et al. A quadruple examination of ictal EEG patterns in mesial temporal lobe epilepsy with hippocampal sclerosis: onset, propagation, later significant pattern, and termination. J Clin Neurophysiol. 2013;30(4):329338.Google Scholar
Reiher, J, Beaudry, M, Leduc, CP. Temporal intermittent rhythmic delta activity (TIRDA) in the diagnosis of complex partial epilepsy: sensitivity, specificity and predictive value. Can J Neurol Sci. 1989;16(4):398401.Google Scholar
Dericioglu, N, Saygi, S. Ictal scalp EEG findings in patients with mesial temporal lobe epilepsy. Clin EEG Neurosci. 2008;39(1):2027.Google Scholar
Jones, AL, Cascino, GD. Evidence on use of neuroimaging for surgical treatment of temporal lobe epilepsy: a systematic review. JAMA Neurol. 2016;73(4):464470.Google Scholar
Azab, M, Carone, M, Ying, SH, Yousem, DM. Mesial temporal sclerosis: accuracy of NeuroQuant versus neuroradiologist. Am J Neuroradiol. 2015;36(8):14001406.Google Scholar
Rudie, JD, Colby, JB, Salamon, N. Machine learning classification of mesial temporal sclerosis in epilepsy patients. Epilepsy Res. 2015;117:6369.Google Scholar
Muhlhofer, W, Tan, YL, Mueller, SG, Knowlton, R. MRI-negative temporal lobe epilepsy – what do we know? Epilepsia. 2017; 58(5):727742.Google Scholar
Guedj, E, Bonini, F, Gavaret, M, et al. 18FDG-PET in different subtypes of temporal lobe epilepsy: SEEG validation and predictive value. Epilepsia. 2015;56(3):414421.Google Scholar
Lee, EM, Im, KC, Kim, JH, et al. Relationship between hypometabolic patterns and ictal scalp EEG patterns in patients with unilateral hippocampal sclerosis: an FDG-PET study. Epilepsy Res. 2009;84(2–3):187193.Google Scholar
Dupont, S, Semah, F, Clemenceau, S, et al. Accurate prediction of postoperative outcome in mesial temporal lobe epilepsy: a study using positron emission tomography with 18fluorodeoxyglucose. Arch Neurol. 2000;57(9):13311336.Google Scholar
Chassoux, F, Artiges, E, Semah, F, et al. 18F-FDG-PET patterns of surgical success and failure in mesial temporal lobe epilepsy. Neurology. 2017;88(11):10451053.Google Scholar
Wong, CH, Bleasel, A, Wen, L, et al. The topography and significance of extratemporal hypometabolism in refractory mesial temporal lobe epilepsy examined by FDG-PET. Epilepsia. 2010;51(8):13651373.Google Scholar
Daly, DD, Mulder, DW. Gelastic epilepsy. Neurology. 1957;7(3):189192.Google Scholar
Striano, S, Santulli, L, Ianniciello, M, et al. The gelastic seizures-hypothalamic hamartoma syndrome: facts, hypotheses, and perspectives. Epilepsy Behav. 2012;24(1):713.Google Scholar
Kovac, S, Diehl, B, Wehner, T, et al. Gelastic seizures: incidence, clinical and EEG features in adult patients undergoing video-EEG telemetry. Epilepsia. 2015;56(1):e1–5.Google Scholar
Gutierrez, C, Asadi-Pooya, AA, Skidmore, CT, et al. Clinical features and postoperative seizure outcome in patients with drug-resistant gelastic seizures without hypothalamic hamartoma. Epilepsy Behav. 2016;64(Pt A):9093.Google Scholar
Striano, S, Meo, R, Bilo, L, et al. Gelastic epilepsy: symptomatic and cryptogenic cases. Epilepsia. 1999;40(3):294302.Google Scholar
Craig, DW, Itty, A, Panganiban, C, et al. Identification of somatic chromosomal abnormalities in hypothalamic hamartoma tissue at the GLI3 locus. Am J Hum Genet. 2008;82(2):366374.Google Scholar
Kerrigan, JF, Ng, YT, Chung, S, Rekate, HL. The hypothalamic hamartoma: a model of subcortical epileptogenesis and encephalopathy. Semin Pediatr Neurol. 2005;12(2):119131.Google Scholar
Brandberg, G, Raininko, R, Eeg-Olofsson, O. Hypothalamic hamartoma with gelastic seizures in Swedish children and adolescents. Eur J Paediatr Neurol. 2004;8(1):3544.Google Scholar
Weissenberger, AA, Dell, ML, Liow, K, et al. Aggression and psychiatric comorbidity in children with hypothalamic hamartomas and their unaffected siblings. J Am Acad Child Adolesc Psychiatry. 2001;40(6):696703.Google Scholar
Berkovic, SF, Kuzniecky, RI, Andermann, F. Human epileptogenesis and hypothalamic hamartomas: new lessons from an experiment of nature. Epilepsia. 1997;38(1):13.Google Scholar
Kahane, P, Ryvlin, P, Hoffmann, D, Minotti, L, Benabid, AL. From hypothalamic hamartoma to cortex: what can be learnt from depth recordings and stimulation? Epileptic Disord. 2003;5(4):205217.Google ScholarPubMed
Palmini, A, Chandler, C, Andermann, F, et al. Resection of the lesion in patients with hypothalamic hamartomas and catastrophic epilepsy. Neurology. 2002;58(9):13381347.Google Scholar
DiFazio, MP, Davis, RG. Utility of early single photon emission computed tomography (SPECT) in neonatal gelastic epilepsy associated with hypothalamic hamartoma. J Child Neurol. 2000;15(6):414417.Google Scholar
Palmini, A, Van Paesschen, W, Dupont, P, Van Laere, K, Van Driel, G. Status gelasticus after temporal lobectomy: ictal FDG-PET findings and the question of dual pathology involving hypothalamic hamartomas. Epilepsia. 2005;46(8):13131316.Google Scholar
Ng, YT, Rekate, HL, Prenger, EC, et al. Transcallosal resection of hypothalamic hamartoma for intractable epilepsy. Epilepsia. 2006;47(7):11921202.Google Scholar
Rekate, HL, Feiz-Erfan, I, Ng, YT, Gonzalez, LF, Kerrigan, JF. Endoscopic surgery for hypothalamic hamartomas causing medically refractory gelastic epilepsy. Childs Nerv Syst. 2006;22(8):874880.Google Scholar
Berkovic, SF, Arzimanoglou, A, Kuzniecky, R, et al. Hypothalamic hamartoma and seizures: a treatable epileptic encephalopathy. Epilepsia. 2003;44(7):969973.Google Scholar
Quiske, A, Frings, L, Wagner, K, Unterrainer, J, Schulze-Bonhage, A. Cognitive functions in juvenile and adult patients with gelastic epilepsy due to hypothalamic hamartoma. Epilepsia. 2006;47(1):153158.Google Scholar
Striano, S, Striano, P, Coppola, A, Romanelli, P. The syndrome gelastic seizures-hypothalamic hamartoma: severe, potentially reversible encephalopathy. Epilepsia. 2009;50(Suppl 5):6265.Google Scholar
Arita, K, Ikawa, F, Kurisu, K, et al. The relationship between magnetic resonance imaging findings and clinical manifestations of hypothalamic hamartoma. J Neurosurg. 1999;91(2):212220.Google Scholar
Chibbaro, S, Cebula, H, Scholly, J, et al. Pure endoscopic management of epileptogenic hypothalamic hamartomas. Neurosurg Rev. 2017;40(4):647653.Google Scholar
Leal, AJ, Moreira, A, Robalo, C, Ribeiro, C. Different electroclinical manifestations of the epilepsy associated with hamartomas connecting to the middle or posterior hypothalamus. Epilepsia. 2003;44(9):11911195.Google Scholar
Kameyama, S, Shirozu, H, Masuda, H, et al. MRI-guided stereotactic radiofrequency thermocoagulation for 100 hypothalamic hamartomas. J Neurosurg. 2016;124(5):15031512.Google Scholar
Tellez-Zenteno, JF, Serrano-Almeida, C, Moien-Afshari, F. Gelastic seizures associated with hypothalamic hamartomas. An update in the clinical presentation, diagnosis and treatment. Neuropsychiatr Dis Treat. 2008;4(6):10211031.Google Scholar
Delalande, O, Fohlen, M. Disconnecting surgical treatment of hypothalamic hamartoma in children and adults with refractory epilepsy and proposal of a new classification. Neurol Med Chir (Tokyo). 2003;43(2):6168.Google Scholar
Valdueza, JM, Cristante, L, Dammann, O, et al. Hypothalamic hamartomas: with special reference to gelastic epilepsy and surgery. Neurosurgery. 1994;34(6):949958.Google Scholar
Berkovic, SF, Andermann, F, Melanson, D, et al. Hypothalamic hamartomas and ictal laughter: evolution of a characteristic epileptic syndrome and diagnostic value of magnetic resonance imaging. Ann Neurol. 1988;23(5):429439.Google Scholar
Troester, M, Haine-Schlagel, R, Ng, YT, et al. EEG and video-EEG seizure monitoring has limited utility in patients with hypothalamic hamartoma and epilepsy. Epilepsia. 2011;52(6):11371143.Google Scholar
Wu, J, Gao, M, Shen, JX, Qiu, SF, Kerrigan, JF. Mechanisms of intrinsic epileptogenesis in human gelastic seizures with hypothalamic hamartoma. CNS Neurosci Ther. 2015;21(2):104111.Google Scholar
Fenoglio, KA, Wu, J, Kim, DY, et al. Hypothalamic hamartoma: basic mechanisms of intrinsic epileptogenesis. Semin Pediatr Neurol. 2007;14(2):5159.Google Scholar
Coons, SW, Rekate, HL, Prenger, EC, et al. The histopathology of hypothalamic hamartomas: study of 57 cases. J Neuropathol Exp Neurol. 2007;66(2):131141.Google Scholar
Beggs, J, Nakada, S, Fenoglio, K, et al. Hypothalamic hamartomas associated with epilepsy: ultrastructural features. J Neuropathol Exp Neurol. 2008;67(7):657668.Google Scholar
Maixner, W. Hypothalamic hamartomas – clinical, neuropathological and surgical aspects. Childs Nerv Syst. 2006;22(8):867873.Google Scholar
Munari, C, Kahane, P, Francione, S, et al. Role of the hypothalamic hamartoma in the genesis of gelastic fits (a video-stereo-EEG study). Electroencephalogr Clin Neurophysiol. 1995;95(3):154160.Google Scholar
Rasmussen, T, Olszewski, J, Lloydsmith, D. Focal seizures due to chronic localized encephalitis. Neurology. 1958;8(6):435445.Google Scholar
Oguni, H, Andermann, F, Rasmussen, TB. The syndrome of chronic encephalitis and epilepsy: a study based on the MNI series of 48 cases. Adv Neurol. 1992;57:419433.Google Scholar
Pardo, CA, Nabbout, R, Galanopoulou, AS. Mechanisms of epileptogenesis in pediatric epileptic syndromes: Rasmussen encephalitis, infantile spasms, and febrile infection-related epilepsy syndrome (FIRES). Neurotherapeutics. 2014;11(2):297310.CrossRefGoogle ScholarPubMed
Varadkar, S, Bien, CG, Kruse, CA, et al. Rasmussen’s encephalitis: clinical features, pathobiology, and treatment advances. Lancet Neurol. 2014;13(2):195205.Google Scholar
Bien, CG, Granata, T, Antozzi, C, et al. Pathogenesis, diagnosis and treatment of Rasmussen encephalitis: a European consensus statement. Brain. 2005;128(Pt 3):454471.Google Scholar
Dubeau, F, Andermann, F, Wiendl, H, Bar-Or, A. Rasmussen’s encephalitis (chronic focal encephalitis). In: Engel, JJ, Pedley, TA, eds., Epilepsy: A Comprehensive Textbook. 2nd edn. Philadelphia, PA: Lippincott Williams & Wilkins; 2008:24392453.Google Scholar
Bien, CG, Urbach, H, Deckert, M, et al. Diagnosis and staging of Rasmussen’s encephalitis by serial MRI and histopathology. Neurology. 2002;58(2):250257.Google Scholar
Granata, T, Gobbi, G, Spreafico, R, et al. Rasmussen’s encephalitis: early characteristics allow diagnosis. Neurology. 2003;60(3):422425.CrossRefGoogle ScholarPubMed
Ramesha, KN, Rajesh, B, Ashalatha, R, et al. Rasmussen’s encephalitis: experience from a developing country based on a group of medically and surgically treated patients. Seizure. 2009;18(8):567572.Google Scholar
Avbersek, A, Miserocchi, A, McEvoy, AW, et al. Multiphasic presentation of Rasmussen’s encephalitis. Epileptic Disord. 2015;17(3):315320.Google Scholar
Press, C, Wallace, A, Chapman, KE. The Janus-faced nature of Rasmussen’s encephalitis. Semin Pediatr Neurol. 2014;21(2):129136.Google Scholar
Muto, A, Oguni, H, Takahashi, Y, et al. Nationwide survey (incidence, clinical course, prognosis) of Rasmussen’s encephalitis. Brain Dev. 2010;32(6):445453.Google Scholar
Casciato, S, Di Bonaventura, C, Fattouch, J, et al. Extrarolandic electroclinical findings in the evolution of adult-onset Rasmussen’s encephalitis. Epilepsy Behav. 2013;28(3):467473.CrossRefGoogle ScholarPubMed
Gambardella, A, Andermann, F, Shorvon, S, Le Piane, E, Aguglia, U. Limited chronic focal encephalitis: another variant of Rasmussen syndrome? Neurology. 2008;70(5):374377.CrossRefGoogle ScholarPubMed
Guan, Y, Luan, G, Zhou, J, Liu, X. Bilateral Rasmussen encephalitis. Epilepsy Behav. 2011;20(2):398403.Google Scholar
Tobias, SM, Robitaille, Y, Hickey, WF, et al. Bilateral Rasmussen encephalitis: postmortem documentation in a five-year-old. Epilepsia. 2003;44(1):127130.Google Scholar
Frucht, S. Dystonia, athetosis, and epilepsia partialis continua in a patient with late-onset Rasmussen’s encephalitis. Mov Disord. 2002;17(3):609612.Google Scholar
Takei, H, Wilfong, A, Malphrus, A, et al. Dual pathology in Rasmussen’s encephalitis: a study of seven cases and review of the literature. Neuropathology. 2010;30(4):381391.Google Scholar
Longaretti, F, Dunkley, C, Varadkar, S, et al. Evolution of the EEG in children with Rasmussen’s syndrome. Epilepsia. 2012;53(9):15391545.Google Scholar
So, N, Gloor, P. Electroencephalographic and electrocorticographic findings in chronic encephalitis of the Rasmussen type. In: Andermann, F, ed., Chronic Encephalitis and Epilepsy Rasmussen’s Syndrome. Stoneham, MA: Butterworth-Heinemann; 1991:3745.Google Scholar
Pardo, CA, Vining, EP, Guo, L, et al. The pathology of Rasmussen syndrome: stages of cortical involvement and neuropathological studies in 45 hemispherectomies. Epilepsia. 2004;45(5):516526.Google Scholar
Bauer, J, Elger, CE, Hans, VH, et al. Astrocytes are a specific immunological target in Rasmussen’s encephalitis. Ann Neurol. 2007;62(1):6780.Google Scholar
Chiapparini, L, Granata, T, Farina, L, et al. Diagnostic imaging in 13 cases of Rasmussen’s encephalitis: can early MRI suggest the diagnosis? Neuroradiology. 2003;45(3):171183.Google Scholar
Yamazaki, E, Takahashi, Y, Akasaka, N, Fujiwara, T, Inoue, Y. Temporal changes in brain MRI findings in Rasmussen syndrome. Epileptic Disord. 2011;13(3):229239.CrossRefGoogle ScholarPubMed
Bhatjiwale, MG, Polkey, C, Cox, TC, Dean, A, Deasy, N. Rasmussen’s encephalitis: neuroimaging findings in 21 patients with a closer look at the basal ganglia. Pediatr Neurosurg. 1998;29(3):142148.Google Scholar
Cauley, KA, Burbank, HN, Filippi, CG. Diffusion tensor imaging and tractography of Rasmussen encephalitis. Pediatr Radiol. 2009;39(7):727730.Google Scholar
Wagner, J, Schoene-Bake, JC, Bien, CG, et al. Automated 3D MRI volumetry reveals regional atrophy differences in Rasmussen encephalitis. Epilepsia. 2012;53(4):613621.Google Scholar
Fiorella, DJ, Provenzale, JM, Coleman, RE, Crain, BJ, Al-Sugair, AA. (18)F-fluorodeoxyglucose positron emission tomography and MR imaging findings in Rasmussen encephalitis. Am J Neuroradiol. 2001;22(7):12911299.Google Scholar
Shetty-Alva, N, Novotny, EJ, Shetty, T, Kuo, PH. Positron emission tomography in Rasmussen’s encephalitis. Pediatr Neurol. 2007;36(2):112114.Google Scholar
Scheffer, IE, Phillips, HA, O’Brien, CE, et al. Familial partial epilepsy with variable foci: a new partial epilepsy syndrome with suggestion of linkage to chromosome 2. Ann Neurol. 1998;44(6):890899.CrossRefGoogle Scholar
Berkovic, SF, Serratosa, JM, Phillips, HA, et al. Familial partial epilepsy with variable foci: clinical features and linkage to chromosome 22q12. Epilepsia. 2004;45(9):10541060.Google Scholar
Klein, KM, O’Brien, TJ, Praveen, K, et al. Familial focal epilepsy with variable foci mapped to chromosome 22q12: expansion of the phenotypic spectrum. Epilepsia. 2012;53(8):e151–155.Google Scholar
Dibbens, LM, de Vries, B, Donatello, S, et al. Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat Genet. 2013;45(5):546551.Google Scholar
Callenbach, PM, van den Maagdenberg, AM, Hottenga, JJ, et al. Familial partial epilepsy with variable foci in a Dutch family: clinical characteristics and confirmation of linkage to chromosome 22q. Epilepsia. 2003;44(10):12981305.Google Scholar
International League Against Epilepsy: Engel, J Jr. A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology. Epilepsia. 2001;42(6):796803.Google Scholar
Antebi, D, Bird, J. The facilitation and evocation of seizures. Br J Psychiatry. 1992;160:154164.Google Scholar
Epilepsy Foundation of America Working Group: Fisher, RS, Harding, G, Erba, G, Barkley, GL, Wilkins, A. Photic- and pattern-induced seizures: a review for the Epilepsy Foundation of America Working Group. Epilepsia. 2005;46(9):14261441.Google Scholar
Koepp, MJ, Caciagli, L, Pressler, RM, Lehnertz, K, Beniczky, S. Reflex seizures, traits, and epilepsies: from physiology to pathology. Lancet Neurol. 2016;15(1):92105.CrossRefGoogle ScholarPubMed
Italiano, D, Ferlazzo, E, Gasparini, S, et al. Generalized versus partial reflex seizures: a review. Seizure. 2014;23(7):512520.Google Scholar
Verrotti, A, Beccaria, F, Fiori, F, Montagnini, A, Capovilla, G. Photosensitivity: epidemiology, genetics, clinical manifestations, assessment, and management. Epileptic Disord. 2012;14(4):349362.Google Scholar
Striano, S, Coppola, A, del Gaudio, L, Striano, P. Reflex seizures and reflex epilepsies: old models for understanding mechanisms of epileptogenesis. Epilepsy Res. 2012;100(1–2):111.Google Scholar
Harding, G, Wilkins, AJ, Erba, G, Barkley, GL, Fisher, RS, Epilepsy Foundation of America Working Group. Photic- and pattern-induced seizures: expert consensus of the Epilepsy Foundation of America Working Group. Epilepsia. 2005;46(9):14231425.Google Scholar
Hill, RA, Chiappa, KH, Huang-Hellinger, F, Jenkins, BG. Hemodynamic and metabolic aspects of photosensitive epilepsy revealed by functional magnetic resonance imaging and magnetic resonance spectroscopy. Epilepsia. 1999;40(7):912920.Google Scholar
Ricci, GB, Chapman, RM, Erne, SN, et al. Neuromagnetic topography of photoconvulsive response in man. Electroencephalogr Clin Neurophysiol. 1990;75(2):112.Google Scholar
Kasteleijn-Nolst Trenite, DG, Guerrini, R, Binnie, CD, Genton, P. Visual sensitivity and epilepsy: a proposed terminology and classification for clinical and EEG phenomenology. Epilepsia. 2001;42(5):692701.Google Scholar
Ferlazzo, E, Zifkin, BG, Andermann, E, Andermann, F. Cortical triggers in generalized reflex seizures and epilepsies. Brain. 2005;128(Pt 4):700710.Google Scholar
Guerrini, R, Genton, P. Epileptic syndromes and visually induced seizures. Epilepsia. 2004;45(Suppl 1):1418.Google Scholar
Miller, S, Razvi, S, Russell, A. Reading epilepsy. Pract Neurol. 2010;10(5):278281.Google Scholar
Koutroumanidis, M, Koepp, MJ, Richardson, MP, et al. The variants of reading epilepsy. A clinical and video-EEG study of 17 patients with reading-induced seizures. Brain. 1998;121(Pt 8):14091427.Google Scholar
Salek-Haddadi, A, Mayer, T, Hamandi, K, et al. Imaging seizure activity: a combined EEG/EMG-fMRI study in reading epilepsy. Epilepsia. 2009;50(2):256264.Google Scholar
Stern, J. Musicogenic epilepsy. Handb Clin Neurol. 2015;129:469477.CrossRefGoogle ScholarPubMed
Kaplan, PW. Musicogenic epilepsy and epileptic music: a seizure’s song. Epilepsy Behav. 2003;4(5):464473.Google Scholar
Wieser, HG, Hungerbuhler, H, Siegel, AM, Buck, A. Musicogenic epilepsy: review of the literature and case report with ictal single photon emission computed tomography. Epilepsia. 1997;38(2):200207.Google Scholar
Avanzini, G. Musicogenic seizures. Ann N Y Acad Sci. 2003;999:95102.Google Scholar
Pittau, F, Tinuper, P, Bisulli, F, et al. Videopolygraphic and functional MRI study of musicogenic epilepsy. A case report and literature review. Epilepsy Behav. 2008;13(4):685692.Google Scholar
Bebek, N, Gurses, C, Gokyigit, A, et al. Hot water epilepsy: clinical and electrophysiologic findings based on 21 cases. Epilepsia. 2001;42(9):11801184.Google Scholar
Satishchandra, P. Hot-water epilepsy. Epilepsia. 2003;44(Suppl 1):2932.Google Scholar
Nagaraja, D, Chand, RP. Eating epilepsy. Clin Neurol Neurosurg. 1984;86(2):9599.Google Scholar
Loreto, V, Nocerino, C, Striano, P, et al. Eating epilepsy. Heterogeneity of ictal semiology: the role of video-EEG monitoring. Epileptic Disord. 2000;2(2):9398.Google Scholar
Aguglia, U, Tinuper, P, Gastaut, H. Startle-induced epileptic seizures. Epilepsia. 1984;25(6):712720.Google Scholar
Fernandez, S, Donaire, A, Maestro, I, et al. Functional neuroimaging in startle epilepsy: involvement of a mesial frontoparietal network. Epilepsia. 2011;52(9):17251732.Google Scholar
Nolan, MA, Otsubo, H, Iida, K, Minassian, BA. Startle-induced seizures associated with infantile hemiplegia: implication of the supplementary motor area. Epileptic Disord. 2005;7(1):4952.Google Scholar
Ricci, S, Cusmai, R, Fusco, L, Vigevano, F. Reflex myoclonic epilepsy in infancy: a new age-dependent idiopathic epileptic syndrome related to startle reaction. Epilepsia. 1995;36(4):342348.Google Scholar
Northrup, H, Krueger, DA, International Tuberous Sclerosis Complex Consensus Group. Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol. 2013;49(4):243254.Google Scholar
El-Hattab, AW, Adesina, AM, Jones, J, Scaglia, F. MELAS syndrome: clinical manifestations, pathogenesis, and treatment options. Mol Genet Metab. 2015;116(1–2):412.Google Scholar
Middlebrooks, EH, Ver Hoef, L, Szaflarski, JP. Neuroimaging in epilepsy. Curr Neurol Neurosci Rep. 2017;17(4):32.Google Scholar
Krumholz, A, Shinnar, S, French, J, Gronseth, G, Wiebe, S. Evidence-based guideline: management of an unprovoked first seizure in adults. Report of the Guideline Development Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology. 2015;85(17):15261527.Google Scholar
Gupta, L, Janssens, R, Vlooswijk, MC, et al. Towards prognostic biomarkers from BOLD fluctuations to differentiate a first epileptic seizure from new-onset epilepsy. Epilepsia. 2017;58(3):476483.Google Scholar
Semah, F, Picot, MC, Adam, C, et al. Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology. 1998;51(5):12561262.Google Scholar
Annegers, JF, Hauser, WA, Lee, JR, Rocca, WA. Incidence of acute symptomatic seizures in Rochester, Minnesota, 1935–1984. Epilepsia. 1995;36(4):327333.CrossRefGoogle ScholarPubMed
Maschio, M. Brain tumor-related epilepsy. Curr Neuropharmacol. 2012;10(2):124133.Google Scholar
Cowie, CJ, Cunningham, MO. Peritumoral epilepsy: relating form and function for surgical success. Epilepsy Behav. 2014;38:5361.Google Scholar
Kasper, BS, Kasper, EM. New classification of epilepsy-related neoplasms: the clinical perspective. Epilepsy Behav. 2017;67:9197.Google Scholar
Lote, K, Stenwig, AE, Skullerud, K, Hirschberg, H. Prevalence and prognostic significance of epilepsy in patients with gliomas. Eur J Cancer. 1998;34(1):98102.Google Scholar
Ruda, R, Bello, L, Duffau, H, Soffietti, R. Seizures in low-grade gliomas: natural history, pathogenesis, and outcome after treatments. Neuro Oncol. 2012;14(Suppl 4):iv55–64.Google Scholar
Jooma, R, Yeh, HS, Privitera, MD, Gartner, M. Lesionectomy versus electrophysiologically guided resection for temporal lobe tumors manifesting with complex partial seizures. J Neurosurg. 1995;83(2):231236.Google Scholar
van Breemen, MS, Vecht, CJ. Optimal seizure management in brain tumor patients. Curr Neurol Neurosci Rep. 2005;5(3):207213.Google Scholar
van Breemen, MS, Wilms, EB, Vecht, CJ. Epilepsy in patients with brain tumours: epidemiology, mechanisms, and management. Lancet Neurol. 2007;6(5):421430.Google Scholar
Aronica, E, Gorter, JA, Redeker, S, et al. Distribution, characterization and clinical significance of microglia in glioneuronal tumours from patients with chronic intractable epilepsy. Neuropathol Appl Neurobiol. 2005;31(3):280291.Google Scholar
Chernov, MF, Kubo, O, Hayashi, M, et al. Proton MRS of the peritumoral brain. J Neurol Sci. 2005;228(2):137142.Google Scholar
Ivens, S, Kaufer, D, Flores, LP, et al. TGF-beta receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain. 2007;130(Pt 2):535547.Google Scholar
Chan, CH, Bittar, RG, Davis, GA, Kalnins, RM, Fabinyi, GC. Long-term seizure outcome following surgery for dysembryoplastic neuroepithelial tumor. J Neurosurg. 2006;104(1):6269.Google Scholar
Tandon, V, Bansal, S, Chandra, PS, et al. Ganglioglioma: single-institutional experience of 24 cases with review of literature. Asian J Neurosurg. 2016;11(4):407411.Google Scholar
Song, JY, Kim, JH, Cho, YH, Kim, CJ, Lee, EJ. Treatment and outcomes for gangliogliomas: a single-center review of 16 patients. Brain Tumor Res Treat. 2014;2(2):4955.Google Scholar
Odia, Y. Gangliocytomas and gangliogliomas: review of clinical, pathologic and genetic features. Clin Oncol (Belmont). 2016;1:1017.Google Scholar
Xue, H, Sveinsson, O, Tomson, T, Mathiesen, T. Intracranial meningiomas and seizures: a review of the literature. Acta Neurochir (Wien). 2015;157(9):15411548.Google Scholar
Lynam, LM, Lyons, MK, Drazkowski, JF, et al. Frequency of seizures in patients with newly diagnosed brain tumors: a retrospective review. Clin Neurol Neurosurg. 2007;109(7):634638.Google Scholar
Glantz, MJ, Cole, BF, Forsyth, PA, et al. Practice parameter: anticonvulsant prophylaxis in patients with newly diagnosed brain tumors. Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2000;54(10):18861893.Google Scholar
Singh, G, Rees, JH, Sander, JW. Seizures and epilepsy in oncological practice: causes, course, mechanisms and treatment. J Neurol Neurosurg Psychiatry. 2007;78(4):342349.Google Scholar
Patchell, RA, Tibbs, PA, Walsh, JW, et al. A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med. 1990;322(8):494500.Google Scholar
Chadehumbe, MA, Khatri, P, Khoury, JC, et al. Seizures are common in the acute setting of childhood stroke: a population-based study. J Child Neurol. 2009;24(1):912.Google Scholar
Szaflarski, JP, Rackley, AY, Kleindorfer, DO, et al. Incidence of seizures in the acute phase of stroke: a population-based study. Epilepsia. 2008;49(6):974981.Google Scholar
Ferlazzo, E, Gasparini, S, Beghi, E, et al. Epilepsy in cerebrovascular diseases: review of experimental and clinical data with meta-analysis of risk factors. Epilepsia. 2016;57(8):12051214.Google Scholar
Silverstein, FS, Barks, JD, Hagan, P, et al. Cytokines and perinatal brain injury. Neurochem Int. 1997;30(4–5):375383.Google Scholar
Fitzgerald, KC, Williams, LS, Garg, BP, Golomb, MR. Epilepsy in children with delayed presentation of perinatal stroke. J Child Neurol. 2007;22(11):12741280.Google Scholar
Rosenbaum, P, Paneth, N, Leviton, A, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:814.Google Scholar
Golomb, MR, Garg, BP, Carvalho, KS, Johnson, CS, Williams, LS. Perinatal stroke and the risk of developing childhood epilepsy. J Pediatr. 2007;151(4):409413.Google Scholar
Krageloh-Mann, I, Cans, C. Cerebral palsy update. Brain Dev. 2009;31(7):537544.Google Scholar
Vannucci, RC. Hypoxic-ischemic encephalopathy. Am J Perinatol. 2000;17(3):113120.Google Scholar
Laptook, AR, Shankaran, S, Ambalavanan, N, et al. Outcome of term infants using apgar scores at 10 minutes following hypoxic-ischemic encephalopathy. Pediatrics. 2009;124(6):16191626.Google Scholar
Tagin, MA, Woolcott, CG, Vincer, MJ, Whyte, RK, Stinson, DA. Hypothermia for neonatal hypoxic ischemic encephalopathy: an updated systematic review and meta-analysis. Arch Pediatr Adolesc Med. 2012;166(6):558566.Google Scholar
Ekert, P, Perlman, M, Steinlin, M, Hao, Y. Predicting the outcome of postasphyxial hypoxic-ischemic encephalopathy within 4 hours of birth. J Pediatr. 1997;131(4):613617.Google Scholar
Spitzmiller, RE, Phillips, T, Meinzen-Derr, J, Hoath, SB. Amplitude-integrated EEG is useful in predicting neurodevelopmental outcome in full-term infants with hypoxic-ischemic encephalopathy: a meta-analysis. J Child Neurol. 2007;22(9):10691078.Google Scholar
Carlsson, M, Hagberg, G, Olsson, I. Clinical and aetiological aspects of epilepsy in children with cerebral palsy. Dev Med Child Neurol. 2003;45(6):371376.Google Scholar
Kilpatrick, CJ, Davis, SM, Hopper, JL, Rossiter, SC. Early seizures after acute stroke. Risk of late seizures. Arch Neurol. 1992;49(5):509511.Google Scholar
So, EL, Annegers, JF, Hauser, WA, O’Brien, PC, Whisnant, JP. Population-based study of seizure disorders after cerebral infarction. Neurology. 1996;46(2):350355.Google Scholar
Silverman, IE, Restrepo, L, Mathews, GC. Poststroke seizures. Arch Neurol. 2002;59(2):195201.Google Scholar
Koopman, WJ, Willems, PH, Smeitink, JA. Monogenic mitochondrial disorders. N Engl J Med. 2012;366(12):11321141.Google Scholar
Chinnery, PF. Mitochondrial disorders overview. In: Adam, MP, Ardinger, HH, Pagon, RA, et al., eds., GeneReviews(R). Seattle, WA: University of Washington; 2000.Google Scholar
Schon, EA, Bonilla, E, DiMauro, S. Mitochondrial DNA mutations and pathogenesis. J Bioenerg Biomembr. 1997;29(2):131149.Google Scholar
Taylor, RW, Chinnery, PF, Clark, KM, Lightowlers, RN, Turnbull, DM. Treatment of mitochondrial disease. J Bioenerg Biomembr. 1997;29(2):195205.Google Scholar
Baertling, F, Rodenburg, RJ, Schaper, J, et al. A guide to diagnosis and treatment of Leigh syndrome. J Neurol Neurosurg Psychiatry. 2014;85(3):257265.Google Scholar
Leigh, PN, Al-Sarraj, S, DiMauro, S. Impact commentaries. Subacute necrotising encephalomyelopathy (Leigh’s disease; Leigh syndrome). J Neurol Neurosurg Psychiatry. 2015;86(4):363365.Google Scholar
Milone, M, Massie, R. Polymerase gamma 1 mutations: clinical correlations. Neurologist. 2010;16(2):8491.Google Scholar
Saneto, RP, Cohen, BH, Copeland, WC, Naviaux, RK. Alpers-Huttenlocher syndrome. Pediatr Neurol. 2013;48(3):167178.Google Scholar
Barkovich, AJ, Kuzniecky, RI, Jackson, GD, Guerrini, R, Dobyns, WB. A developmental and genetic classification for malformations of cortical development. Neurology. 2005;65(12):18731887.Google Scholar
Barkovich, AJ, Dobyns, WB, Guerrini, R. Malformations of cortical development and epilepsy. Cold Spring Harb Perspect Med. 2015;5(5):a022392.Google Scholar
Tinkle, BT, Schorry, EK, Franz, DN, Crone, KR, Saal, HM. Epidemiology of hemimegalencephaly: a case series and review. Am J Med Genet A. 2005;139(3):204211.Google Scholar
Leventer, RJ, Phelan, EM, Coleman, LT, et al. Clinical and imaging features of cortical malformations in childhood. Neurology. 1999;53(4):715722.Google Scholar
Blumcke, I, Thom, M, Aronica, E, et al. The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc task force of the ILAE Diagnostic Methods Commission. Epilepsia. 2011;52(1):158-174.Google Scholar
Hauptman, JS, Mathern, GW. Surgical treatment of epilepsy associated with cortical dysplasia: 2012 update. Epilepsia. 2012;53(Suppl 4):98104.Google Scholar
Aghakhani, Y, Kinay, D, Gotman, J, et al. The role of periventricular nodular heterotopia in epileptogenesis. Brain. 2005;128(Pt 3):641651.CrossRefGoogle ScholarPubMed
Sheen, VL, Dixon, PH, Fox, JW, et al. Mutations in the X-linked filamin 1 gene cause periventricular nodular heterotopia in males as well as in females. Hum Mol Genet. 2001;10(17):17751783.Google Scholar
Eksioglu, YZ, Scheffer, IE, Cardenas, P, et al. Periventricular heterotopia: an X-linked dominant epilepsy locus causing aberrant cerebral cortical development. Neuron. 1996;16(1):7787.Google Scholar
Granata, T, Freri, E, Caccia, C, et al. Schizencephaly: clinical spectrum, epilepsy, and pathogenesis. J Child Neurol. 2005;20(4):313318.Google Scholar
Dobyns, WB, Reiner, O, Carrozzo, R, Ledbetter, DH. Lissencephaly. A human brain malformation associated with deletion of the LIS1 gene located at chromosome 17p13. JAMA. 1993;270(23):28382842.Google Scholar
Leventer, RJ. Genotype-phenotype correlation in lissencephaly and subcortical band heterotopia: the key questions answered. J Child Neurol. 2005;20(4):307312.Google Scholar
Devisme, L, Bouchet, C, Gonzales, M, et al. Cobblestone lissencephaly: neuropathological subtypes and correlations with genes of dystroglycanopathies. Brain. 2012;135(Pt 2):469482.Google Scholar
D’Agostino, MD, Bernasconi, A, Das, S, et al. Subcortical band heterotopia (SBH) in males: clinical, imaging and genetic findings in comparison with females. Brain. 2002;125(Pt 11):25072522.CrossRefGoogle ScholarPubMed
Mai, R, Tassi, L, Cossu, M, et al. A neuropathological, stereo-EEG, and MRI study of subcortical band heterotopia. Neurology. 2003;60(11):18341838.Google Scholar
Leventer, RJ, Jansen, A, Pilz, DT, et al. Clinical and imaging heterogeneity of polymicrogyria: a study of 328 patients. Brain. 2010;133(Pt 5):14151427.Google Scholar
Napolioni, V, Curatolo, P. Genetics and molecular biology of tuberous sclerosis complex. Curr Genomics. 2008;9(7):475487.Google Scholar
Korf, BR, Bebin, EM. Neurocutaneous disorders in children. Pediatr Rev. 2017;38(3):119128.Google Scholar
Wu, JY, Peters, JM, Goyal, M, et al. Clinical electroencephalographic biomarker for impending epilepsy in asymptomatic tuberous sclerosis complex infants. Pediatr Neurol. 2016;54:2934.Google Scholar
Comi, AM. Sturge-Weber syndrome and epilepsy: an argument for aggressive seizure management in these patients. Expert Rev Neurother. 2007;7(8):951956.Google Scholar
Assogba, K, Ferlazzo, E, Striano, P, et al. Heterogeneous seizure manifestations in Hypomelanosis of Ito: report of four new cases and review of the literature. Neurol Sci. 2010;31(1):916.Google Scholar
Hubert, JN, Callen, JP. Incontinentia pigmenti presenting as seizures. Pediatr Dermatol. 2002;19(6):550552.Google Scholar
Ostendorf, AP, Gutmann, DH, Weisenberg, JL. Epilepsy in individuals with neurofibromatosis type 1. Epilepsia. 2013;54(10):18101814.CrossRefGoogle ScholarPubMed
Drouet, A. [Seizures in neurofibromatosis. What is the risk?]. Rev Neurol (Paris). 2011;167(12):886896.Google Scholar
Temkin, NR. Preventing and treating posttraumatic seizures: the human experience. Epilepsia. 2009;50(Suppl 2):1013.Google Scholar
Szaflarski, JP. Is there equipoise between phenytoin and levetiracetam for seizure prevention in traumatic brain injury? Epilepsy Curr. 2015;15(2):9497.Google Scholar
Szaflarski, JP, Nazzal, Y, Dreer, LE. Post-traumatic epilepsy: current and emerging treatment options. Neuropsychiatr Dis Treat. 2014;10:14691477.Google Scholar
Annegers, JF, Hauser, WA, Coan, SP, Rocca, WA. A population-based study of seizures after traumatic brain injuries. N Engl J Med. 1998;338(1):2024.Google Scholar
Asikainen, I, Kaste, M, Sarna, S. Early and late posttraumatic seizures in traumatic brain injury rehabilitation patients: brain injury factors causing late seizures and influence of seizures on long-term outcome. Epilepsia. 1999;40(5):584589.CrossRefGoogle ScholarPubMed
Annegers, JF, Grabow, JD, Groover, RV, et al. Seizures after head trauma: a population study. Neurology. 1980;30(7 Pt 1):683689.Google Scholar
Ritter, AC, Wagner, AK, Fabio, A, et al. Incidence and risk factors of posttraumatic seizures following traumatic brain injury: a Traumatic Brain Injury Model Systems Study. Epilepsia. 2016;57(12):19681977.Google Scholar
Ritter, AC, Wagner, AK, Szaflarski, JP, et al. Prognostic models for predicting posttraumatic seizures during acute hospitalization, and at 1 and 2 years following traumatic brain injury. Epilepsia. 2016;57(9):15031514.Google Scholar
Chang, B, Lowenstein, D. Practice parameter: antiepileptic drug prophylaxis in severe traumatic brain injury. Neurology. 2003;60(1):1016.Google Scholar
Szaflarski, JP, Sangha, KS, Lindsell, CJ, Shutter, LA. Prospective, randomized, single-blinded comparative trial of intravenous levetiracetam versus phenytoin for seizure prophylaxis. Neurocrit Care. 2010;12(2):165172.CrossRefGoogle ScholarPubMed
Taylor, S, Heinrichs, RJ, Janzen, JM, Ehtisham, A. Levetiracetam is associated with improved cognitive outcome for patients with intracranial hemorrhage. Neurocrit Care. 2011;15(1):8084.Google Scholar
Turjman, F, Massoud, TF, Sayre, JW, et al. Epilepsy associated with cerebral arteriovenous malformations: a multivariate analysis of angioarchitectural characteristics. Am J Neuroradiol. 1995;16(2):345350.Google Scholar
Crawford, PM, West, CR, Chadwick, DW, Shaw, MD. Arteriovenous malformations of the brain: natural history in unoperated patients. J Neurol Neurosurg Psychiatry. 1986;49(1):110.Google Scholar
Rosenow, F, Alonso-Vanegas, MA, Baumgartner, C, et al. Cavernoma-related epilepsy: review and recommendations for management – report of the Surgical Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2013;54(12):20252035.CrossRefGoogle ScholarPubMed
Josephson, CB, Leach, JP, Duncan, R, et al. Seizure risk from cavernous or arteriovenous malformations: prospective population-based study. Neurology. 2011;76(18):15481554.Google Scholar
Striano, S, Nocerino, C, Striano, P, et al. Venous angiomas and epilepsy. Neurol Sci. 2000;21(3):151155.Google Scholar
Mills, PB, Footitt, EJ, Mills, KA, et al. Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency). Brain. 2010;133(Pt 7):21482159.Google Scholar
Wang, D, Pascual, JM, De Vivo, D. Glucose transporter type 1 deficiency syndrome. In: Adam, MP, Ardinger, HH, Pagon, RA, et al., eds. GeneReviews®, Seattle, WA: University of Washington; 2002.Google Scholar
Annegers, JF, Rocca, WA, Hauser, WA. Causes of epilepsy: contributions of the Rochester epidemiology project. Mayo Clin Proc. 1996;71(6):570575.Google Scholar
Khan, NA, Kazzi, SN. Yield and costs of screening growth-retarded infants for torch infections. Am J Perinatol. 2000;17(3):131135.Google Scholar
Misra, UK, Tan, CT, Kalita, J. Viral encephalitis and epilepsy. Epilepsia. 2008;49(Suppl 6):1318.Google Scholar
Annegers, JF, Hauser, WA, Beghi, E, Nicolosi, A, Kurland, LT. The risk of unprovoked seizures after encephalitis and meningitis. Neurology. 1988;38(9):14071410.Google Scholar
Chuang, MJ, Chang, WN, Chang, HW, et al. Predictors and long-term outcome of seizures after bacterial brain abscess. J Neurol Neurosurg Psychiatry. 2010;81(8):913917.CrossRefGoogle ScholarPubMed
Granerod, J, Ambrose, HE, Davies, NW, et al. Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. Lancet Infect Dis. 2010;10(12):835844.Google Scholar
Burneo, JG, Cavazos, JE. Neurocysticercosis and epilepsy. Epilepsy Curr. 2014;14(1 Suppl):2328.Google Scholar
Baird, RA, Wiebe, S, Zunt, JR, et al. Evidence-based guideline: treatment of parenchymal neurocysticercosis. Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2013;80(15):14241429.Google Scholar
Khawaja, AM, DeWolfe, JL, Miller, DW, Szaflarski, JP. New-onset refractory status epilepticus (NORSE) – the potential role for immunotherapy. Epilepsy Behav. 2015;47:1723.Google Scholar
Vezzani, A, French, J, Bartfai, T, Baram, TZ. The role of inflammation in epilepsy. Nat Rev Neurol. 2011;7(1):3140.Google Scholar
Vezzani, A, Friedman, A. Brain inflammation as a biomarker in epilepsy. Biomark Med. 2011;5(5):607614.Google Scholar
Kivity, S, Agmon-Levin, N, Zandman-Goddard, G, Chapman, J, Shoenfeld, Y. Neuropsychiatric lupus: a mosaic of clinical presentations. BMC Med. 2015;13:43.Google Scholar
Joseph, FG, Scolding, NJ. Cerebral vasculitis: a practical approach. Practical Neurology. 2002;2(2):8093.Google Scholar
Krumholz, A, Stern, BJ, Stern, EG. Clinical implications of seizures in neurosarcoidosis. Arch Neurol. 1991;48(8):842844.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×