Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T06:00:23.791Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  23 October 2009

Mark D. McDonnell
Affiliation:
Institute for Telecommunications Research, University of South Australia and University of Adelaide
Nigel G. Stocks
Affiliation:
University of Warwick
Charles E. M. Pearce
Affiliation:
University of Adelaide
Derek Abbott
Affiliation:
University of Adelaide
Get access

Summary

Quantization of a signal or data source refers to the division or classification of that source into a discrete number of categories or states. It occurs, for example, when analogue electronic signals are converted into digital signals, or when data are binned into histograms. By definition, quantization is a lossy process, which compresses data into a more compact representation, so that the number of states in a quantizer's output is usually far fewer than the number of possible input values.

Most existing theory on the performance and design of quantization schemes specifies only deterministic rules governing how data are quantized. By contrast, stochastic quantization is a term intended to pertain to quantization where the rules governing the assignment of input values to output states are stochastic rather than deterministic. One form of stochastic quantization that has already been widely studied is a signal processing technique called dithering. However, the stochastic aspect of dithering is usually restricted so that it is equivalent to adding random noise to a signal prior to quantization. The term stochastic quantization is intended to be far more general, and applies to the situation where the rules of the quantization process are stochastic.

The inspiration for this study comes from a phenomenon known as stochastic resonance, which is said to occur when the presence of noise in a system provides a better performance than the absence of noise. Specifically, this book discusses a particular form of stochastic resonance – discovered by Stocks – known as suprathreshold stochastic resonance, and demonstrates how and why this effect is a form of stochastic quantization.

Type
Chapter
Information
Stochastic Resonance
From Suprathreshold Stochastic Resonance to Stochastic Signal Quantization
, pp. xv - xvi
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×