Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-28T09:10:52.946Z Has data issue: false hasContentIssue false

9 - SSR, neural coding, and performance tradeoffs

Published online by Cambridge University Press:  23 October 2009

Mark D. McDonnell
Affiliation:
Institute for Telecommunications Research, University of South Australia and University of Adelaide
Nigel G. Stocks
Affiliation:
University of Warwick
Charles E. M. Pearce
Affiliation:
University of Adelaide
Derek Abbott
Affiliation:
University of Adelaide
Get access

Summary

Engineered systems usually require finding the right tradeoff between cost and performance. Communications systems are no exception, and much theoretical work has been undertaken to find the limits of achievable performance for the transmission of information. For example, Shannon's celebrated channel capacity formula and coding theorems say that there is an upper limit on the average amount of information that can be transmitted in a channel for error-free communication. This limit can be increased if the power of the signal is increased, or the bandwidth in the channel is increased. However, nothing comes for free, and increasing either power or bandwidth can be expensive; hence there is a tradeoff between cost and performance in such a communications system – performance (measured by bit rates) can be increased by increasing the cost (power or bandwidth). This chapter discusses several problems related to the tradeoff between cost and performance in the SSR model. We are interested in the SSR model as a channel model, from an energy efficient neural coding point of view, as well as the lossy source coding model, where there is a tradeoff between rate and distortion.

Introduction

Chapter 8 introduces an extension to the suprathreshold stochastic resonance (SSR) model by allowing all thresholds to vary independently, instead of all having the same value. This chapter further extends the SSR model by introducing an energy constraint into the optimal stochastic quantization problem. We also examine the tradeoff between rate and distortion, when the SSR model is considered as a stochastic quantizer.

Type
Chapter
Information
Stochastic Resonance
From Suprathreshold Stochastic Resonance to Stochastic Signal Quantization
, pp. 291 - 322
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×